Properties

Label 1120.2.n.b.559.23
Level $1120$
Weight $2$
Character 1120.559
Analytic conductor $8.943$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(559,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.n (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.23
Character \(\chi\) \(=\) 1120.559
Dual form 1120.2.n.b.559.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.857983 q^{3} +(1.33029 - 1.79731i) q^{5} +(-2.41097 + 1.08959i) q^{7} -2.26387 q^{9} -3.05732 q^{11} -3.18505i q^{13} +(1.14136 - 1.54206i) q^{15} -7.44976 q^{17} +4.61892i q^{19} +(-2.06857 + 0.934853i) q^{21} +0.708794 q^{23} +(-1.46068 - 4.78189i) q^{25} -4.51631 q^{27} -2.41421i q^{29} -5.14028 q^{31} -2.62312 q^{33} +(-1.24894 + 5.78275i) q^{35} +2.07192 q^{37} -2.73272i q^{39} +5.51396i q^{41} -4.21172i q^{43} +(-3.01159 + 4.06888i) q^{45} -6.55463i q^{47} +(4.62557 - 5.25396i) q^{49} -6.39177 q^{51} +3.75594 q^{53} +(-4.06711 + 5.49496i) q^{55} +3.96296i q^{57} +3.11915i q^{59} +9.55219 q^{61} +(5.45812 - 2.46669i) q^{63} +(-5.72454 - 4.23703i) q^{65} -0.519160i q^{67} +0.608133 q^{69} +10.9754i q^{71} -2.32017 q^{73} +(-1.25323 - 4.10277i) q^{75} +(7.37110 - 3.33123i) q^{77} -9.98693i q^{79} +2.91669 q^{81} -8.73474 q^{83} +(-9.91032 + 13.3896i) q^{85} -2.07135i q^{87} +18.5697i q^{89} +(3.47042 + 7.67907i) q^{91} -4.41027 q^{93} +(8.30166 + 6.14449i) q^{95} +1.58285 q^{97} +6.92135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{9} + 16 q^{25} - 16 q^{35} + 8 q^{49} + 32 q^{51} - 24 q^{65} - 72 q^{81} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.857983 0.495356 0.247678 0.968842i \(-0.420332\pi\)
0.247678 + 0.968842i \(0.420332\pi\)
\(4\) 0 0
\(5\) 1.33029 1.79731i 0.594922 0.803783i
\(6\) 0 0
\(7\) −2.41097 + 1.08959i −0.911262 + 0.411828i
\(8\) 0 0
\(9\) −2.26387 −0.754622
\(10\) 0 0
\(11\) −3.05732 −0.921815 −0.460908 0.887448i \(-0.652476\pi\)
−0.460908 + 0.887448i \(0.652476\pi\)
\(12\) 0 0
\(13\) 3.18505i 0.883375i −0.897169 0.441687i \(-0.854380\pi\)
0.897169 0.441687i \(-0.145620\pi\)
\(14\) 0 0
\(15\) 1.14136 1.54206i 0.294699 0.398159i
\(16\) 0 0
\(17\) −7.44976 −1.80683 −0.903417 0.428764i \(-0.858949\pi\)
−0.903417 + 0.428764i \(0.858949\pi\)
\(18\) 0 0
\(19\) 4.61892i 1.05965i 0.848106 + 0.529827i \(0.177743\pi\)
−0.848106 + 0.529827i \(0.822257\pi\)
\(20\) 0 0
\(21\) −2.06857 + 0.934853i −0.451399 + 0.204002i
\(22\) 0 0
\(23\) 0.708794 0.147794 0.0738969 0.997266i \(-0.476456\pi\)
0.0738969 + 0.997266i \(0.476456\pi\)
\(24\) 0 0
\(25\) −1.46068 4.78189i −0.292135 0.956377i
\(26\) 0 0
\(27\) −4.51631 −0.869163
\(28\) 0 0
\(29\) 2.41421i 0.448307i −0.974554 0.224154i \(-0.928038\pi\)
0.974554 0.224154i \(-0.0719617\pi\)
\(30\) 0 0
\(31\) −5.14028 −0.923221 −0.461610 0.887083i \(-0.652728\pi\)
−0.461610 + 0.887083i \(0.652728\pi\)
\(32\) 0 0
\(33\) −2.62312 −0.456627
\(34\) 0 0
\(35\) −1.24894 + 5.78275i −0.211109 + 0.977462i
\(36\) 0 0
\(37\) 2.07192 0.340621 0.170311 0.985390i \(-0.445523\pi\)
0.170311 + 0.985390i \(0.445523\pi\)
\(38\) 0 0
\(39\) 2.73272i 0.437586i
\(40\) 0 0
\(41\) 5.51396i 0.861136i 0.902558 + 0.430568i \(0.141687\pi\)
−0.902558 + 0.430568i \(0.858313\pi\)
\(42\) 0 0
\(43\) 4.21172i 0.642282i −0.947031 0.321141i \(-0.895934\pi\)
0.947031 0.321141i \(-0.104066\pi\)
\(44\) 0 0
\(45\) −3.01159 + 4.06888i −0.448941 + 0.606553i
\(46\) 0 0
\(47\) 6.55463i 0.956091i −0.878335 0.478045i \(-0.841345\pi\)
0.878335 0.478045i \(-0.158655\pi\)
\(48\) 0 0
\(49\) 4.62557 5.25396i 0.660796 0.750566i
\(50\) 0 0
\(51\) −6.39177 −0.895027
\(52\) 0 0
\(53\) 3.75594 0.515918 0.257959 0.966156i \(-0.416950\pi\)
0.257959 + 0.966156i \(0.416950\pi\)
\(54\) 0 0
\(55\) −4.06711 + 5.49496i −0.548408 + 0.740940i
\(56\) 0 0
\(57\) 3.96296i 0.524906i
\(58\) 0 0
\(59\) 3.11915i 0.406079i 0.979171 + 0.203040i \(0.0650820\pi\)
−0.979171 + 0.203040i \(0.934918\pi\)
\(60\) 0 0
\(61\) 9.55219 1.22303 0.611516 0.791232i \(-0.290560\pi\)
0.611516 + 0.791232i \(0.290560\pi\)
\(62\) 0 0
\(63\) 5.45812 2.46669i 0.687658 0.310774i
\(64\) 0 0
\(65\) −5.72454 4.23703i −0.710042 0.525539i
\(66\) 0 0
\(67\) 0.519160i 0.0634255i −0.999497 0.0317128i \(-0.989904\pi\)
0.999497 0.0317128i \(-0.0100962\pi\)
\(68\) 0 0
\(69\) 0.608133 0.0732107
\(70\) 0 0
\(71\) 10.9754i 1.30254i 0.758848 + 0.651268i \(0.225763\pi\)
−0.758848 + 0.651268i \(0.774237\pi\)
\(72\) 0 0
\(73\) −2.32017 −0.271555 −0.135778 0.990739i \(-0.543353\pi\)
−0.135778 + 0.990739i \(0.543353\pi\)
\(74\) 0 0
\(75\) −1.25323 4.10277i −0.144711 0.473748i
\(76\) 0 0
\(77\) 7.37110 3.33123i 0.840015 0.379629i
\(78\) 0 0
\(79\) 9.98693i 1.12362i −0.827267 0.561808i \(-0.810106\pi\)
0.827267 0.561808i \(-0.189894\pi\)
\(80\) 0 0
\(81\) 2.91669 0.324076
