Properties

Label 1120.2.q.h.961.3
Level $1120$
Weight $2$
Character 1120.961
Analytic conductor $8.943$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(641,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.641"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1445900625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 77x^{4} + 36x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.3
Root \(-1.46040 + 2.52950i\) of defining polynomial
Character \(\chi\) \(=\) 1120.961
Dual form 1120.2.q.h.641.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.342371 + 0.593004i) q^{3} +(0.500000 - 0.866025i) q^{5} +(2.57844 - 0.593004i) q^{7} +(1.26556 - 2.19202i) q^{9} +(1.46040 + 2.52950i) q^{11} -2.53113 q^{13} +0.684742 q^{15} +(1.00000 + 1.73205i) q^{17} +(0.775663 - 1.34349i) q^{19} +(1.23444 + 1.32600i) q^{21} +(3.35410 - 5.80948i) q^{23} +(-0.500000 - 0.866025i) q^{25} +3.78739 q^{27} -1.53113 q^{29} +(0.684742 + 1.18601i) q^{31} +(-1.00000 + 1.73205i) q^{33} +(0.775663 - 2.52950i) q^{35} +(0.265564 - 0.459971i) q^{37} +(-0.866585 - 1.50097i) q^{39} -8.06226 q^{41} +2.05422 q^{43} +(-1.26556 - 2.19202i) q^{45} +(2.14515 - 3.71550i) q^{47} +(6.29669 - 3.05805i) q^{49} +(-0.684742 + 1.18601i) q^{51} +(-1.73444 - 3.00413i) q^{53} +2.92081 q^{55} +1.06226 q^{57} +(4.47214 + 7.74597i) q^{59} +(0.234436 - 0.406054i) q^{61} +(1.96330 - 6.40248i) q^{63} +(-1.26556 + 2.19202i) q^{65} +(3.26318 + 5.65199i) q^{67} +4.59339 q^{69} +8.94427 q^{71} +(5.53113 + 9.58020i) q^{73} +(0.342371 - 0.593004i) q^{75} +(5.26556 + 5.65612i) q^{77} +(2.92081 - 5.05899i) q^{79} +(-2.50000 - 4.33013i) q^{81} +3.78739 q^{83} +2.00000 q^{85} +(-0.524214 - 0.907965i) q^{87} +(-4.76556 + 8.25420i) q^{89} +(-6.52636 + 1.50097i) q^{91} +(-0.468871 + 0.812109i) q^{93} +(-0.775663 - 1.34349i) q^{95} -2.00000 q^{97} +7.39295 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 6 q^{9} + 12 q^{13} + 8 q^{17} + 26 q^{21} - 4 q^{25} + 20 q^{29} - 8 q^{33} - 14 q^{37} + 6 q^{45} + 2 q^{49} - 30 q^{53} - 56 q^{57} + 18 q^{61} + 6 q^{65} - 60 q^{69} + 12 q^{73} + 26 q^{77}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.342371 + 0.593004i 0.197668 + 0.342371i 0.947772 0.318949i \(-0.103330\pi\)
−0.750104 + 0.661320i \(0.769997\pi\)
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 2.57844 0.593004i 0.974558 0.224134i
\(8\) 0 0
\(9\) 1.26556 2.19202i 0.421855 0.730674i
\(10\) 0 0
\(11\) 1.46040 + 2.52950i 0.440329 + 0.762672i 0.997714 0.0675826i \(-0.0215286\pi\)
−0.557385 + 0.830254i \(0.688195\pi\)
\(12\) 0 0
\(13\) −2.53113 −0.702009 −0.351004 0.936374i \(-0.614160\pi\)
−0.351004 + 0.936374i \(0.614160\pi\)
\(14\) 0 0
\(15\) 0.684742 0.176800
\(16\) 0 0
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) 0 0
\(19\) 0.775663 1.34349i 0.177949 0.308217i −0.763229 0.646128i \(-0.776387\pi\)
0.941178 + 0.337911i \(0.109720\pi\)
\(20\) 0 0
\(21\) 1.23444 + 1.32600i 0.269376 + 0.289356i
\(22\) 0 0
\(23\) 3.35410 5.80948i 0.699379 1.21136i −0.269304 0.963055i \(-0.586793\pi\)
0.968682 0.248304i \(-0.0798732\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 3.78739 0.728884
\(28\) 0 0
\(29\) −1.53113 −0.284323 −0.142162 0.989843i \(-0.545405\pi\)
−0.142162 + 0.989843i \(0.545405\pi\)
\(30\) 0 0
\(31\) 0.684742 + 1.18601i 0.122983 + 0.213013i 0.920943 0.389698i \(-0.127421\pi\)
−0.797960 + 0.602711i \(0.794087\pi\)
\(32\) 0 0
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 0 0
\(35\) 0.775663 2.52950i 0.131111 0.427563i
\(36\) 0 0
\(37\) 0.265564 0.459971i 0.0436585 0.0756188i −0.843370 0.537333i \(-0.819432\pi\)
0.887029 + 0.461714i \(0.152765\pi\)
\(38\) 0 0
\(39\) −0.866585 1.50097i −0.138765 0.240347i
\(40\) 0 0
\(41\) −8.06226 −1.25911 −0.629557 0.776955i \(-0.716763\pi\)
−0.629557 + 0.776955i \(0.716763\pi\)
\(42\) 0 0
\(43\) 2.05422 0.313266 0.156633 0.987657i \(-0.449936\pi\)
0.156633 + 0.987657i \(0.449936\pi\)
\(44\) 0 0
\(45\) −1.26556 2.19202i −0.188659 0.326767i
\(46\) 0 0
\(47\) 2.14515 3.71550i 0.312902 0.541962i −0.666087 0.745874i \(-0.732032\pi\)
0.978989 + 0.203912i \(0.0653656\pi\)
\(48\) 0 0
\(49\) 6.29669 3.05805i 0.899528 0.436864i
\(50\) 0 0
\(51\) −0.684742 + 1.18601i −0.0958830 + 0.166074i
\(52\) 0 0
\(53\) −1.73444 3.00413i −0.238243 0.412649i 0.721967 0.691927i \(-0.243238\pi\)
−0.960210 + 0.279278i \(0.909905\pi\)
\(54\) 0 0
\(55\) 2.92081 0.393842
\(56\) 0 0
\(57\) 1.06226 0.140699
\(58\) 0 0
\(59\) 4.47214 + 7.74597i 0.582223 + 1.00844i 0.995215 + 0.0977047i \(0.0311501\pi\)
−0.412993 + 0.910734i \(0.635517\pi\)
\(60\) 0 0
\(61\) 0.234436 0.406054i 0.0300164 0.0519899i −0.850627 0.525770i \(-0.823777\pi\)
0.880643 + 0.473780i \(0.157111\pi\)
\(62\) 0 0
\(63\) 1.96330 6.40248i 0.247353 0.806636i
\(64\) 0 0
\(65\) −1.26556 + 2.19202i −0.156974 + 0.271887i
\(66\) 0 0
\(67\) 3.26318 + 5.65199i 0.398661 + 0.690501i 0.993561 0.113299i \(-0.0361417\pi\)
−0.594900 + 0.803800i \(0.702808\pi\)
\(68\) 0 0
\(69\) 4.59339 0.552979
\(70\) 0 0
\(71\) 8.94427 1.06149 0.530745 0.847532i \(-0.321912\pi\)
0.530745 + 0.847532i \(0.321912\pi\)
\(72\) 0 0
\(73\) 5.53113 + 9.58020i 0.647370 + 1.12128i 0.983749 + 0.179550i \(0.0574643\pi\)
