Properties

Label 1120.2.x.b
Level $1120$
Weight $2$
Character orbit 1120.x
Analytic conductor $8.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(127,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,0,0,0,0,-8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{3} - \zeta_{8}^{2} + 1) q^{3} + ( - 2 \zeta_{8}^{3} + \zeta_{8}) q^{5} + \zeta_{8} q^{7} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{9} + (\zeta_{8}^{3} + \zeta_{8}^{2} + \zeta_{8}) q^{11}+ \cdots + ( - 2 \zeta_{8}^{3} + 2 \zeta_{8} + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 8 q^{13} + 4 q^{15} + 16 q^{19} + 4 q^{21} + 24 q^{23} + 16 q^{25} + 4 q^{27} + 8 q^{33} + 8 q^{35} - 8 q^{37} - 12 q^{39} - 16 q^{41} + 4 q^{43} - 8 q^{45} + 12 q^{47} - 20 q^{53} + 4 q^{55}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 0.292893 + 0.292893i 0 −2.12132 0.707107i 0 −0.707107 + 0.707107i 0 2.82843i 0
127.2 0 1.70711 + 1.70711i 0 2.12132 + 0.707107i 0 0.707107 0.707107i 0 2.82843i 0
1023.1 0 0.292893 0.292893i 0 −2.12132 + 0.707107i 0 −0.707107 0.707107i 0 2.82843i 0
1023.2 0 1.70711 1.70711i 0 2.12132 0.707107i 0 0.707107 + 0.707107i 0 2.82843i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.2.x.b yes 4
4.b odd 2 1 1120.2.x.a 4
5.c odd 4 1 1120.2.x.a 4
20.e even 4 1 inner 1120.2.x.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.2.x.a 4 4.b odd 2 1
1120.2.x.a 4 5.c odd 4 1
1120.2.x.b yes 4 1.a even 1 1 trivial
1120.2.x.b yes 4 20.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} + 8T_{3}^{2} - 4T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(1120, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( T^{4} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 6T^{2} + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 8 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$17$ \( T^{4} + 81 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8 T + 14)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 12 T + 72)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 44T^{2} + 196 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$41$ \( (T^{2} + 8 T + 14)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$53$ \( T^{4} + 20 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$59$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12 T + 28)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 20 T^{3} + \cdots + 1156 \) Copy content Toggle raw display
$71$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T + 8)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 6 T - 89)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$89$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$97$ \( T^{4} + 6561 \) Copy content Toggle raw display
show more
show less