\(82\) 0 0
\(83\) −8.73474 −0.958762 −0.479381 0.877607i \(-0.659139\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(84\) 0 0
\(85\) −9.91032 + 13.3896i −1.07493 + 1.45230i
\(86\) 0 0
\(87\) 2.07135i 0.222072i
\(88\) 0 0
\(89\) 18.5697i 1.96839i 0.177093 + 0.984194i \(0.443331\pi\)
−0.177093 + 0.984194i \(0.556669\pi\)
\(90\) 0 0
\(91\) 3.47042 + 7.67907i 0.363798 + 0.804986i
\(92\) 0 0
\(93\) −4.41027 −0.457323
\(94\) 0 0
\(95\) 8.30166 + 6.14449i 0.851732 + 0.630411i
\(96\) 0 0
\(97\) 1.58285 0.160714 0.0803568 0.996766i \(-0.474394\pi\)
0.0803568 + 0.996766i \(0.474394\pi\)
\(98\) 0 0
\(99\) 6.92135 0.695622
\(100\) 0 0
\(101\) −13.5493 −1.34820 −0.674101 0.738639i \(-0.735469\pi\)
−0.674101 + 0.738639i \(0.735469\pi\)
\(102\) 0 0
\(103\) 11.0978i 1.09349i −0.837298 0.546747i \(-0.815866\pi\)
0.837298 0.546747i \(-0.184134\pi\)
\(104\) 0 0
\(105\) −1.07157 + 4.96150i −0.104574 + 0.484192i
\(106\) 0 0
\(107\) 17.5187i 1.69359i −0.531916 0.846797i \(-0.678528\pi\)
0.531916 0.846797i \(-0.321472\pi\)
\(108\) 0 0
\(109\) 15.6899i 1.50282i −0.659834 0.751412i \(-0.729373\pi\)
0.659834 0.751412i \(-0.270627\pi\)
\(110\) 0 0
\(111\) 1.77767 0.168729
\(112\) 0 0
\(113\) 12.3864i 1.16521i −0.812754 0.582607i \(-0.802033\pi\)
0.812754 0.582607i \(-0.197967\pi\)
\(114\) 0 0
\(115\) 0.942900 1.27393i 0.0879258 0.118794i
\(116\) 0 0
\(117\) 7.21053i 0.666614i
\(118\) 0 0
\(119\) 17.9612 8.11722i 1.64650 0.744104i
\(120\) 0 0
\(121\) −1.65282 −0.150256
\(122\) 0 0
\(123\) 4.73088i 0.426569i
\(124\) 0 0
\(125\) −10.5377 3.73598i −0.942518 0.334156i
\(126\) 0 0
\(127\) −17.2814 −1.53348 −0.766739 0.641959i \(-0.778122\pi\)
−0.766739 + 0.641959i \(0.778122\pi\)
\(128\) 0 0
\(129\) 3.61358i 0.318158i
\(130\) 0 0
\(131\) 12.6396i 1.10433i −0.833736 0.552164i \(-0.813802\pi\)
0.833736 0.552164i \(-0.186198\pi\)
\(132\) 0 0
\(133\) −5.03275 11.1361i −0.436395 0.965622i
\(134\) 0 0
\(135\) −6.00798 + 8.11722i −0.517085 + 0.698619i
\(136\) 0 0
\(137\) 11.3987i 0.973857i 0.873442 + 0.486928i \(0.161883\pi\)
−0.873442 + 0.486928i \(0.838117\pi\)
\(138\) 0 0
\(139\) 7.90877i 0.670813i −0.942073 0.335407i \(-0.891126\pi\)
0.942073 0.335407i \(-0.108874\pi\)
\(140\) 0 0
\(141\) 5.62376i 0.473606i
\(142\) 0 0
\(143\) 9.73772i 0.814309i
\(144\) 0 0
\(145\) −4.33909 3.21159i −0.360342 0.266708i
\(146\) 0 0
\(147\) 3.96866 4.50781i 0.327329 0.371798i
\(148\) 0 0
\(149\) 7.33515i 0.600919i −0.953795 0.300459i \(-0.902860\pi\)
0.953795 0.300459i \(-0.0971400\pi\)
\(150\) 0 0
\(151\) 8.24264i 0.670776i −0.942080 0.335388i \(-0.891133\pi\)
0.942080 0.335388i \(-0.108867\pi\)
\(152\) 0 0
\(153\) 16.8653 1.36348
\(154\) 0 0
\(155\) −6.83804 + 9.23869i −0.549244 + 0.742069i
\(156\) 0 0
\(157\) 16.8886i 1.34786i 0.738795 + 0.673930i \(0.235395\pi\)
−0.738795 + 0.673930i \(0.764605\pi\)
\(158\) 0 0
\(159\) 3.22253 0.255563
\(160\) 0 0
\(161\) −1.70888 + 0.772298i −0.134679 + 0.0608656i
\(162\) 0 0
\(163\) 17.5187i 1.37217i 0.727522 + 0.686084i \(0.240672\pi\)
−0.727522 + 0.686084i \(0.759328\pi\)
\(164\) 0 0
\(165\) −3.48951 + 4.71458i −0.271658 + 0.367029i
\(166\) 0 0
\(167\) 11.0978i 0.858770i 0.903122 + 0.429385i \(0.141270\pi\)
−0.903122 + 0.429385i \(0.858730\pi\)
\(168\) 0 0
\(169\) 2.85543 0.219649
\(170\) 0 0
\(171\) 10.4566i 0.799638i
\(172\) 0 0
\(173\) 0.430852i 0.0327571i 0.999866 + 0.0163785i \(0.00521369\pi\)
−0.999866 + 0.0163785i \(0.994786\pi\)
\(174\) 0 0
\(175\) 8.73196 + 9.93745i 0.660074 + 0.751200i
\(176\) 0 0
\(177\) 2.67618i 0.201154i
\(178\) 0 0
\(179\) 14.7547 1.10282 0.551410 0.834234i \(-0.314090\pi\)
0.551410 + 0.834234i \(0.314090\pi\)
\(180\) 0 0
\(181\) −2.02611 −0.150600 −0.0752999 0.997161i \(-0.523991\pi\)
−0.0752999 + 0.997161i \(0.523991\pi\)
\(182\) 0 0
\(183\) 8.19561 0.605837
\(184\) 0 0
\(185\) 2.75624 3.72389i 0.202643 0.273786i
\(186\) 0 0
\(187\) 22.7763 1.66557
\(188\) 0 0
\(189\) 10.8887 4.92094i 0.792035 0.357946i
\(190\) 0 0
\(191\) 9.98693i 0.722629i 0.932444 + 0.361314i \(0.117672\pi\)
−0.932444 + 0.361314i \(0.882328\pi\)
\(192\) 0 0
\(193\) 6.58851i 0.474252i 0.971479 + 0.237126i \(0.0762053\pi\)
−0.971479 + 0.237126i \(0.923795\pi\)
\(194\) 0 0
\(195\) −4.91156 3.63530i −0.351724 0.260329i
\(196\) 0 0
\(197\) 12.1374 0.864755 0.432378 0.901693i \(-0.357675\pi\)
0.432378 + 0.901693i \(0.357675\pi\)
\(198\) 0 0
\(199\) −16.1512 −1.14493 −0.572465 0.819929i \(-0.694013\pi\)
−0.572465 + 0.819929i \(0.694013\pi\)
\(200\) 0 0
\(201\) 0.445430i 0.0314182i
\(202\) 0 0
\(203\) 2.63051 + 5.82059i 0.184625 + 0.408525i
\(204\) 0 0
\(205\) 9.91032 + 7.33515i 0.692167 + 0.512309i
\(206\) 0 0
\(207\) −1.60462 −0.111528
\(208\) 0 0
\(209\) 14.1215i 0.976805i
\(210\) 0 0