−0.336379 + 0.941727i \(0.609202\pi\)
\(74\) 0 0
\(75\) 0.342371 0.593004i 0.0395336 0.0684742i
\(76\) 0 0
\(77\) 5.26556 + 5.65612i 0.600067 + 0.644575i
\(78\) 0 0
\(79\) 2.92081 5.05899i 0.328617 0.569181i −0.653621 0.756822i \(-0.726751\pi\)
0.982238 + 0.187641i \(0.0600842\pi\)
\(80\) 0 0
\(81\) −2.50000 4.33013i −0.277778 0.481125i
\(82\) 0 0
\(83\) 3.78739 0.415721 0.207860 0.978159i \(-0.433350\pi\)
0.207860 + 0.978159i \(0.433350\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) −0.524214 0.907965i −0.0562016 0.0973441i
\(88\) 0 0
\(89\) −4.76556 + 8.25420i −0.505149 + 0.874943i 0.494833 + 0.868988i \(0.335229\pi\)
−0.999982 + 0.00595558i \(0.998104\pi\)
\(90\) 0 0
\(91\) −6.52636 + 1.50097i −0.684149 + 0.157344i
\(92\) 0 0
\(93\) −0.468871 + 0.812109i −0.0486197 + 0.0842117i
\(94\) 0 0
\(95\) −0.775663 1.34349i −0.0795814 0.137839i
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 7.39295 0.743019
\(100\) 0 0
\(101\) −0.234436 0.406054i −0.0233272 0.0404039i 0.854126 0.520066i \(-0.174093\pi\)
−0.877453 + 0.479662i \(0.840759\pi\)
\(102\) 0 0
\(103\) 9.10480 15.7700i 0.897123 1.55386i 0.0659671 0.997822i \(-0.478987\pi\)
0.831155 0.556040i \(-0.187680\pi\)
\(104\) 0 0
\(105\) 1.76556 0.406054i 0.172301 0.0396268i
\(106\) 0 0
\(107\) −9.78954 + 16.9560i −0.946391 + 1.63920i −0.193448 + 0.981111i \(0.561967\pi\)
−0.752943 + 0.658086i \(0.771366\pi\)
\(108\) 0 0
\(109\) −4.23444 7.33426i −0.405585 0.702494i 0.588804 0.808276i \(-0.299599\pi\)
−0.994389 + 0.105781i \(0.966266\pi\)
\(110\) 0 0
\(111\) 0.363686 0.0345196
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) −3.35410 5.80948i −0.312772 0.541736i
\(116\) 0 0
\(117\) −3.20331 + 5.54829i −0.296146 + 0.512940i
\(118\) 0 0
\(119\) 3.60555 + 3.87298i 0.330520 + 0.355036i
\(120\) 0 0
\(121\) 1.23444 2.13811i 0.112221 0.194373i
\(122\) 0 0
\(123\) −2.76028 4.78095i −0.248886 0.431084i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.39295 −0.656018 −0.328009 0.944675i \(-0.606378\pi\)
−0.328009 + 0.944675i \(0.606378\pi\)
\(128\) 0 0
\(129\) 0.703307 + 1.21816i 0.0619227 + 0.107253i
\(130\) 0 0
\(131\) −9.53809 + 16.5205i −0.833347 + 1.44340i 0.0620223 + 0.998075i \(0.480245\pi\)
−0.895369 + 0.445325i \(0.853088\pi\)
\(132\) 0 0
\(133\) 1.20331 3.92407i 0.104340 0.340260i
\(134\) 0 0
\(135\) 1.89370 3.27998i 0.162984 0.282296i
\(136\) 0 0
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) 0 0
\(139\) −15.7917 −1.33943 −0.669717 0.742617i \(-0.733584\pi\)
−0.669717 + 0.742617i \(0.733584\pi\)
\(140\) 0 0
\(141\) 2.93774 0.247403
\(142\) 0 0
\(143\) −3.69647 6.40248i −0.309115 0.535402i
\(144\) 0 0
\(145\) −0.765564 + 1.32600i −0.0635767 + 0.110118i
\(146\) 0 0
\(147\) 3.96924 + 2.68698i 0.327377 + 0.221618i
\(148\) 0 0
\(149\) −9.82782 + 17.0223i −0.805127 + 1.39452i 0.111079 + 0.993812i \(0.464569\pi\)
−0.916206 + 0.400709i \(0.868764\pi\)
\(150\) 0 0
\(151\) 8.07769 + 13.9910i 0.657353 + 1.13857i 0.981298 + 0.192493i \(0.0616572\pi\)
−0.323946 + 0.946076i \(0.605009\pi\)
\(152\) 0 0
\(153\) 5.06226 0.409259
\(154\) 0 0
\(155\) 1.36948 0.110000
\(156\) 0 0
\(157\) −3.79669 6.57607i −0.303009 0.524827i 0.673807 0.738907i \(-0.264658\pi\)
−0.976816 + 0.214080i \(0.931325\pi\)
\(158\) 0 0
\(159\) 1.18764 2.05705i 0.0941860 0.163135i
\(160\) 0 0
\(161\) 5.20331 16.9684i 0.410078 1.33729i
\(162\) 0 0
\(163\) 7.21110 12.4900i 0.564817 0.978292i −0.432250 0.901754i \(-0.642280\pi\)
0.997067 0.0765379i \(-0.0243866\pi\)
\(164\) 0 0
\(165\) 1.00000 + 1.73205i 0.0778499 + 0.134840i
\(166\) 0 0
\(167\) −12.5498 −0.971134 −0.485567 0.874199i \(-0.661387\pi\)
−0.485567 + 0.874199i \(0.661387\pi\)
\(168\) 0 0
\(169\) −6.59339 −0.507184
\(170\) 0 0
\(171\) −1.96330 3.40054i −0.150138 0.260046i
\(172\) 0 0
\(173\) 0.265564 0.459971i 0.0201905 0.0349710i −0.855754 0.517384i \(-0.826906\pi\)
0.875944 + 0.482413i \(0.160239\pi\)
\(174\) 0 0
\(175\) −1.80278 1.93649i −0.136277 0.146385i
\(176\) 0 0
\(177\) −3.06226 + 5.30399i −0.230173 + 0.398672i
\(178\) 0 0
\(179\) 4.38121 + 7.58849i 0.327467 + 0.567190i 0.982009 0.188836i \(-0.0604715\pi\)
−0.654541 + 0.756026i \(0.727138\pi\)
\(180\) 0 0
\(181\) −10.4689 −0.778145 −0.389073 0.921207i \(-0.627204\pi\)
−0.389073 + 0.921207i \(0.627204\pi\)
\(182\) 0 0
\(183\) 0.321056 0.0237331
\(184\) 0 0
\(185\) −0.265564 0.459971i −0.0195247 0.0338177i
\(186\) 0 0
\(187\) −2.92081 + 5.05899i −0.213591 + 0.369950i
\(188\) 0 0
\(189\) 9.76556 2.24594i 0.710340 0.163368i
\(190\) 0 0
\(191\) −10.9985 + 19.0500i −0.795823 + 1.37841i 0.126492 + 0.991968i \(0.459628\pi\)
−0.922315 + 0.386439i \(0.873705\pi\)
\(192\) 0 0
\(193\) −12.5934 21.8124i −0.906492 1.57009i −0.818902 0.573933i \(-0.805417\pi\)
−0.0875897 0.996157i \(-0.527916\pi\)
\(194\) 0 0
\(195\) −1.73317 −0.124115
\(196\) 0 0
\(197\) 27.5934 1.96595 0.982974 0.183746i \(-0.0588225\pi\)
0.982974 + 0.183746i \(0.0588225\pi\)
\(198\) 0 0
\(199\) −5.84162 10.1180i −0.414101 0.717245i 0.581232 0.813738i \(-0.302571\pi\)
−0.995334 + 0.0964930i \(0.969237\pi\)
\(200\) 0 0
\(201\) −2.23444 + 3.87016i −0.157605 + 0.272980i
\(202\) 0 0