\(211\) −1.35578 −0.0933360 −0.0466680 0.998910i \(-0.514860\pi\)
−0.0466680 + 0.998910i \(0.514860\pi\)
\(212\) 0 0
\(213\) 9.41667i 0.645219i
\(214\) 0 0
\(215\) −7.56979 5.60280i −0.516255 0.382108i
\(216\) 0 0
\(217\) 12.3931 5.60081i 0.841296 0.380208i
\(218\) 0 0
\(219\) −1.99067 −0.134517
\(220\) 0 0
\(221\) 23.7279i 1.59611i
\(222\) 0 0
\(223\) 8.30493i 0.556139i 0.960561 + 0.278070i \(0.0896946\pi\)
−0.960561 + 0.278070i \(0.910305\pi\)
\(224\) 0 0
\(225\) 3.30678 + 10.8255i 0.220452 + 0.721703i
\(226\) 0 0
\(227\) −6.28883 −0.417404 −0.208702 0.977979i \(-0.566924\pi\)
−0.208702 + 0.977979i \(0.566924\pi\)
\(228\) 0 0
\(229\) 23.8298 1.57472 0.787359 0.616495i \(-0.211448\pi\)
0.787359 + 0.616495i \(0.211448\pi\)
\(230\) 0 0
\(231\) 6.32428 2.85814i 0.416107 0.188052i
\(232\) 0 0
\(233\) 5.79789i 0.379832i 0.981800 + 0.189916i \(0.0608216\pi\)
−0.981800 + 0.189916i \(0.939178\pi\)
\(234\) 0 0
\(235\) −11.7807 8.71953i −0.768490 0.568799i
\(236\) 0 0
\(237\) 8.56861i 0.556591i
\(238\) 0 0
\(239\) 22.2759i 1.44091i −0.693502 0.720454i \(-0.743933\pi\)
0.693502 0.720454i \(-0.256067\pi\)
\(240\) 0 0
\(241\) 22.0893i 1.42290i −0.702739 0.711448i \(-0.748040\pi\)
0.702739 0.711448i \(-0.251960\pi\)
\(242\) 0 0
\(243\) 16.0514 1.02970
\(244\) 0 0
\(245\) −3.28969 15.3029i −0.210170 0.977665i
\(246\) 0 0
\(247\) 14.7115 0.936072
\(248\) 0 0
\(249\) −7.49425 −0.474929
\(250\) 0 0
\(251\) 15.9294i 1.00546i 0.864444 + 0.502729i \(0.167671\pi\)
−0.864444 + 0.502729i \(0.832329\pi\)
\(252\) 0 0
\(253\) −2.16701 −0.136239
\(254\) 0 0
\(255\) −8.50288 + 11.4880i −0.532471 + 0.719407i
\(256\) 0 0
\(257\) −9.71846 −0.606221 −0.303110 0.952955i \(-0.598025\pi\)
−0.303110 + 0.952955i \(0.598025\pi\)
\(258\) 0 0
\(259\) −4.99533 + 2.25755i −0.310395 + 0.140277i
\(260\) 0 0
\(261\) 5.46544i 0.338302i
\(262\) 0 0
\(263\) −8.90441 −0.549069 −0.274535 0.961577i \(-0.588524\pi\)
−0.274535 + 0.961577i \(0.588524\pi\)
\(264\) 0 0
\(265\) 4.99647 6.75060i 0.306931 0.414686i
\(266\) 0 0
\(267\) 15.9325i 0.975054i
\(268\) 0 0
\(269\) −4.80691 −0.293083 −0.146541 0.989205i \(-0.546814\pi\)
−0.146541 + 0.989205i \(0.546814\pi\)
\(270\) 0 0
\(271\) 12.0056 0.729286 0.364643 0.931147i \(-0.381191\pi\)
0.364643 + 0.931147i \(0.381191\pi\)
\(272\) 0 0
\(273\) 2.97756 + 6.58851i 0.180210 + 0.398755i
\(274\) 0 0
\(275\) 4.46575 + 14.6197i 0.269295 + 0.881603i
\(276\) 0 0
\(277\) 1.32250 0.0794612 0.0397306 0.999210i \(-0.487350\pi\)
0.0397306 + 0.999210i \(0.487350\pi\)
\(278\) 0 0
\(279\) 11.6369 0.696683
\(280\) 0 0
\(281\) −13.6055 −0.811636 −0.405818 0.913954i \(-0.633013\pi\)
−0.405818 + 0.913954i \(0.633013\pi\)
\(282\) 0 0
\(283\) 4.03383 0.239786 0.119893 0.992787i \(-0.461745\pi\)
0.119893 + 0.992787i \(0.461745\pi\)
\(284\) 0 0
\(285\) 7.12268 + 5.27187i 0.421911 + 0.312278i
\(286\) 0 0
\(287\) −6.00798 13.2940i −0.354640 0.784720i
\(288\) 0 0
\(289\) 38.4990 2.26465
\(290\) 0 0
\(291\) 1.35805 0.0796106
\(292\) 0 0
\(293\) 15.1789i 0.886759i 0.896334 + 0.443379i \(0.146221\pi\)
−0.896334 + 0.443379i \(0.853779\pi\)
\(294\) 0 0
\(295\) 5.60610 + 4.14937i 0.326400 + 0.241585i
\(296\) 0 0
\(297\) 13.8078 0.801208
\(298\) 0 0
\(299\) 2.25755i 0.130557i
\(300\) 0 0
\(301\) 4.58907 + 10.1543i 0.264509 + 0.585287i
\(302\) 0 0
\(303\) −11.6250 −0.667840
\(304\) 0 0
\(305\) 12.7071 17.1683i 0.727609 0.983053i
\(306\) 0 0
\(307\) 15.7575 0.899329 0.449664 0.893198i \(-0.351544\pi\)
0.449664 + 0.893198i \(0.351544\pi\)
\(308\) 0 0
\(309\) 9.52168i 0.541669i
\(310\) 0 0
\(311\) −27.2794 −1.54687 −0.773436 0.633874i \(-0.781464\pi\)
−0.773436 + 0.633874i \(0.781464\pi\)
\(312\) 0 0
\(313\) 7.37828 0.417045 0.208523 0.978018i \(-0.433135\pi\)
0.208523 + 0.978018i \(0.433135\pi\)
\(314\) 0 0
\(315\) 2.82743 13.0914i 0.159308 0.737615i
\(316\) 0 0
\(317\) −27.5478 −1.54724 −0.773619 0.633651i \(-0.781556\pi\)
−0.773619 + 0.633651i \(0.781556\pi\)
\(318\) 0 0
\(319\) 7.38099i 0.413256i
\(320\) 0 0
\(321\) 15.0307i 0.838933i
\(322\) 0 0
\(323\) 34.4099i 1.91462i
\(324\) 0 0
\(325\) −15.2306 + 4.65233i −0.844840 + 0.258065i
\(326\) 0 0
\(327\) 13.4617i 0.744433i
\(328\) 0 0
\(329\) 7.14188 + 15.8030i 0.393745 + 0.871249i
\(330\) 0 0
\(331\) 30.0660 1.65258 0.826288 0.563248i \(-0.190448\pi\)
0.826288 + 0.563248i \(0.190448\pi\)
\(332\) 0 0
\(333\) −4.69054 −0.257040
\(334\) 0 0
\(335\) −0.933094 0.690632i −0.0509804 0.0377332i
\(336\) 0 0
\(337\) 2.07740i 0.113163i 0.998398 + 0.0565816i \(0.0180201\pi\)
−0.998398 + 0.0565816i \(0.981980\pi\)
\(338\) 0 0
\(339\) 10.6273i 0.577197i
\(340\) 0 0
\(341\) 15.7154 0.851039
\(342\) 0 0
\(343\) −5.42743 + 17.7071i −0.293054 + 0.956096i
\(344\) 0 0
\(345\) 0.808991 1.09301i 0.0435546 0.0588455i