\(203\) −3.94792 + 0.907965i −0.277090 + 0.0637267i
\(204\) 0 0
\(205\) −4.03113 + 6.98212i −0.281546 + 0.487652i
\(206\) 0 0
\(207\) −8.48966 14.7045i −0.590072 1.02204i
\(208\) 0 0
\(209\) 4.53113 0.313425
\(210\) 0 0
\(211\) −10.4956 −0.722547 −0.361273 0.932460i \(-0.617658\pi\)
−0.361273 + 0.932460i \(0.617658\pi\)
\(212\) 0 0
\(213\) 3.06226 + 5.30399i 0.209822 + 0.363423i
\(214\) 0 0
\(215\) 1.02711 1.77901i 0.0700485 0.121328i
\(216\) 0 0
\(217\) 2.46887 + 2.65199i 0.167598 + 0.180029i
\(218\) 0 0
\(219\) −3.78739 + 6.55996i −0.255928 + 0.443281i
\(220\) 0 0
\(221\) −2.53113 4.38404i −0.170262 0.294903i
\(222\) 0 0
\(223\) −8.94427 −0.598953 −0.299476 0.954104i \(-0.596812\pi\)
−0.299476 + 0.954104i \(0.596812\pi\)
\(224\) 0 0
\(225\) −2.53113 −0.168742
\(226\) 0 0
\(227\) 8.94427 + 15.4919i 0.593652 + 1.02824i 0.993736 + 0.111757i \(0.0356478\pi\)
−0.400083 + 0.916479i \(0.631019\pi\)
\(228\) 0 0
\(229\) −5.53113 + 9.58020i −0.365507 + 0.633077i −0.988857 0.148866i \(-0.952438\pi\)
0.623350 + 0.781943i \(0.285771\pi\)
\(230\) 0 0
\(231\) −1.55133 + 5.05899i −0.102070 + 0.332857i
\(232\) 0 0
\(233\) 6.06226 10.5001i 0.397152 0.687887i −0.596222 0.802820i \(-0.703332\pi\)
0.993373 + 0.114933i \(0.0366653\pi\)
\(234\) 0 0
\(235\) −2.14515 3.71550i −0.139934 0.242373i
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) −21.6333 −1.39934 −0.699671 0.714465i \(-0.746670\pi\)
−0.699671 + 0.714465i \(0.746670\pi\)
\(240\) 0 0
\(241\) 13.7967 + 23.8966i 0.888723 + 1.53931i 0.841386 + 0.540435i \(0.181740\pi\)
0.0473372 + 0.998879i \(0.484926\pi\)
\(242\) 0 0
\(243\) 7.39295 12.8050i 0.474258 0.821438i
\(244\) 0 0
\(245\) 0.500000 6.98212i 0.0319438 0.446071i
\(246\) 0 0
\(247\) −1.96330 + 3.40054i −0.124922 + 0.216371i
\(248\) 0 0
\(249\) 1.29669 + 2.24594i 0.0821746 + 0.142331i
\(250\) 0 0
\(251\) −23.1846 −1.46340 −0.731701 0.681626i \(-0.761273\pi\)
−0.731701 + 0.681626i \(0.761273\pi\)
\(252\) 0 0
\(253\) 19.5934 1.23183
\(254\) 0 0
\(255\) 0.684742 + 1.18601i 0.0428802 + 0.0742707i
\(256\) 0 0
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 0.411977 1.34349i 0.0255990 0.0834803i
\(260\) 0 0
\(261\) −1.93774 + 3.35627i −0.119943 + 0.207748i
\(262\) 0 0
\(263\) −7.05057 12.2120i −0.434757 0.753021i 0.562519 0.826785i \(-0.309832\pi\)
−0.997276 + 0.0737632i \(0.976499\pi\)
\(264\) 0 0
\(265\) −3.46887 −0.213091
\(266\) 0 0
\(267\) −6.52636 −0.399407
\(268\) 0 0
\(269\) −4.23444 7.33426i −0.258178 0.447178i 0.707576 0.706637i \(-0.249789\pi\)
−0.965754 + 0.259460i \(0.916455\pi\)
\(270\) 0 0
\(271\) −13.0527 + 22.6080i −0.792896 + 1.37334i 0.131270 + 0.991347i \(0.458095\pi\)
−0.924166 + 0.381990i \(0.875239\pi\)
\(272\) 0 0
\(273\) −3.12452 3.35627i −0.189104 0.203131i
\(274\) 0 0
\(275\) 1.46040 2.52950i 0.0880657 0.152534i
\(276\) 0 0
\(277\) −16.0623 27.8206i −0.965088 1.67158i −0.709380 0.704827i \(-0.751025\pi\)
−0.255708 0.966754i \(-0.582309\pi\)
\(278\) 0 0
\(279\) 3.46634 0.207524
\(280\) 0 0
\(281\) 15.5934 0.930223 0.465112 0.885252i \(-0.346014\pi\)
0.465112 + 0.885252i \(0.346014\pi\)
\(282\) 0 0
\(283\) −13.2346 22.9229i −0.786713 1.36263i −0.927970 0.372654i \(-0.878448\pi\)
0.141257 0.989973i \(-0.454886\pi\)
\(284\) 0 0
\(285\) 0.531129 0.919942i 0.0314614 0.0544927i
\(286\) 0 0
\(287\) −20.7880 + 4.78095i −1.22708 + 0.282210i
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) −0.684742 1.18601i −0.0401403 0.0695250i
\(292\) 0 0
\(293\) −27.7179 −1.61930 −0.809649 0.586915i \(-0.800342\pi\)
−0.809649 + 0.586915i \(0.800342\pi\)
\(294\) 0 0
\(295\) 8.94427 0.520756
\(296\) 0 0
\(297\) 5.53113 + 9.58020i 0.320949 + 0.555899i
\(298\) 0 0
\(299\) −8.48966 + 14.7045i −0.490970 + 0.850385i
\(300\) 0 0
\(301\) 5.29669 1.21816i 0.305296 0.0702137i
\(302\) 0 0
\(303\) 0.160528 0.278042i 0.00922208 0.0159731i
\(304\) 0 0
\(305\) −0.234436 0.406054i −0.0134237 0.0232506i
\(306\) 0 0
\(307\) 16.4764 0.940360 0.470180 0.882571i \(-0.344189\pi\)
0.470180 + 0.882571i \(0.344189\pi\)
\(308\) 0 0
\(309\) 12.4689 0.709329
\(310\) 0 0
\(311\) 14.7859 + 25.6099i 0.838431 + 1.45221i 0.891206 + 0.453599i \(0.149860\pi\)
−0.0527751 + 0.998606i \(0.516807\pi\)
\(312\) 0 0
\(313\) −12.0000 + 20.7846i −0.678280 + 1.17482i 0.297218 + 0.954810i \(0.403941\pi\)
−0.975499 + 0.220006i \(0.929392\pi\)
\(314\) 0 0
\(315\) −4.56306 4.90151i −0.257099 0.276169i
\(316\) 0 0
\(317\) −1.00000 + 1.73205i −0.0561656 + 0.0972817i −0.892741 0.450570i \(-0.851221\pi\)
0.836576 + 0.547852i \(0.184554\pi\)
\(318\) 0 0
\(319\) −2.23607 3.87298i −0.125196 0.216845i
\(320\) 0 0
\(321\) −13.4066 −0.748284
\(322\) 0 0
\(323\) 3.10265 0.172636
\(324\) 0 0
\(325\) 1.26556 + 2.19202i 0.0702009 + 0.121591i
\(326\) 0 0
\(327\) 2.89949 5.02207i 0.160342 0.277721i
\(328\) 0 0
\(329\) 3.32782 10.8523i 0.183469 0.598305i
\(330\) 0 0
\(331\) 2.64805 4.58655i 0.145550 0.252100i −0.784028 0.620725i \(-0.786838\pi\)
0.929578 + 0.368626i \(0.120172\pi\)
\(332\) 0 0
\(333\) −0.672178 1.16425i −0.0368351 0.0638003i
\(334\) 0 0
\(335\) 6.52636 0.356573
\(336\) 0 0
\(337\) −17.0623 −0.929440 −0.464720 0.885458i \(-0.653845\pi\)
−0.464720 + 0.885458i \(0.653845\pi\)
\(338\) 0 0
\(339\) 1.36948 + 2.37201i 0.0743801 + 0.128830i
\(340\) 0 0
\(341\) −2.00000 + 3.46410i −0.108306 + 0.187592i
\(342\) 0 0
\(343\) 14.4222 11.6190i 0.778726 0.627364i
\(344\) 0 0
\(345\) 2.29669 3.97799i 0.123650 0.214168i
\(346\) 0 0
\(347\) 4.99635 + 8.65393i 0.268218 + 0.464567i 0.968402 0.249395i \(-0.0802319\pi\)
−0.700184 + 0.713963i \(0.746899\pi\)
\(348\) 0 0
\(349\) −5.53113 −0.296075 −0.148037 0.988982i \(-0.547296\pi\)
−0.148037 + 0.988982i \(0.547296\pi\)
\(350\) 0 0
\(351\) −9.58638 −0.511683
\(352\) 0 0
\(353\) 2.00000 + 3.46410i 0.106449 + 0.184376i 0.914329 0.404971i \(-0.132718\pi\)
−0.807880 + 0.589347i \(0.799385\pi\)
\(354\) 0 0
\(355\) 4.47214 7.74597i 0.237356 0.411113i
\(356\) 0 0
\(357\) −1.06226 + 3.46410i −0.0562206 + 0.183340i
\(358\) 0 0
\(359\) −9.81086 + 16.9929i −0.517797 + 0.896851i 0.481989 + 0.876177i \(0.339914\pi\)
−0.999786 + 0.0206738i \(0.993419\pi\)
\(360\) 0 0
\(361\) 8.29669 + 14.3703i 0.436668 + 0.756331i
\(362\) 0 0
\(363\) 1.69054 0.0887303
\(364\) 0 0
\(365\) 11.0623 0.579025
\(366\) 0 0
\(367\) 12.9831 + 22.4874i 0.677713 + 1.17383i 0.975668 + 0.219254i \(0.0703622\pi\)
−0.297955 + 0.954580i \(0.596304\pi\)
\(368\) 0 0
\(369\) −10.2033 + 17.6726i −0.531163 + 0.920001i
\(370\) 0 0
\(371\) −6.25360 6.71744i −0.324671 0.348752i
\(372\) 0 0
\(373\) −2.53113 + 4.38404i −0.131057 + 0.226997i −0.924084 0.382189i \(-0.875170\pi\)
0.793027 + 0.609186i \(0.208504\pi\)
\(374\) 0 0
\(375\) −0.342371 0.593004i −0.0176800 0.0306226i
\(376\) 0 0
\(377\) 3.87548 0.199598
\(378\) 0 0
\(379\) −5.01767 −0.257740 −0.128870 0.991661i \(-0.541135\pi\)
−0.128870 + 0.991661i \(0.541135\pi\)
\(380\) 0 0
\(381\) −2.53113 4.38404i −0.129674 0.224601i
\(382\) 0 0
\(383\) −8.32914 + 14.4265i −0.425599 + 0.737159i −0.996476 0.0838764i \(-0.973270\pi\)
0.570877 + 0.821035i \(0.306603\pi\)
\(384\) 0 0
\(385\) 7.53113 1.73205i 0.383822 0.0882735i
\(386\) 0 0
\(387\) 2.59975 4.50291i 0.132153 0.228896i
\(388\) 0 0
\(389\) −15.5311 26.9007i −0.787459 1.36392i −0.927519 0.373777i \(-0.878063\pi\)
0.140059 0.990143i \(-0.455271\pi\)
\(390\) 0 0
\(391\) 13.4164 0.678497
\(392\) 0 0
\(393\) −13.0623 −0.658904
\(394\) 0 0
\(395\) −2.92081 5.05899i −0.146962 0.254545i
\(396\) 0 0
\(397\) −15.1245 + 26.1964i −0.759078 + 1.31476i 0.184244 + 0.982881i \(0.441016\pi\)
−0.943321 + 0.331881i \(0.892317\pi\)
\(398\) 0 0
\(399\) 2.73897 0.629923i 0.137120 0.0315356i
\(400\) 0 0
\(401\) −8.96887 + 15.5345i −0.447884 + 0.775758i −0.998248 0.0591669i \(-0.981156\pi\)
0.550364 + 0.834925i \(0.314489\pi\)
\(402\) 0 0
\(403\) −1.73317 3.00194i −0.0863353 0.149537i
\(404\) 0 0
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) 1.55133 0.0768964
\(408\) 0 0
\(409\) −2.29669 3.97799i −0.113564 0.196699i 0.803641 0.595115i \(-0.202893\pi\)
−0.917205 + 0.398416i \(0.869560\pi\)
\(410\) 0 0
\(411\) 4.10845 7.11604i 0.202655 0.351009i
\(412\) 0 0
\(413\) 16.1245 + 17.3205i 0.793436 + 0.852286i
\(414\) 0 0
\(415\) 1.89370 3.27998i 0.0929579 0.161008i
\(416\) 0 0
\(417\) −5.40661 9.36453i −0.264763 0.458583i
\(418\) 0 0
\(419\) 16.3372 0.798125 0.399063 0.916924i \(-0.369336\pi\)
0.399063 + 0.916924i \(0.369336\pi\)
\(420\) 0 0
\(421\) 32.5934 1.58850 0.794252 0.607588i \(-0.207863\pi\)
0.794252 + 0.607588i \(0.207863\pi\)
\(422\) 0 0
\(423\) −5.42964 9.40442i −0.263998 0.457258i
\(424\) 0 0
\(425\) 1.00000 1.73205i 0.0485071 0.0840168i
\(426\) 0 0
\(427\) 0.363686 1.18601i 0.0176000 0.0573949i
\(428\) 0 0
\(429\) 2.53113 4.38404i 0.122204 0.211664i
\(430\) 0 0
\(431\) 12.7317 + 22.0519i 0.613263 + 1.06220i 0.990687 + 0.136162i \(0.0434767\pi\)
−0.377424 + 0.926041i \(0.623190\pi\)
\(432\) 0 0
\(433\) 14.1245 0.678781 0.339390 0.940646i \(-0.389779\pi\)
0.339390 + 0.940646i \(0.389779\pi\)
\(434\) 0 0
\(435\) −1.04843 −0.0502683
\(436\) 0 0
\(437\) −5.20331 9.01239i −0.248908 0.431121i
\(438\) 0 0
\(439\) 0.181843 0.314961i 0.00867889 0.0150323i −0.861653 0.507497i \(-0.830571\pi\)
0.870332 + 0.492465i \(0.163904\pi\)
\(440\) 0 0
\(441\) 1.26556 17.6726i 0.0602650 0.841555i
\(442\) 0 0
\(443\) 10.4743 18.1420i 0.497648 0.861952i −0.502348 0.864665i \(-0.667530\pi\)
0.999996 + 0.00271350i \(0.000863733\pi\)
\(444\) 0 0
\(445\) 4.76556 + 8.25420i 0.225909 + 0.391287i
\(446\) 0 0
\(447\) −13.4590 −0.636591
\(448\) 0 0
\(449\) 12.0623 0.569253 0.284627 0.958638i \(-0.408130\pi\)
0.284627 + 0.958638i \(0.408130\pi\)
\(450\) 0 0
\(451\) −11.7742 20.3934i −0.554424 0.960290i
\(452\) 0 0
\(453\) −5.53113 + 9.58020i −0.259875 + 0.450117i
\(454\) 0 0
\(455\) −1.96330 + 6.40248i −0.0920411 + 0.300153i
\(456\) 0 0
\(457\) 17.5934 30.4726i 0.822984 1.42545i −0.0804665 0.996757i \(-0.525641\pi\)
0.903450 0.428693i \(-0.141026\pi\)
\(458\) 0 0
\(459\) 3.78739 + 6.55996i 0.176780 + 0.306193i
\(460\) 0 0
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) 3.96924 0.184466 0.0922331 0.995737i \(-0.470600\pi\)
0.0922331 + 0.995737i \(0.470600\pi\)
\(464\) 0 0
\(465\) 0.468871 + 0.812109i 0.0217434 + 0.0376606i
\(466\) 0 0
\(467\) −3.76608 + 6.52304i −0.174273 + 0.301850i −0.939910 0.341424i \(-0.889091\pi\)
0.765636 + 0.643274i \(0.222424\pi\)