\(346\) 0 0
\(347\) 1.58617i 0.0851499i 0.999093 + 0.0425749i \(0.0135561\pi\)
−0.999093 + 0.0425749i \(0.986444\pi\)
\(348\) 0 0
\(349\) 0.0939008 0.00502640 0.00251320 0.999997i \(-0.499200\pi\)
0.00251320 + 0.999997i \(0.499200\pi\)
\(350\) 0 0
\(351\) 14.3847i 0.767797i
\(352\) 0 0
\(353\) −16.6771 −0.887634 −0.443817 0.896117i \(-0.646376\pi\)
−0.443817 + 0.896117i \(0.646376\pi\)
\(354\) 0 0
\(355\) 19.7262 + 14.6004i 1.04696 + 0.774907i
\(356\) 0 0
\(357\) 15.4104 6.96443i 0.815603 0.368597i
\(358\) 0 0
\(359\) 19.7492i 1.04232i −0.853458 0.521162i \(-0.825499\pi\)
0.853458 0.521162i \(-0.174501\pi\)
\(360\) 0 0
\(361\) −2.33445 −0.122866
\(362\) 0 0
\(363\) −1.41809 −0.0744305
\(364\) 0 0
\(365\) −3.08649 + 4.17008i −0.161554 + 0.218272i
\(366\) 0 0
\(367\) 28.2305i 1.47362i 0.676101 + 0.736809i \(0.263668\pi\)
−0.676101 + 0.736809i \(0.736332\pi\)
\(368\) 0 0
\(369\) 12.4829i 0.649832i
\(370\) 0 0
\(371\) −9.05546 + 4.09245i −0.470136 + 0.212469i
\(372\) 0 0
\(373\) 11.2527 0.582643 0.291321 0.956625i \(-0.405905\pi\)
0.291321 + 0.956625i \(0.405905\pi\)
\(374\) 0 0
\(375\) −9.04114 3.20541i −0.466882 0.165527i
\(376\) 0 0
\(377\) −7.68938 −0.396023
\(378\) 0 0
\(379\) −6.92135 −0.355526 −0.177763 0.984073i \(-0.556886\pi\)
−0.177763 + 0.984073i \(0.556886\pi\)
\(380\) 0 0
\(381\) −14.8272 −0.759618
\(382\) 0 0
\(383\) 11.7492i 0.600357i −0.953883 0.300178i \(-0.902954\pi\)
0.953883 0.300178i \(-0.0970462\pi\)
\(384\) 0 0
\(385\) 3.81840 17.6797i 0.194604 0.901040i
\(386\) 0 0
\(387\) 9.53477i 0.484680i
\(388\) 0 0
\(389\) 37.4556i 1.89907i −0.313654 0.949537i \(-0.601553\pi\)
0.313654 0.949537i \(-0.398447\pi\)
\(390\) 0 0
\(391\) −5.28035 −0.267039
\(392\) 0 0
\(393\) 10.8446i 0.547036i
\(394\) 0 0
\(395\) −17.9496 13.2855i −0.903145 0.668465i
\(396\) 0 0
\(397\) 26.0150i 1.30565i −0.757507 0.652827i \(-0.773583\pi\)
0.757507 0.652827i \(-0.226417\pi\)
\(398\) 0 0
\(399\) −4.31801 9.55457i −0.216171 0.478327i
\(400\) 0 0
\(401\) −10.3832 −0.518510 −0.259255 0.965809i \(-0.583477\pi\)
−0.259255 + 0.965809i \(0.583477\pi\)
\(402\) 0 0
\(403\) 16.3721i 0.815550i
\(404\) 0 0
\(405\) 3.88003 5.24220i 0.192800 0.260487i
\(406\) 0 0
\(407\) −6.33450 −0.313990
\(408\) 0 0
\(409\) 7.50838i 0.371265i 0.982619 + 0.185633i \(0.0594335\pi\)
−0.982619 + 0.185633i \(0.940567\pi\)
\(410\) 0 0
\(411\) 9.77989i 0.482406i
\(412\) 0 0
\(413\) −3.39861 7.52019i −0.167235 0.370044i
\(414\) 0 0
\(415\) −11.6197 + 15.6991i −0.570389 + 0.770637i
\(416\) 0 0
\(417\) 6.78559i 0.332292i
\(418\) 0 0
\(419\) 22.3526i 1.09200i 0.837786 + 0.545999i \(0.183850\pi\)
−0.837786 + 0.545999i \(0.816150\pi\)
\(420\) 0 0
\(421\) 1.24732i 0.0607905i 0.999538 + 0.0303953i \(0.00967660\pi\)
−0.999538 + 0.0303953i \(0.990323\pi\)
\(422\) 0 0
\(423\) 14.8388i 0.721487i
\(424\) 0 0
\(425\) 10.8817 + 35.6239i 0.527840 + 1.72801i
\(426\) 0 0
\(427\) −23.0301 + 10.4080i −1.11450 + 0.503679i
\(428\) 0 0
\(429\) 8.35479i 0.403373i
\(430\) 0 0
\(431\) 8.69462i 0.418805i −0.977830 0.209402i \(-0.932848\pi\)
0.977830 0.209402i \(-0.0671519\pi\)
\(432\) 0 0
\(433\) −25.0439 −1.20353 −0.601767 0.798672i \(-0.705536\pi\)
−0.601767 + 0.798672i \(0.705536\pi\)
\(434\) 0 0
\(435\) −3.72286 2.75549i −0.178498 0.132115i
\(436\) 0 0
\(437\) 3.27387i 0.156610i
\(438\) 0 0
\(439\) 37.3313 1.78173 0.890864 0.454270i \(-0.150100\pi\)
0.890864 + 0.454270i \(0.150100\pi\)
\(440\) 0 0
\(441\) −10.4717 + 11.8943i −0.498651 + 0.566393i
\(442\) 0 0
\(443\) 25.4673i 1.20999i −0.796230 0.604994i \(-0.793176\pi\)
0.796230 0.604994i \(-0.206824\pi\)
\(444\) 0 0
\(445\) 33.3756 + 24.7031i 1.58216 + 1.17104i
\(446\) 0 0
\(447\) 6.29343i 0.297669i
\(448\) 0 0
\(449\) −4.73840 −0.223619 −0.111810 0.993730i \(-0.535665\pi\)
−0.111810 + 0.993730i \(0.535665\pi\)
\(450\) 0 0
\(451\) 16.8579i 0.793808i
\(452\) 0 0
\(453\) 7.07204i 0.332273i
\(454\) 0 0
\(455\) 18.4184 + 3.97794i 0.863466 + 0.186489i
\(456\) 0 0
\(457\) 11.9469i 0.558850i 0.960167 + 0.279425i \(0.0901439\pi\)
−0.960167 + 0.279425i \(0.909856\pi\)
\(458\) 0 0
\(459\) 33.6454 1.57043
\(460\) 0 0
\(461\) −32.0778 −1.49401 −0.747005 0.664818i \(-0.768509\pi\)
−0.747005 + 0.664818i \(0.768509\pi\)
\(462\) 0 0
\(463\) 21.3332 0.991438 0.495719 0.868483i \(-0.334905\pi\)
0.495719 + 0.868483i \(0.334905\pi\)
\(464\) 0 0
\(465\) −5.86692 + 7.92664i −0.272072 + 0.367589i
\(466\) 0 0
\(467\) −38.4098 −1.77739 −0.888696 0.458497i \(-0.848388\pi\)
−0.888696 + 0.458497i \(0.848388\pi\)
\(468\) 0 0
\(469\) 0.565674 + 1.25168i 0.0261204 + 0.0577972i
\(470\) 0 0
\(471\) 14.4902i 0.667671i
\(472\) 0 0
\(473\) 12.8766i 0.592065i
\(474\) 0 0
\(475\) 22.0872 6.74675i 1.01343 0.309562i
\(476\) 0 0
\(477\) −8.50294 −0.389323