\(468\) 0 0
\(469\) 11.7656 + 12.6382i 0.543283 + 0.583580i
\(470\) 0 0
\(471\) 2.59975 4.50291i 0.119790 0.207483i
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) −1.55133 −0.0711797
\(476\) 0 0
\(477\) −8.78016 −0.402016
\(478\) 0 0
\(479\) −9.26533 16.0480i −0.423344 0.733253i 0.572921 0.819611i \(-0.305810\pi\)
−0.996264 + 0.0863583i \(0.972477\pi\)
\(480\) 0 0
\(481\) −0.672178 + 1.16425i −0.0306487 + 0.0530851i
\(482\) 0 0
\(483\) 11.8438 2.72390i 0.538910 0.123942i
\(484\) 0 0
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) −4.47214 7.74597i −0.202652 0.351003i 0.746730 0.665127i \(-0.231623\pi\)
−0.949382 + 0.314124i \(0.898289\pi\)
\(488\) 0 0
\(489\) 9.87548 0.446585
\(490\) 0 0
\(491\) −10.3138 −0.465453 −0.232727 0.972542i \(-0.574765\pi\)
−0.232727 + 0.972542i \(0.574765\pi\)
\(492\) 0 0
\(493\) −1.53113 2.65199i −0.0689586 0.119440i
\(494\) 0 0
\(495\) 3.69647 6.40248i 0.166144 0.287770i
\(496\) 0 0
\(497\) 23.0623 5.30399i 1.03448 0.237916i
\(498\) 0 0
\(499\) 20.9486 36.2840i 0.937787 1.62429i 0.168199 0.985753i \(-0.446205\pi\)
0.769588 0.638541i \(-0.220462\pi\)
\(500\) 0 0
\(501\) −4.29669 7.44209i −0.191962 0.332488i
\(502\) 0 0
\(503\) 21.6759 0.966482 0.483241 0.875487i \(-0.339459\pi\)
0.483241 + 0.875487i \(0.339459\pi\)
\(504\) 0 0
\(505\) −0.468871 −0.0208645
\(506\) 0 0
\(507\) −2.25738 3.90990i −0.100254 0.173645i
\(508\) 0 0
\(509\) 6.76556 11.7183i 0.299878 0.519405i −0.676230 0.736691i \(-0.736387\pi\)
0.976108 + 0.217286i \(0.0697206\pi\)
\(510\) 0 0
\(511\) 19.9428 + 21.4220i 0.882216 + 0.947652i
\(512\) 0 0
\(513\) 2.93774 5.08832i 0.129704 0.224655i
\(514\) 0 0
\(515\) −9.10480 15.7700i −0.401205 0.694908i
\(516\) 0 0
\(517\) 12.5311 0.551118
\(518\) 0 0
\(519\) 0.363686 0.0159640
\(520\) 0 0
\(521\) −1.79669 3.11196i −0.0787146 0.136338i 0.823981 0.566617i \(-0.191748\pi\)
−0.902696 + 0.430280i \(0.858415\pi\)
\(522\) 0 0
\(523\) 8.58059 14.8620i 0.375203 0.649870i −0.615155 0.788407i \(-0.710906\pi\)
0.990357 + 0.138536i \(0.0442397\pi\)
\(524\) 0 0
\(525\) 0.531129 1.73205i 0.0231804 0.0755929i
\(526\) 0 0
\(527\) −1.36948 + 2.37201i −0.0596556 + 0.103327i
\(528\) 0 0
\(529\) −11.0000 19.0526i −0.478261 0.828372i
\(530\) 0 0
\(531\) 22.6391 0.982453
\(532\) 0 0
\(533\) 20.4066 0.883909
\(534\) 0 0
\(535\) 9.78954 + 16.9560i 0.423239 + 0.733071i
\(536\) 0 0
\(537\) −3.00000 + 5.19615i −0.129460 + 0.224231i
\(538\) 0 0
\(539\) 16.9310 + 11.4615i 0.729271 + 0.493680i
\(540\) 0 0
\(541\) −10.2344 + 17.7266i −0.440013 + 0.762124i −0.997690 0.0679335i \(-0.978359\pi\)
0.557677 + 0.830058i \(0.311693\pi\)
\(542\) 0 0
\(543\) −3.58424 6.20808i −0.153814 0.266414i
\(544\) 0 0
\(545\) −8.46887 −0.362767
\(546\) 0 0
\(547\) 37.4676 1.60200 0.801000 0.598664i \(-0.204302\pi\)
0.801000 + 0.598664i \(0.204302\pi\)
\(548\) 0 0
\(549\) −0.593387 1.02778i −0.0253251 0.0438644i
\(550\) 0 0
\(551\) −1.18764 + 2.05705i −0.0505952 + 0.0876334i
\(552\) 0 0
\(553\) 4.53113 14.7763i 0.192683 0.628354i
\(554\) 0 0
\(555\) 0.181843 0.314961i 0.00771881 0.0133694i
\(556\) 0 0
\(557\) −8.73444 15.1285i −0.370090 0.641015i 0.619489 0.785005i \(-0.287340\pi\)
−0.989579 + 0.143991i \(0.954006\pi\)
\(558\) 0 0
\(559\) −5.19951 −0.219916
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) 13.0740 + 22.6449i 0.551005 + 0.954369i 0.998202 + 0.0599333i \(0.0190888\pi\)
−0.447197 + 0.894435i \(0.647578\pi\)
\(564\) 0 0
\(565\) 2.00000 3.46410i 0.0841406 0.145736i
\(566\) 0 0
\(567\) −9.01388 9.68246i −0.378547 0.406625i
\(568\) 0 0
\(569\) −1.79669 + 3.11196i −0.0753213 + 0.130460i −0.901226 0.433349i \(-0.857332\pi\)
0.825905 + 0.563810i \(0.190665\pi\)
\(570\) 0 0
\(571\) −17.8885 30.9839i −0.748612 1.29663i −0.948488 0.316813i \(-0.897387\pi\)
0.199876 0.979821i \(-0.435946\pi\)
\(572\) 0 0
\(573\) −15.0623 −0.629235
\(574\) 0 0
\(575\) −6.70820 −0.279751
\(576\) 0 0
\(577\) 10.4689 + 18.1326i 0.435825 + 0.754871i 0.997363 0.0725804i \(-0.0231234\pi\)
−0.561538 + 0.827451i \(0.689790\pi\)
\(578\) 0 0
\(579\) 8.62322 14.9358i 0.358369 0.620713i
\(580\) 0 0
\(581\) 9.76556 2.24594i 0.405144 0.0931772i
\(582\) 0 0
\(583\) 5.06596 8.77449i 0.209810 0.363402i
\(584\) 0 0
\(585\) 3.20331 + 5.54829i 0.132440 + 0.229394i
\(586\) 0 0
\(587\) 17.1612 0.708317 0.354159 0.935185i \(-0.384767\pi\)
0.354159 + 0.935185i \(0.384767\pi\)
\(588\) 0 0
\(589\) 2.12452 0.0875391
\(590\) 0 0
\(591\) 9.44717 + 16.3630i 0.388605 + 0.673083i
\(592\) 0 0
\(593\) −9.06226 + 15.6963i −0.372142 + 0.644569i −0.989895 0.141803i \(-0.954710\pi\)
0.617753 + 0.786373i \(0.288043\pi\)
\(594\) 0 0
\(595\) 5.15688 1.18601i 0.211411 0.0486216i
\(596\) 0 0
\(597\) 4.00000 6.92820i 0.163709 0.283552i
\(598\) 0 0
\(599\) 21.8152 + 37.7849i 0.891343 + 1.54385i 0.838267 + 0.545261i \(0.183569\pi\)
0.0530764 + 0.998590i \(0.483097\pi\)
\(600\) 0 0
\(601\) −26.2490 −1.07072 −0.535360 0.844624i \(-0.679824\pi\)
−0.535360 + 0.844624i \(0.679824\pi\)
\(602\) 0 0
\(603\) 16.5191 0.672708
\(604\) 0 0
\(605\) −1.23444 2.13811i −0.0501869 0.0869263i
\(606\) 0 0
\(607\) −2.99042 + 5.17955i −0.121377 + 0.210232i −0.920311 0.391187i \(-0.872064\pi\)
0.798934 + 0.601419i \(0.205398\pi\)
\(608\) 0 0
\(609\) −1.89008 2.03027i −0.0765899 0.0822708i
\(610\) 0 0
\(611\) −5.42964 + 9.40442i −0.219660 + 0.380462i
\(612\) 0 0
\(613\) −7.26556 12.5843i −0.293453 0.508276i 0.681171 0.732125i \(-0.261471\pi\)
−0.974624 + 0.223849i \(0.928138\pi\)
\(614\) 0 0
\(615\) −5.52056 −0.222611
\(616\) 0 0
\(617\) −35.1868 −1.41657 −0.708283 0.705929i \(-0.750530\pi\)
−0.708283 + 0.705929i \(0.750530\pi\)
\(618\) 0 0
\(619\) −1.27856 2.21453i −0.0513897 0.0890096i 0.839186 0.543844i \(-0.183032\pi\)
−0.890576 + 0.454835i \(0.849698\pi\)
\(620\) 0 0
\(621\) 12.7033 22.0028i 0.509766 0.882941i
\(622\) 0 0
\(623\) −7.39295 + 24.1089i −0.296192 + 0.965905i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 1.55133 + 2.68698i 0.0619540 + 0.107307i
\(628\) 0 0
\(629\) 1.06226 0.0423550
\(630\) 0 0
\(631\) 33.6802 1.34079 0.670394 0.742005i \(-0.266125\pi\)
0.670394 + 0.742005i \(0.266125\pi\)
\(632\) 0 0
\(633\) −3.59339 6.22393i −0.142824 0.247379i
\(634\) 0 0
\(635\) −3.69647 + 6.40248i −0.146690 + 0.254075i
\(636\) 0 0
\(637\) −15.9377 + 7.74031i −0.631476 + 0.306682i
\(638\) 0 0
\(639\) 11.3196 19.6060i 0.447795 0.775603i
\(640\) 0 0
\(641\) 10.0311 + 17.3744i 0.396206 + 0.686249i 0.993254 0.115957i \(-0.0369934\pi\)
−0.597049 + 0.802205i \(0.703660\pi\)
\(642\) 0 0
\(643\) 2.37528 0.0936719 0.0468360 0.998903i \(-0.485086\pi\)
0.0468360 + 0.998903i \(0.485086\pi\)
\(644\) 0 0
\(645\) 1.40661 0.0553853
\(646\) 0 0
\(647\) −16.5887 28.7324i −0.652168 1.12959i −0.982596 0.185757i \(-0.940526\pi\)
0.330428 0.943831i \(-0.392807\pi\)
\(648\) 0 0
\(649\) −13.0623 + 22.6245i −0.512738 + 0.888089i
\(650\) 0 0
\(651\) −0.727372 + 2.37201i −0.0285080 + 0.0929666i
\(652\) 0 0
\(653\) −6.73444 + 11.6644i −0.263539 + 0.456463i −0.967180 0.254093i \(-0.918223\pi\)
0.703641 + 0.710556i \(0.251556\pi\)
\(654\) 0 0
\(655\) 9.53809 + 16.5205i 0.372684 + 0.645508i
\(656\) 0 0
\(657\) 28.0000 1.09238
\(658\) 0 0
\(659\) 32.3107 1.25865 0.629324 0.777143i \(-0.283332\pi\)
0.629324 + 0.777143i \(0.283332\pi\)
\(660\) 0 0
\(661\) 4.23444 + 7.33426i 0.164700 + 0.285270i 0.936549 0.350537i \(-0.114001\pi\)
−0.771848 + 0.635807i \(0.780668\pi\)
\(662\) 0 0
\(663\) 1.73317 3.00194i 0.0673107 0.116586i
\(664\) 0 0
\(665\) −2.79669 3.00413i −0.108451 0.116495i
\(666\) 0 0
\(667\) −5.13556 + 8.89505i −0.198850 + 0.344418i
\(668\) 0 0
\(669\) −3.06226 5.30399i −0.118394 0.205064i
\(670\) 0 0
\(671\) 1.36948 0.0528683
\(672\) 0 0
\(673\) −2.93774 −0.113242 −0.0566208 0.998396i \(-0.518033\pi\)
−0.0566208 + 0.998396i \(0.518033\pi\)
\(674\) 0 0
\(675\) −1.89370 3.27998i −0.0728884 0.126246i
\(676\) 0 0
\(677\) −14.7344 + 25.5208i −0.566290 + 0.980844i 0.430638 + 0.902525i \(0.358289\pi\)
−0.996928 + 0.0783189i \(0.975045\pi\)
\(678\) 0 0
\(679\) −5.15688 + 1.18601i −0.197903 + 0.0455148i
\(680\) 0 0
\(681\) −6.12452 + 10.6080i −0.234692 + 0.406498i
\(682\) 0 0
\(683\) 7.37163 + 12.7680i 0.282068 + 0.488555i 0.971894 0.235420i \(-0.0756464\pi\)
−0.689826 + 0.723975i \(0.742313\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) −7.57479 −0.288996
\(688\) 0 0
\(689\) 4.39008 + 7.60384i 0.167249 + 0.289683i
\(690\) 0 0
\(691\) 19.9428 34.5419i 0.758659 1.31404i −0.184876 0.982762i \(-0.559188\pi\)
0.943535 0.331274i \(-0.107478\pi\)
\(692\) 0 0
\(693\) 19.0623 4.38404i 0.724115 0.166536i
\(694\) 0 0
\(695\) −7.89584 + 13.6760i −0.299506 + 0.518760i
\(696\) 0 0
\(697\) −8.06226 13.9642i −0.305380 0.528933i
\(698\) 0 0
\(699\) 8.30216 0.314017
\(700\) 0 0
\(701\) 28.5934 1.07996 0.539979 0.841679i \(-0.318432\pi\)
0.539979 + 0.841679i \(0.318432\pi\)
\(702\) 0 0
\(703\) −0.411977 0.713565i −0.0155380 0.0269126i
\(704\) 0 0
\(705\) 1.46887 2.54416i 0.0553209 0.0958186i
\(706\) 0 0
\(707\) −0.845269 0.907965i −0.0317896 0.0341475i
\(708\) 0 0
\(709\) −5.23444 + 9.06631i −0.196583 + 0.340492i −0.947418 0.319997i \(-0.896318\pi\)
0.750835 + 0.660490i \(0.229651\pi\)
\(710\) 0 0
\(711\) −7.39295 12.8050i −0.277257 0.480223i
\(712\) 0 0
\(713\) 9.18677 0.344047
\(714\) 0 0
\(715\) −7.39295 −0.276480
\(716\) 0 0
\(717\) −7.40661 12.8286i −0.276605 0.479094i
\(718\) 0 0
\(719\) −0.684742 + 1.18601i −0.0255366 + 0.0442306i −0.878511 0.477722i \(-0.841463\pi\)
0.852975 + 0.521952i \(0.174796\pi\)
\(720\) 0 0
\(721\) 14.1245 46.0611i 0.526024 1.71540i
\(722\) 0 0
\(723\) −9.44717 + 16.3630i −0.351344 + 0.608546i
\(724\) 0 0
\(725\) 0.765564 + 1.32600i 0.0284323 + 0.0492463i
\(726\) 0 0
\(727\) 37.6495 1.39634 0.698171 0.715931i \(-0.253998\pi\)
0.698171 + 0.715931i \(0.253998\pi\)
\(728\) 0 0
\(729\) −4.87548 −0.180574
\(730\) 0 0
\(731\) 2.05422 + 3.55802i 0.0759783 + 0.131598i
\(732\) 0 0
\(733\) 19.9212 34.5045i 0.735807 1.27445i −0.218562 0.975823i \(-0.570137\pi\)
0.954369 0.298631i \(-0.0965301\pi\)
\(734\) 0 0
\(735\) 4.31161 2.09397i 0.159036 0.0772373i
\(736\) 0 0
\(737\) −9.53113 + 16.5084i −0.351084 + 0.608095i
\(738\) 0 0
\(739\) −21.9061 37.9424i −0.805828 1.39573i −0.915731 0.401793i \(-0.868387\pi\)
0.109903 0.993942i \(-0.464946\pi\)
\(740\) 0 0
\(741\) −2.68871 −0.0987723
\(742\) 0 0