\(478\) 0 0
\(479\) −2.77227 −0.126668 −0.0633342 0.997992i \(-0.520173\pi\)
−0.0633342 + 0.997992i \(0.520173\pi\)
\(480\) 0 0
\(481\) 6.59917i 0.300896i
\(482\) 0 0
\(483\) −1.46619 + 0.662619i −0.0667141 + 0.0301502i
\(484\) 0 0
\(485\) 2.10564 2.84487i 0.0956121 0.129179i
\(486\) 0 0
\(487\) 15.3310 0.694712 0.347356 0.937733i \(-0.387079\pi\)
0.347356 + 0.937733i \(0.387079\pi\)
\(488\) 0 0
\(489\) 15.0307i 0.679713i
\(490\) 0 0
\(491\) −3.59438 −0.162212 −0.0811061 0.996705i \(-0.525845\pi\)
−0.0811061 + 0.996705i \(0.525845\pi\)
\(492\) 0 0
\(493\) 17.9853i 0.810016i
\(494\) 0 0
\(495\) 9.20738 12.4398i 0.413841 0.559129i
\(496\) 0 0
\(497\) −11.9587 26.4613i −0.536420 1.18695i
\(498\) 0 0
\(499\) −14.2057 −0.635933 −0.317966 0.948102i \(-0.603000\pi\)
−0.317966 + 0.948102i \(0.603000\pi\)
\(500\) 0 0
\(501\) 9.52168i 0.425397i
\(502\) 0 0
\(503\) 19.0792i 0.850698i −0.905029 0.425349i \(-0.860151\pi\)
0.905029 0.425349i \(-0.139849\pi\)
\(504\) 0 0
\(505\) −18.0244 + 24.3523i −0.802075 + 1.08366i
\(506\) 0 0
\(507\) 2.44991 0.108804
\(508\) 0 0
\(509\) 5.06084 0.224318 0.112159 0.993690i \(-0.464223\pi\)
0.112159 + 0.993690i \(0.464223\pi\)
\(510\) 0 0
\(511\) 5.59387 2.52804i 0.247458 0.111834i
\(512\) 0 0
\(513\) 20.8605i 0.921012i
\(514\) 0 0
\(515\) −19.9462 14.7632i −0.878932 0.650544i
\(516\) 0 0
\(517\) 20.0396i 0.881339i
\(518\) 0 0
\(519\) 0.369664i 0.0162264i
\(520\) 0 0
\(521\) 36.4725i 1.59789i 0.601404 + 0.798945i \(0.294608\pi\)
−0.601404 + 0.798945i \(0.705392\pi\)
\(522\) 0 0
\(523\) −23.4497 −1.02538 −0.512691 0.858573i \(-0.671351\pi\)
−0.512691 + 0.858573i \(0.671351\pi\)
\(524\) 0 0
\(525\) 7.49187 + 8.52616i 0.326972 + 0.372112i
\(526\) 0 0
\(527\) 38.2938 1.66811
\(528\) 0 0
\(529\) −22.4976 −0.978157
\(530\) 0 0
\(531\) 7.06134i 0.306436i
\(532\) 0 0
\(533\) 17.5623 0.760706
\(534\) 0 0
\(535\) −31.4866 23.3049i −1.36128 1.00756i
\(536\) 0 0
\(537\) 12.6593 0.546289
\(538\) 0 0
\(539\) −14.1418 + 16.0630i −0.609132 + 0.691883i
\(540\) 0 0
\(541\) 25.4539i 1.09435i −0.837018 0.547175i \(-0.815703\pi\)
0.837018 0.547175i \(-0.184297\pi\)
\(542\) 0 0
\(543\) −1.73837 −0.0746006
\(544\) 0 0
\(545\) −28.1997 20.8721i −1.20794 0.894063i
\(546\) 0 0
\(547\) 13.6735i 0.584636i 0.956321 + 0.292318i \(0.0944266\pi\)
−0.956321 + 0.292318i \(0.905573\pi\)
\(548\) 0 0
\(549\) −21.6249 −0.922927
\(550\) 0 0
\(551\) 11.1510 0.475050
\(552\) 0 0
\(553\) 10.8817 + 24.0782i 0.462737 + 1.02391i
\(554\) 0 0
\(555\) 2.36481 3.19503i 0.100381 0.135621i
\(556\) 0 0
\(557\) −25.2870 −1.07144 −0.535722 0.844395i \(-0.679960\pi\)
−0.535722 + 0.844395i \(0.679960\pi\)
\(558\) 0 0
\(559\) −13.4146 −0.567376
\(560\) 0 0
\(561\) 19.5417 0.825049
\(562\) 0 0
\(563\) −17.9372 −0.755962 −0.377981 0.925813i \(-0.623382\pi\)
−0.377981 + 0.925813i \(0.623382\pi\)
\(564\) 0 0
\(565\) −22.2623 16.4775i −0.936580 0.693212i
\(566\) 0 0
\(567\) −7.03205 + 3.17800i −0.295318 + 0.133464i
\(568\) 0 0
\(569\) −12.5418 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(570\) 0 0
\(571\) −27.0229 −1.13088 −0.565438 0.824791i \(-0.691293\pi\)
−0.565438 + 0.824791i \(0.691293\pi\)
\(572\) 0 0
\(573\) 8.56861i 0.357959i
\(574\) 0 0
\(575\) −1.03532 3.38937i −0.0431758 0.141347i
\(576\) 0 0
\(577\) −13.9759 −0.581825 −0.290912 0.956750i \(-0.593959\pi\)
−0.290912 + 0.956750i \(0.593959\pi\)
\(578\) 0 0
\(579\) 5.65283i 0.234924i
\(580\) 0 0
\(581\) 21.0592 9.51732i 0.873683 0.394845i
\(582\) 0 0
\(583\) −11.4831 −0.475581
\(584\) 0 0
\(585\) 12.9596 + 9.59208i 0.535813 + 0.396584i
\(586\) 0 0
\(587\) −28.5757 −1.17945 −0.589723 0.807605i \(-0.700763\pi\)
−0.589723 + 0.807605i \(0.700763\pi\)
\(588\) 0 0
\(589\) 23.7425i 0.978294i
\(590\) 0 0
\(591\) 10.4137 0.428362
\(592\) 0 0
\(593\) 0.693990 0.0284987 0.0142494 0.999898i \(-0.495464\pi\)
0.0142494 + 0.999898i \(0.495464\pi\)
\(594\) 0 0
\(595\) 9.30431 43.0801i 0.381439 1.76611i
\(596\) 0 0
\(597\) −13.8575 −0.567149
\(598\) 0 0
\(599\) 30.4359i 1.24358i 0.783185 + 0.621789i \(0.213594\pi\)
−0.783185 + 0.621789i \(0.786406\pi\)
\(600\) 0 0
\(601\) 22.1088i 0.901835i 0.892566 + 0.450917i \(0.148903\pi\)
−0.892566 + 0.450917i \(0.851097\pi\)
\(602\) 0 0
\(603\) 1.17531i 0.0478623i
\(604\) 0 0
\(605\) −2.19872 + 2.97064i −0.0893908 + 0.120774i
\(606\) 0 0
\(607\) 0.411826i 0.0167155i 0.999965 + 0.00835774i \(0.00266038\pi\)
−0.999965 + 0.00835774i \(0.997340\pi\)
\(608\) 0 0
\(609\) 2.25693 + 4.99396i 0.0914554 + 0.202366i
\(610\) 0 0
\(611\) −20.8768 −0.844586
\(612\) 0 0
\(613\) −38.0372 −1.53631 −0.768155 0.640264i \(-0.778825\pi\)
−0.768155 + 0.640264i \(0.778825\pi\)
\(614\) 0 0
\(615\) 8.50288 + 6.29343i 0.342869 + 0.253776i
\(616\) 0 0