\(743\) −5.70241 −0.209201 −0.104601 0.994514i \(-0.533356\pi\)
−0.104601 + 0.994514i \(0.533356\pi\)
\(744\) 0 0
\(745\) 9.82782 + 17.0223i 0.360064 + 0.623648i
\(746\) 0 0
\(747\) 4.79319 8.30205i 0.175374 0.303756i
\(748\) 0 0
\(749\) −15.1868 + 49.5252i −0.554913 + 1.80961i
\(750\) 0 0
\(751\) −1.55133 + 2.68698i −0.0566087 + 0.0980491i −0.892941 0.450174i \(-0.851362\pi\)
0.836332 + 0.548223i \(0.184695\pi\)
\(752\) 0 0
\(753\) −7.93774 13.7486i −0.289267 0.501026i
\(754\) 0 0
\(755\) 16.1554 0.587954
\(756\) 0 0
\(757\) 24.1245 0.876820 0.438410 0.898775i \(-0.355542\pi\)
0.438410 + 0.898775i \(0.355542\pi\)
\(758\) 0 0
\(759\) 6.70820 + 11.6190i 0.243492 + 0.421741i
\(760\) 0 0
\(761\) 19.2656 33.3689i 0.698376 1.20962i −0.270653 0.962677i \(-0.587240\pi\)
0.969029 0.246946i \(-0.0794270\pi\)
\(762\) 0 0
\(763\) −15.2675 16.3999i −0.552720 0.593716i
\(764\) 0 0
\(765\) 2.53113 4.38404i 0.0915132 0.158505i
\(766\) 0 0
\(767\) −11.3196 19.6060i −0.408725 0.707933i
\(768\) 0 0
\(769\) −15.5934 −0.562312 −0.281156 0.959662i \(-0.590718\pi\)
−0.281156 + 0.959662i \(0.590718\pi\)
\(770\) 0 0
\(771\) −8.21690 −0.295924
\(772\) 0 0
\(773\) −17.3901 30.1205i −0.625478 1.08336i −0.988448 0.151559i \(-0.951571\pi\)
0.362971 0.931801i \(-0.381763\pi\)
\(774\) 0 0
\(775\) 0.684742 1.18601i 0.0245966 0.0426026i
\(776\) 0 0
\(777\) 0.937742 0.215667i 0.0336413 0.00773702i
\(778\) 0 0
\(779\) −6.25360 + 10.8315i −0.224058 + 0.388080i
\(780\) 0 0
\(781\) 13.0623 + 22.6245i 0.467404 + 0.809568i
\(782\) 0 0
\(783\) −5.79899 −0.207239
\(784\) 0 0
\(785\) −7.59339 −0.271020
\(786\) 0 0
\(787\) 1.71185 + 2.96502i 0.0610210 + 0.105691i 0.894922 0.446222i \(-0.147231\pi\)
−0.833901 + 0.551914i \(0.813898\pi\)
\(788\) 0 0
\(789\) 4.82782 8.36203i 0.171875 0.297696i
\(790\) 0 0
\(791\) 10.3138 2.37201i 0.366715 0.0843391i
\(792\) 0 0
\(793\) −0.593387 + 1.02778i −0.0210718 + 0.0364974i
\(794\) 0 0
\(795\) −1.18764 2.05705i −0.0421213 0.0729562i
\(796\) 0 0
\(797\) 37.3113 1.32163 0.660817 0.750547i \(-0.270210\pi\)
0.660817 + 0.750547i \(0.270210\pi\)
\(798\) 0 0
\(799\) 8.58059 0.303559
\(800\) 0 0
\(801\) 12.0623 + 20.8924i 0.426199 + 0.738198i
\(802\) 0 0
\(803\) −16.1554 + 27.9819i −0.570111 + 0.987461i
\(804\) 0 0
\(805\) −12.0934 12.9904i −0.426236 0.457851i
\(806\) 0 0
\(807\) 2.89949 5.02207i 0.102067 0.176785i
\(808\) 0 0
\(809\) 0.968871 + 1.67813i 0.0340637 + 0.0590001i 0.882555 0.470210i \(-0.155822\pi\)
−0.848491 + 0.529210i \(0.822488\pi\)
\(810\) 0 0
\(811\) −29.7536 −1.04479 −0.522396 0.852703i \(-0.674962\pi\)
−0.522396 + 0.852703i \(0.674962\pi\)
\(812\) 0 0
\(813\) −17.8755 −0.626921
\(814\) 0 0
\(815\) −7.21110 12.4900i −0.252594 0.437505i
\(816\) 0 0
\(817\) 1.59339 2.75983i 0.0557455 0.0965541i
\(818\) 0 0
\(819\) −4.96937 + 16.2055i −0.173644 + 0.566266i
\(820\) 0 0
\(821\) −14.0623 + 24.3565i −0.490776 + 0.850049i −0.999944 0.0106182i \(-0.996620\pi\)
0.509167 + 0.860667i \(0.329953\pi\)
\(822\) 0 0
\(823\) 3.94792 + 6.83800i 0.137616 + 0.238358i 0.926594 0.376064i \(-0.122723\pi\)
−0.788978 + 0.614422i \(0.789389\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 3.42371 0.119054 0.0595270 0.998227i \(-0.481041\pi\)
0.0595270 + 0.998227i \(0.481041\pi\)
\(828\) 0 0
\(829\) 19.1245 + 33.1246i 0.664222 + 1.15047i 0.979496 + 0.201465i \(0.0645703\pi\)
−0.315274 + 0.949001i \(0.602096\pi\)
\(830\) 0 0
\(831\) 10.9985 19.0500i 0.381534 0.660836i
\(832\) 0 0
\(833\) 11.5934 + 7.84815i 0.401687 + 0.271922i
\(834\) 0 0
\(835\) −6.27491 + 10.8685i −0.217152 + 0.376119i
\(836\) 0 0
\(837\) 2.59339 + 4.49188i 0.0896406 + 0.155262i
\(838\) 0 0
\(839\) −30.5776 −1.05566 −0.527828 0.849352i \(-0.676993\pi\)
−0.527828 + 0.849352i \(0.676993\pi\)
\(840\) 0 0
\(841\) −26.6556 −0.919160
\(842\) 0 0
\(843\) 5.33872 + 9.24694i 0.183875 + 0.318481i
\(844\) 0 0
\(845\) −3.29669 + 5.71004i −0.113410 + 0.196431i
\(846\) 0 0
\(847\) 1.91501 6.24500i 0.0658006 0.214581i
\(848\) 0 0
\(849\) 9.06226 15.6963i 0.311016 0.538695i
\(850\) 0 0
\(851\) −1.78146 3.08558i −0.0610677 0.105772i
\(852\) 0 0
\(853\) 19.7179 0.675128 0.337564 0.941303i \(-0.390397\pi\)
0.337564 + 0.941303i \(0.390397\pi\)
\(854\) 0 0
\(855\) −3.92661 −0.134287
\(856\) 0 0
\(857\) 12.0623 + 20.8924i 0.412039 + 0.713672i 0.995113 0.0987470i \(-0.0314835\pi\)
−0.583074 + 0.812419i \(0.698150\pi\)
\(858\) 0 0
\(859\) −20.9912 + 36.3578i −0.716210 + 1.24051i 0.246280 + 0.969199i \(0.420792\pi\)
−0.962491 + 0.271314i \(0.912542\pi\)
\(860\) 0 0
\(861\) −9.95234 10.6905i −0.339175 0.364332i
\(862\) 0 0
\(863\) −1.80278 + 3.12250i −0.0613672 + 0.106291i −0.895077 0.445912i \(-0.852879\pi\)
0.833710 + 0.552203i \(0.186213\pi\)
\(864\) 0 0
\(865\) −0.265564 0.459971i −0.00902946 0.0156395i
\(866\) 0 0
\(867\) 8.90164 0.302316
\(868\) 0 0
\(869\) 17.0623 0.578797
\(870\) 0 0
\(871\) −8.25953 14.3059i −0.279864 0.484738i
\(872\) 0 0
\(873\) −2.53113 + 4.38404i −0.0856657 + 0.148377i
\(874\) 0 0
\(875\) −2.57844 + 0.593004i −0.0871671 + 0.0200472i
\(876\) 0 0
\(877\) 5.73444 9.93233i 0.193638 0.335391i −0.752815 0.658232i \(-0.771305\pi\)
0.946453 + 0.322841i \(0.104638\pi\)
\(878\) 0 0