\(617\) 11.2523i 0.452999i −0.974011 0.226499i \(-0.927272\pi\)
0.974011 0.226499i \(-0.0727281\pi\)
\(618\) 0 0
\(619\) 15.2620i 0.613433i −0.951801 0.306716i \(-0.900770\pi\)
0.951801 0.306716i \(-0.0992303\pi\)
\(620\) 0 0
\(621\) −3.20113 −0.128457
\(622\) 0 0
\(623\) −20.2335 44.7711i −0.810637 1.79372i
\(624\) 0 0
\(625\) −20.7328 + 13.9696i −0.829314 + 0.558783i
\(626\) 0 0
\(627\) 12.1160i 0.483867i
\(628\) 0 0
\(629\) −15.4353 −0.615445
\(630\) 0 0
\(631\) 41.5945i 1.65585i −0.560839 0.827925i \(-0.689521\pi\)
0.560839 0.827925i \(-0.310479\pi\)
\(632\) 0 0
\(633\) −1.16324 −0.0462346
\(634\) 0 0
\(635\) −22.9892 + 31.0601i −0.912300 + 1.23258i
\(636\) 0 0
\(637\) −16.7341 14.7327i −0.663031 0.583730i
\(638\) 0 0
\(639\) 24.8467i 0.982922i
\(640\) 0 0
\(641\) 19.7501 0.780080 0.390040 0.920798i \(-0.372461\pi\)
0.390040 + 0.920798i \(0.372461\pi\)
\(642\) 0 0
\(643\) −1.64849 −0.0650100 −0.0325050 0.999472i \(-0.510348\pi\)
−0.0325050 + 0.999472i \(0.510348\pi\)
\(644\) 0 0
\(645\) −6.49475 4.80710i −0.255730 0.189279i
\(646\) 0 0
\(647\) 8.32199i 0.327171i −0.986529 0.163586i \(-0.947694\pi\)
0.986529 0.163586i \(-0.0523060\pi\)
\(648\) 0 0
\(649\) 9.53623i 0.374330i
\(650\) 0 0
\(651\) 10.6330 4.80540i 0.416741 0.188339i
\(652\) 0 0
\(653\) 47.2746 1.85000 0.924999 0.379968i \(-0.124065\pi\)
0.924999 + 0.379968i \(0.124065\pi\)
\(654\) 0 0
\(655\) −22.7173 16.8143i −0.887640 0.656989i
\(656\) 0 0
\(657\) 5.25256 0.204922
\(658\) 0 0
\(659\) 23.0319 0.897194 0.448597 0.893734i \(-0.351924\pi\)
0.448597 + 0.893734i \(0.351924\pi\)
\(660\) 0 0
\(661\) 14.2975 0.556107 0.278054 0.960566i \(-0.410311\pi\)
0.278054 + 0.960566i \(0.410311\pi\)
\(662\) 0 0
\(663\) 20.3581i 0.790644i
\(664\) 0 0
\(665\) −26.7101 5.76876i −1.03577 0.223703i
\(666\) 0 0
\(667\) 1.71118i 0.0662570i
\(668\) 0 0
\(669\) 7.12548i 0.275487i
\(670\) 0 0
\(671\) −29.2041 −1.12741
\(672\) 0 0
\(673\) 27.1433i 1.04630i −0.852242 0.523149i \(-0.824757\pi\)
0.852242 0.523149i \(-0.175243\pi\)
\(674\) 0 0
\(675\) 6.59686 + 21.5965i 0.253913 + 0.831248i
\(676\) 0 0
\(677\) 11.9050i 0.457546i −0.973480 0.228773i \(-0.926529\pi\)
0.973480 0.228773i \(-0.0734714\pi\)
\(678\) 0 0
\(679\) −3.81620 + 1.72466i −0.146452 + 0.0661864i
\(680\) 0 0
\(681\) −5.39571 −0.206764
\(682\) 0 0
\(683\) 10.0550i 0.384744i 0.981322 + 0.192372i \(0.0616180\pi\)
−0.981322 + 0.192372i \(0.938382\pi\)
\(684\) 0 0
\(685\) 20.4871 + 15.1635i 0.782770 + 0.579369i
\(686\) 0 0
\(687\) 20.4456 0.780047
\(688\) 0 0
\(689\) 11.9629i 0.455749i
\(690\) 0 0
\(691\) 6.60195i 0.251150i 0.992084 + 0.125575i \(0.0400776\pi\)
−0.992084 + 0.125575i \(0.959922\pi\)
\(692\) 0 0
\(693\) −16.6872 + 7.54147i −0.633894 + 0.286477i
\(694\) 0 0
\(695\) −14.2145 10.5209i −0.539188 0.399082i
\(696\) 0 0
\(697\) 41.0777i 1.55593i
\(698\) 0 0
\(699\) 4.97449i 0.188152i
\(700\) 0 0
\(701\) 2.49209i 0.0941251i 0.998892 + 0.0470625i \(0.0149860\pi\)
−0.998892 + 0.0470625i \(0.985014\pi\)
\(702\) 0 0
\(703\) 9.57003i 0.360940i
\(704\) 0 0
\(705\) −10.1077 7.48121i −0.380676 0.281758i
\(706\) 0 0
\(707\) 32.6669 14.7632i 1.22856 0.555227i
\(708\) 0 0
\(709\) 39.3253i 1.47689i 0.674312 + 0.738447i \(0.264440\pi\)
−0.674312 + 0.738447i \(0.735560\pi\)
\(710\) 0 0
\(711\) 22.6091i 0.847906i
\(712\) 0 0
\(713\) −3.64340 −0.136446
\(714\) 0 0
\(715\) 17.5017 + 12.9539i 0.654528 + 0.484450i
\(716\) 0 0
\(717\) 19.1123i 0.713763i
\(718\) 0 0
\(719\) −25.2731 −0.942528 −0.471264 0.881992i \(-0.656202\pi\)
−0.471264 + 0.881992i \(0.656202\pi\)
\(720\) 0 0
\(721\) 12.0920 + 26.7564i 0.450331 + 0.996459i
\(722\) 0 0
\(723\) 18.9522i 0.704841i
\(724\) 0 0
\(725\) −11.5445 + 3.52638i −0.428751 + 0.130966i
\(726\) 0 0
\(727\) 7.09135i 0.263004i −0.991316 0.131502i \(-0.958020\pi\)
0.991316 0.131502i \(-0.0419799\pi\)
\(728\) 0 0
\(729\) 5.02175 0.185991
\(730\) 0 0
\(731\) 31.3763i 1.16050i
\(732\) 0 0
\(733\) 6.53560i 0.241398i −0.992689 0.120699i \(-0.961486\pi\)
0.992689 0.120699i \(-0.0385136\pi\)
\(734\) 0 0
\(735\) −2.82249 13.1296i −0.104109 0.484293i
\(736\) 0 0
\(737\) 1.58724i 0.0584666i
\(738\) 0 0
\(739\) −14.1221 −0.519490 −0.259745 0.965677i \(-0.583639\pi\)
−0.259745 + 0.965677i \(0.583639\pi\)
\(740\) 0 0
\(741\) 12.6222 0.463689
\(742\) 0 0
\(743\) −2.66196 −0.0976578 −0.0488289 0.998807i \(-0.515549\pi\)
−0.0488289 + 0.998807i \(0.515549\pi\)
\(744\) 0 0
\(745\) −13.1836 9.75785i −0.483008 0.357500i
\(746\) 0 0
\(747\) 19.7743 0.723503
\(748\) 0 0
\(749\) 19.0882 + 42.2370i 0.697469 + 1.54331i
\(750\) 0 0
\(751\) 7.53982i 0.275132i −0.990493 0.137566i \(-0.956072\pi\)
0.990493 0.137566i \(-0.0439279\pi\)
\(752\) 0 0
\(753\) 13.6672i 0.498060i
\(754\) 0 0
\(755\) −14.8146 10.9651i −0.539159 0.399060i
\(756\) 0 0
\(757\) 42.4127 1.54152 0.770759 0.637127i \(-0.219877\pi\)
0.770759 + 0.637127i \(0.219877\pi\)
\(758\) 0 0
\(759\) −1.85926 −0.0674867
\(760\) 0 0
\(761\) 21.4947i 0.779183i −0.920988 0.389591i \(-0.872616\pi\)
0.920988 0.389591i \(-0.127384\pi\)
\(762\) 0 0
\(763\) 17.0957 + 37.8280i 0.618905 + 1.36947i
\(764\) 0 0
\(765\) 22.4356 30.3122i 0.811162 1.09594i
\(766\) 0 0
\(767\) 9.93467 0.358720
\(768\) 0 0
\(769\) 19.1155i 0.689321i 0.938727 + 0.344661i \(0.112006\pi\)
−0.938727 + 0.344661i \(0.887994\pi\)
\(770\) 0 0
\(771\) −8.33827 −0.300295
\(772\) 0 0
\(773\) 25.8616i 0.930177i −0.885264 0.465089i \(-0.846022\pi\)
0.885264 0.465089i \(-0.153978\pi\)
\(774\) 0 0
\(775\) 7.50828 + 24.5802i 0.269705 + 0.882947i
\(776\) 0 0
\(777\) −4.28591 + 1.93694i −0.153756 + 0.0694872i
\(778\) 0 0
\(779\) −25.4686 −0.912506
\(780\) 0 0
\(781\) 33.5551i 1.20070i
\(782\) 0 0
\(783\) 10.9033i 0.389652i
\(784\) 0 0
\(785\) 30.3542 + 22.4667i 1.08339 + 0.801872i
\(786\) 0 0
\(787\) −9.23137 −0.329063 −0.164531 0.986372i \(-0.552611\pi\)
−0.164531 + 0.986372i \(0.552611\pi\)
\(788\) 0 0
\(789\) −7.63983 −0.271985
\(790\) 0 0
\(791\) 13.4962 + 29.8633i 0.479868 + 1.06182i
\(792\) 0 0
\(793\) 30.4242i 1.08040i
\(794\) 0 0
\(795\) 4.28689 5.79190i 0.152040 0.205418i
\(796\) 0 0
\(797\) 1.25393i 0.0444165i −0.999753 0.0222083i \(-0.992930\pi\)
0.999753 0.0222083i \(-0.00706969\pi\)
\(798\) 0 0
\(799\) 48.8304i 1.72750i
\(800\) 0 0
\(801\) 42.0394i 1.48539i
\(802\) 0 0
\(803\) 7.09349 0.250324
\(804\) 0 0
\(805\) −0.885242 + 4.09878i −0.0312007 + 0.144463i
\(806\) 0 0
\(807\) −4.12425 −0.145180
\(808\) 0 0
\(809\) −41.6114 −1.46298 −0.731489 0.681854i \(-0.761174\pi\)
−0.731489 + 0.681854i \(0.761174\pi\)
\(810\) 0 0
\(811\) 14.9717i 0.525728i −0.964833 0.262864i \(-0.915333\pi\)
0.964833 0.262864i \(-0.0846671\pi\)
\(812\) 0 0
\(813\) 10.3006 0.361257
\(814\) 0 0
\(815\) 31.4866 + 23.3049i 1.10293 + 0.816334i
\(816\) 0 0
\(817\) 19.4536 0.680596
\(818\) 0 0
\(819\) −7.85656 17.3844i −0.274530 0.607460i
\(820\) 0 0
\(821\) 0.316827i 0.0110574i −0.999985 0.00552868i \(-0.998240\pi\)
0.999985 0.00552868i \(-0.00175984\pi\)
\(822\) 0 0
\(823\) 5.40508 0.188409 0.0942046 0.995553i \(-0.469969\pi\)
0.0942046 + 0.995553i \(0.469969\pi\)
\(824\) 0 0
\(825\) 3.83154 + 12.5435i 0.133397 + 0.436708i
\(826\) 0 0
\(827\) 35.9961i 1.25171i 0.779941 + 0.625853i \(0.215249\pi\)
−0.779941 + 0.625853i \(0.784751\pi\)
\(828\) 0 0
\(829\) −22.2653 −0.773305 −0.386652 0.922225i \(-0.626369\pi\)
−0.386652 + 0.922225i \(0.626369\pi\)
\(830\) 0 0
\(831\) 1.13468 0.0393616
\(832\) 0 0
\(833\) −34.4594 + 39.1408i −1.19395 + 1.35615i
\(834\) 0 0
\(835\) 19.9462 + 14.7632i 0.690265 + 0.510901i
\(836\) 0 0
\(837\) 23.2151 0.802430
\(838\) 0 0
\(839\) −10.8709 −0.375305 −0.187652 0.982236i \(-0.560088\pi\)
−0.187652 + 0.982236i \(0.560088\pi\)
\(840\) 0 0
\(841\) 23.1716 0.799021
\(842\) 0 0
\(843\) −11.6733 −0.402049
\(844\) 0 0
\(845\) 3.79854 5.13211i 0.130674 0.176550i
\(846\) 0 0
\(847\) 3.98490 1.80090i 0.136923 0.0618798i
\(848\) 0 0
\(849\) 3.46096 0.118780
\(850\) 0 0
\(851\) 1.46856 0.0503417
\(852\) 0 0
\(853\) 24.9401i 0.853931i −0.904268 0.426966i \(-0.859583\pi\)
0.904268 0.426966i \(-0.140417\pi\)
\(854\) 0 0
\(855\) −18.7938 13.9103i −0.642736 0.475722i
\(856\) 0 0
\(857\) 14.7132 0.502594 0.251297 0.967910i \(-0.419143\pi\)
0.251297 + 0.967910i \(0.419143\pi\)
\(858\) 0 0
\(859\) 21.0920i 0.719651i 0.933020 + 0.359825i \(0.117164\pi\)
−0.933020 + 0.359825i \(0.882836\pi\)
\(860\) 0 0
\(861\) −5.15474 11.4060i −0.175673 0.388716i
\(862\) 0 0
\(863\) 13.6813 0.465715 0.232858 0.972511i \(-0.425192\pi\)
0.232858 + 0.972511i \(0.425192\pi\)
\(864\) 0 0
\(865\) 0.774377 + 0.573157i 0.0263296 + 0.0194879i
\(866\) 0 0
\(867\) 33.0315 1.12181
\(868\) 0 0
\(869\) 30.5332i 1.03577i
\(870\) 0 0
\(871\) −1.65355 −0.0560285
\(872\) 0 0
\(873\) −3.58335 −0.121278
\(874\) 0 0
\(875\) 29.4767 2.47443i 0.996495 0.0836511i
\(876\) 0 0
\(877\) −41.6633 −1.40687 −0.703435 0.710759i \(-0.748351\pi\)
−0.703435 + 0.710759i \(0.748351\pi\)
\(878\) 0 0
\(879\) 13.0232i 0.439262i
\(880\) 0 0
\(881\) 5.53343i 0.186426i 0.995646 + 0.0932131i \(0.0297138\pi\)
−0.995646 + 0.0932131i \(0.970286\pi\)
\(882\) 0 0
\(883\) 36.9558i 1.24366i −0.783151 0.621831i \(-0.786389\pi\)
0.783151 0.621831i \(-0.213611\pi\)
\(884\) 0 0
\(885\) 4.80993 + 3.56008i 0.161684 + 0.119671i
\(886\) 0 0
\(887\) 52.2816i 1.75545i 0.479169 + 0.877723i \(0.340938\pi\)
−0.479169 + 0.877723i \(0.659062\pi\)
\(888\) 0 0
\(889\) 41.6650 18.8297i 1.39740 0.631529i
\(890\) 0 0
\(891\) −8.91723 −0.298738
\(892\) 0 0
\(893\) 30.2753 1.01312
\(894\) 0 0