\(879\) −9.48980 16.4368i −0.320083 0.554400i
\(880\) 0 0
\(881\) −27.0000 −0.909653 −0.454827 0.890580i \(-0.650299\pi\)
−0.454827 + 0.890580i \(0.650299\pi\)
\(882\) 0 0
\(883\) −46.7330 −1.57269 −0.786345 0.617788i \(-0.788029\pi\)
−0.786345 + 0.617788i \(0.788029\pi\)
\(884\) 0 0
\(885\) 3.06226 + 5.30399i 0.102937 + 0.178292i
\(886\) 0 0
\(887\) −7.05057 + 12.2120i −0.236735 + 0.410037i −0.959776 0.280768i \(-0.909411\pi\)
0.723040 + 0.690806i \(0.242744\pi\)
\(888\) 0 0
\(889\) −19.0623 + 4.38404i −0.639328 + 0.147036i
\(890\) 0 0
\(891\) 7.30202 12.6475i 0.244627 0.423706i
\(892\) 0 0
\(893\) −3.32782 5.76396i −0.111361 0.192883i
\(894\) 0 0
\(895\) 8.76243 0.292896
\(896\) 0 0
\(897\) −11.6265 −0.388196
\(898\) 0 0
\(899\) −1.04843 1.81593i −0.0349670 0.0605647i
\(900\) 0 0
\(901\) 3.46887 6.00826i 0.115565 0.200164i
\(902\) 0 0
\(903\) 2.53581 + 2.72390i 0.0843864 + 0.0906456i
\(904\) 0 0
\(905\) −5.23444 + 9.06631i −0.173999 + 0.301374i
\(906\) 0 0
\(907\) 11.7046 + 20.2729i 0.388643 + 0.673150i 0.992267 0.124119i \(-0.0396105\pi\)
−0.603624 + 0.797269i \(0.706277\pi\)
\(908\) 0 0
\(909\) −1.18677 −0.0393628
\(910\) 0 0
\(911\) −14.1438 −0.468604 −0.234302 0.972164i \(-0.575281\pi\)
−0.234302 + 0.972164i \(0.575281\pi\)
\(912\) 0 0
\(913\) 5.53113 + 9.58020i 0.183054 + 0.317058i
\(914\) 0 0
\(915\) 0.160528 0.278042i 0.00530689 0.00919179i
\(916\) 0 0
\(917\) −14.7967 + 48.2531i −0.488630 + 1.59346i
\(918\) 0 0
\(919\) 5.65978 9.80302i 0.186699 0.323372i −0.757449 0.652894i \(-0.773554\pi\)
0.944148 + 0.329523i \(0.106888\pi\)
\(920\) 0 0
\(921\) 5.64105 + 9.77058i 0.185879 + 0.321952i
\(922\) 0 0
\(923\) −22.6391 −0.745175
\(924\) 0 0
\(925\) −0.531129 −0.0174634
\(926\) 0 0
\(927\) −23.0454 39.9158i −0.756911 1.31101i
\(928\) 0 0
\(929\) −12.0311 + 20.8385i −0.394729 + 0.683690i −0.993066 0.117554i \(-0.962495\pi\)
0.598338 + 0.801244i \(0.295828\pi\)
\(930\) 0 0
\(931\) 0.775663 10.8315i 0.0254213 0.354990i
\(932\) 0 0
\(933\) −10.1245 + 17.5362i −0.331462 + 0.574109i
\(934\) 0 0
\(935\) 2.92081 + 5.05899i 0.0955207 + 0.165447i
\(936\) 0 0
\(937\) 39.1868 1.28018 0.640088 0.768302i \(-0.278898\pi\)
0.640088 + 0.768302i \(0.278898\pi\)
\(938\) 0 0
\(939\) −16.4338 −0.536297
\(940\) 0 0
\(941\) −7.53113 13.0443i −0.245508 0.425232i 0.716766 0.697313i \(-0.245621\pi\)
−0.962274 + 0.272081i \(0.912288\pi\)
\(942\) 0 0
\(943\) −27.0416 + 46.8375i −0.880597 + 1.52524i
\(944\) 0 0
\(945\) 2.93774 9.58020i 0.0955648 0.311644i
\(946\) 0 0
\(947\) −7.23242 + 12.5269i −0.235022 + 0.407070i −0.959279 0.282460i \(-0.908850\pi\)
0.724257 + 0.689530i \(0.242183\pi\)
\(948\) 0 0
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) 0 0
\(951\) −1.36948 −0.0444085
\(952\) 0 0
\(953\) 2.12452 0.0688198 0.0344099 0.999408i \(-0.489045\pi\)
0.0344099 + 0.999408i \(0.489045\pi\)
\(954\) 0 0
\(955\) 10.9985 + 19.0500i 0.355903 + 0.616442i
\(956\) 0 0
\(957\) 1.53113 2.65199i 0.0494944 0.0857268i
\(958\) 0 0
\(959\) −21.6333 23.2379i −0.698576 0.750391i
\(960\) 0 0
\(961\) 14.5623 25.2226i 0.469750 0.813631i
\(962\) 0 0
\(963\) 24.7786 + 42.9178i 0.798479 + 1.38301i
\(964\) 0 0
\(965\) −25.1868 −0.810791
\(966\) 0 0
\(967\) 7.16847 0.230523 0.115261 0.993335i \(-0.463229\pi\)
0.115261 + 0.993335i \(0.463229\pi\)
\(968\) 0 0
\(969\) 1.06226 + 1.83988i 0.0341246 + 0.0591056i
\(970\) 0 0
\(971\) 18.3005 31.6974i 0.587292 1.01722i −0.407294 0.913297i \(-0.633527\pi\)
0.994585 0.103922i \(-0.0331392\pi\)
\(972\) 0 0
\(973\) −40.7179 + 9.36453i −1.30536 + 0.300213i
\(974\) 0 0
\(975\) −0.866585 + 1.50097i −0.0277529 + 0.0480695i
\(976\) 0 0
\(977\) −30.1868 52.2850i −0.965760 1.67275i −0.707558 0.706655i \(-0.750203\pi\)
−0.258202 0.966091i \(-0.583130\pi\)
\(978\) 0 0
\(979\) −27.8386 −0.889726
\(980\) 0 0
\(981\) −21.4358 −0.684393
\(982\) 0 0
\(983\) 14.5344 + 25.1744i 0.463577 + 0.802938i 0.999136 0.0415592i \(-0.0132325\pi\)
−0.535559 + 0.844498i \(0.679899\pi\)
\(984\) 0 0
\(985\) 13.7967 23.8966i 0.439599 0.761408i
\(986\) 0 0
\(987\) 7.57479 1.74209i 0.241108 0.0554514i
\(988\) 0 0
\(989\) 6.89008 11.9340i 0.219092 0.379478i
\(990\) 0 0
\(991\) −10.9985 19.0500i −0.349379 0.605142i 0.636760 0.771062i \(-0.280274\pi\)
−0.986139 + 0.165920i \(0.946941\pi\)
\(992\) 0 0
\(993\) 3.62645 0.115082
\(994\) 0 0
\(995\) −11.6832 −0.370384
\(996\) 0 0
\(997\) −10.5311 18.2405i −0.333524 0.577681i 0.649676 0.760211i \(-0.274905\pi\)
−0.983200 + 0.182530i \(0.941571\pi\)
\(998\) 0 0
\(999\) 1.00580 1.74209i 0.0318220 0.0551173i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.q.h.961.3 yes 8
4.3 odd 2 inner 1120.2.q.h.961.2 yes 8
7.2 even 3 7840.2.a.bs.1.2 4
7.4 even 3 inner 1120.2.q.h.641.3 yes 8
7.5 odd 6 7840.2.a.bv.1.3 4
28.11 odd 6 inner 1120.2.q.h.641.2 8
28.19 even 6 7840.2.a.bv.1.2 4
28.23 odd 6 7840.2.a.bs.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.q.h.641.2 8 28.11 odd 6 inner
1120.2.q.h.641.3 yes 8 7.4 even 3 inner
1120.2.q.h.961.2 yes 8 4.3 odd 2 inner
1120.2.q.h.961.3 yes 8 1.1 even 1 trivial
7840.2.a.bs.1.2 4 7.2 even 3
7840.2.a.bs.1.3 4 28.23 odd 6
7840.2.a.bv.1.2 4 28.19 even 6
7840.2.a.bv.1.3 4 7.5 odd 6