\(895\) 19.6280 26.5189i 0.656092 0.886428i
\(896\) 0 0
\(897\) 1.93694i 0.0646725i
\(898\) 0 0
\(899\) 12.4097i 0.413886i
\(900\) 0 0
\(901\) −27.9809 −0.932178
\(902\) 0 0
\(903\) 3.93734 + 8.71225i 0.131026 + 0.289926i
\(904\) 0 0
\(905\) −2.69531 + 3.64156i −0.0895951 + 0.121050i
\(906\) 0 0
\(907\) 37.0631i 1.23066i −0.788270 0.615329i \(-0.789023\pi\)
0.788270 0.615329i \(-0.210977\pi\)
\(908\) 0 0
\(909\) 30.6737 1.01738
\(910\) 0 0
\(911\) 2.17495i 0.0720593i 0.999351 + 0.0360297i \(0.0114711\pi\)
−0.999351 + 0.0360297i \(0.988529\pi\)
\(912\) 0 0
\(913\) 26.7048 0.883801
\(914\) 0 0
\(915\) 10.9025 14.7301i 0.360426 0.486962i
\(916\) 0 0
\(917\) 13.7720 + 30.4737i 0.454793 + 1.00633i
\(918\) 0 0
\(919\) 13.2512i 0.437117i 0.975824 + 0.218558i \(0.0701354\pi\)
−0.975824 + 0.218558i \(0.929865\pi\)
\(920\) 0 0
\(921\) 13.5197 0.445488
\(922\) 0 0
\(923\) 34.9571 1.15063
\(924\) 0 0
\(925\) −3.02640 9.90767i −0.0995074 0.325762i
\(926\) 0 0
\(927\) 25.1238i 0.825175i
\(928\) 0 0
\(929\) 7.96007i 0.261161i 0.991438 + 0.130581i \(0.0416842\pi\)
−0.991438 + 0.130581i \(0.958316\pi\)
\(930\) 0 0
\(931\) 24.2676 + 21.3652i 0.795340 + 0.700215i
\(932\) 0 0
\(933\) −23.4052 −0.766253
\(934\) 0 0
\(935\) 30.2990 40.9361i 0.990883 1.33875i
\(936\) 0 0
\(937\) −5.62068 −0.183620 −0.0918099 0.995777i \(-0.529265\pi\)
−0.0918099 + 0.995777i \(0.529265\pi\)
\(938\) 0 0
\(939\) 6.33044 0.206586
\(940\) 0 0
\(941\) 10.7839 0.351546 0.175773 0.984431i \(-0.443758\pi\)
0.175773 + 0.984431i \(0.443758\pi\)
\(942\) 0 0
\(943\) 3.90827i 0.127271i
\(944\) 0 0
\(945\) 5.64059 26.1166i 0.183489 0.849575i
\(946\) 0 0
\(947\) 32.8524i 1.06756i 0.845623 + 0.533780i \(0.179229\pi\)
−0.845623 + 0.533780i \(0.820771\pi\)
\(948\) 0 0
\(949\) 7.38987i 0.239885i
\(950\) 0 0
\(951\) −23.6355 −0.766435
\(952\) 0 0
\(953\) 8.51329i 0.275772i −0.990448 0.137886i \(-0.955969\pi\)
0.990448 0.137886i \(-0.0440308\pi\)
\(954\) 0 0
\(955\) 17.9496 + 13.2855i 0.580837 + 0.429908i
\(956\) 0 0
\(957\) 6.33276i 0.204709i
\(958\) 0 0
\(959\) −12.4200 27.4820i −0.401061 0.887438i
\(960\) 0 0
\(961\) −4.57757 −0.147663
\(962\) 0 0
\(963\) 39.6599i 1.27802i
\(964\) 0 0
\(965\) 11.8416 + 8.76461i 0.381195 + 0.282143i
\(966\) 0 0
\(967\) −34.3758 −1.10545 −0.552726 0.833363i \(-0.686412\pi\)
−0.552726 + 0.833363i \(0.686412\pi\)
\(968\) 0 0
\(969\) 29.5231i 0.948418i
\(970\) 0 0
\(971\) 57.5759i 1.84770i −0.382755 0.923850i \(-0.625025\pi\)
0.382755 0.923850i \(-0.374975\pi\)
\(972\) 0 0
\(973\) 8.61735 + 19.0678i 0.276260 + 0.611286i
\(974\) 0 0
\(975\) −13.0676 + 3.99162i −0.418497 + 0.127834i
\(976\) 0 0
\(977\) 14.6164i 0.467621i −0.972282 0.233810i \(-0.924880\pi\)
0.972282 0.233810i \(-0.0751195\pi\)
\(978\) 0 0
\(979\) 56.7735i 1.81449i
\(980\) 0 0
\(981\) 35.5199i 1.13406i
\(982\) 0 0
\(983\) 30.3916i 0.969342i −0.874696 0.484671i \(-0.838939\pi\)
0.874696 0.484671i \(-0.161061\pi\)
\(984\) 0 0
\(985\) 16.1462 21.8148i 0.514462 0.695076i
\(986\) 0 0
\(987\) 6.12761 + 13.5587i 0.195044 + 0.431579i
\(988\) 0 0
\(989\) 2.98525i 0.0949253i
\(990\) 0 0
\(991\) 19.7017i 0.625845i −0.949779 0.312923i \(-0.898692\pi\)
0.949779 0.312923i \(-0.101308\pi\)
\(992\) 0 0
\(993\) 25.7961 0.818614
\(994\) 0 0
\(995\) −21.4858 + 29.0288i −0.681145 + 0.920276i
\(996\) 0 0
\(997\) 36.7474i 1.16380i 0.813260 + 0.581901i \(0.197691\pi\)
−0.813260 + 0.581901i \(0.802309\pi\)
\(998\) 0 0
\(999\) −9.35741 −0.296055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.n.b.559.23 40
4.3 odd 2 280.2.n.b.139.13 40
5.4 even 2 inner 1120.2.n.b.559.17 40
7.6 odd 2 inner 1120.2.n.b.559.19 40
8.3 odd 2 inner 1120.2.n.b.559.24 40
8.5 even 2 280.2.n.b.139.25 yes 40
20.19 odd 2 280.2.n.b.139.28 yes 40
28.27 even 2 280.2.n.b.139.14 yes 40
35.34 odd 2 inner 1120.2.n.b.559.21 40
40.19 odd 2 inner 1120.2.n.b.559.18 40
40.29 even 2 280.2.n.b.139.16 yes 40
56.13 odd 2 280.2.n.b.139.26 yes 40
56.27 even 2 inner 1120.2.n.b.559.20 40
140.139 even 2 280.2.n.b.139.27 yes 40
280.69 odd 2 280.2.n.b.139.15 yes 40
280.139 even 2 inner 1120.2.n.b.559.22 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.n.b.139.13 40 4.3 odd 2
280.2.n.b.139.14 yes 40 28.27 even 2
280.2.n.b.139.15 yes 40 280.69 odd 2
280.2.n.b.139.16 yes 40 40.29 even 2
280.2.n.b.139.25 yes 40 8.5 even 2
280.2.n.b.139.26 yes 40 56.13 odd 2
280.2.n.b.139.27 yes 40 140.139 even 2
280.2.n.b.139.28 yes 40 20.19 odd 2
1120.2.n.b.559.17 40 5.4 even 2 inner
1120.2.n.b.559.18 40 40.19 odd 2 inner
1120.2.n.b.559.19 40 7.6 odd 2 inner
1120.2.n.b.559.20 40 56.27 even 2 inner
1120.2.n.b.559.21 40 35.34 odd 2 inner
1120.2.n.b.559.22 40 280.139 even 2 inner
1120.2.n.b.559.23 40 1.1 even 1 trivial
1120.2.n.b.559.24 40 8.3 odd 2 inner