Properties

Label 1120.2.n.b.559.14
Level $1120$
Weight $2$
Character 1120.559
Analytic conductor $8.943$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(559,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.n (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.14
Character \(\chi\) \(=\) 1120.559
Dual form 1120.2.n.b.559.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.19038 q^{3} +(-2.22369 - 0.234978i) q^{5} +(2.11797 - 1.58562i) q^{7} -1.58299 q^{9} +3.65078 q^{11} +5.56044i q^{13} +(2.64704 + 0.279713i) q^{15} -0.808468 q^{17} -4.54845i q^{19} +(-2.52120 + 1.88750i) q^{21} -1.75488 q^{23} +(4.88957 + 1.04503i) q^{25} +5.45551 q^{27} -8.36272i q^{29} -4.73282 q^{31} -4.34582 q^{33} +(-5.08229 + 3.02825i) q^{35} -6.15399 q^{37} -6.61905i q^{39} -7.65085i q^{41} +2.66483i q^{43} +(3.52008 + 0.371968i) q^{45} -4.79391i q^{47} +(1.97161 - 6.71660i) q^{49} +0.962386 q^{51} -2.98963 q^{53} +(-8.11818 - 0.857851i) q^{55} +5.41439i q^{57} -8.92626i q^{59} -4.08673 q^{61} +(-3.35273 + 2.51002i) q^{63} +(1.30658 - 12.3647i) q^{65} -11.7723i q^{67} +2.08897 q^{69} -8.17275i q^{71} +15.1783 q^{73} +(-5.82046 - 1.24399i) q^{75} +(7.73224 - 5.78875i) q^{77} -2.49307i q^{79} -1.74517 q^{81} +5.75885 q^{83} +(1.79778 + 0.189972i) q^{85} +9.95483i q^{87} +4.95764i q^{89} +(8.81676 + 11.7769i) q^{91} +5.63387 q^{93} +(-1.06878 + 10.1143i) q^{95} -11.7195 q^{97} -5.77914 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{9} + 16 q^{25} - 16 q^{35} + 8 q^{49} + 32 q^{51} - 24 q^{65} - 72 q^{81} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.19038 −0.687268 −0.343634 0.939104i \(-0.611658\pi\)
−0.343634 + 0.939104i \(0.611658\pi\)
\(4\) 0 0
\(5\) −2.22369 0.234978i −0.994463 0.105085i
\(6\) 0 0
\(7\) 2.11797 1.58562i 0.800518 0.599309i
\(8\) 0 0
\(9\) −1.58299 −0.527663
\(10\) 0 0
\(11\) 3.65078 1.10075 0.550375 0.834917i \(-0.314485\pi\)
0.550375 + 0.834917i \(0.314485\pi\)
\(12\) 0 0
\(13\) 5.56044i 1.54219i 0.636721 + 0.771095i \(0.280290\pi\)
−0.636721 + 0.771095i \(0.719710\pi\)
\(14\) 0 0
\(15\) 2.64704 + 0.279713i 0.683462 + 0.0722217i
\(16\) 0 0
\(17\) −0.808468 −0.196082 −0.0980411 0.995182i \(-0.531258\pi\)
−0.0980411 + 0.995182i \(0.531258\pi\)
\(18\) 0 0
\(19\) 4.54845i 1.04349i −0.853103 0.521743i \(-0.825282\pi\)
0.853103 0.521743i \(-0.174718\pi\)
\(20\) 0 0
\(21\) −2.52120 + 1.88750i −0.550170 + 0.411885i
\(22\) 0 0
\(23\) −1.75488 −0.365917 −0.182959 0.983121i \(-0.558567\pi\)
−0.182959 + 0.983121i \(0.558567\pi\)
\(24\) 0 0
\(25\) 4.88957 + 1.04503i 0.977914 + 0.209007i
\(26\) 0 0
\(27\) 5.45551 1.04991
\(28\) 0 0
\(29\) 8.36272i 1.55292i −0.630168 0.776459i \(-0.717014\pi\)
0.630168 0.776459i \(-0.282986\pi\)
\(30\) 0 0
\(31\) −4.73282 −0.850040 −0.425020 0.905184i \(-0.639733\pi\)
−0.425020 + 0.905184i \(0.639733\pi\)
\(32\) 0 0
\(33\) −4.34582 −0.756510
\(34\) 0 0
\(35\) −5.08229 + 3.02825i −0.859064 + 0.511868i
\(36\) 0 0
\(37\) −6.15399 −1.01171 −0.505855 0.862619i \(-0.668823\pi\)
−0.505855 + 0.862619i \(0.668823\pi\)
\(38\) 0 0
\(39\) 6.61905i 1.05990i
\(40\) 0 0
\(41\) 7.65085i 1.19486i −0.801920 0.597431i \(-0.796188\pi\)
0.801920 0.597431i \(-0.203812\pi\)
\(42\) 0 0
\(43\) 2.66483i 0.406382i 0.979139 + 0.203191i \(0.0651312\pi\)
−0.979139 + 0.203191i \(0.934869\pi\)
\(44\) 0 0
\(45\) 3.52008 + 0.371968i 0.524742 + 0.0554497i
\(46\) 0 0
\(47\) 4.79391i 0.699263i −0.936887 0.349632i \(-0.886307\pi\)
0.936887 0.349632i \(-0.113693\pi\)
\(48\) 0 0
\(49\) 1.97161 6.71660i 0.281658 0.959515i
\(50\) 0 0
\(51\) 0.962386 0.134761
\(52\) 0 0
\(53\) −2.98963 −0.410658 −0.205329 0.978693i \(-0.565826\pi\)
−0.205329 + 0.978693i \(0.565826\pi\)
\(54\) 0 0
\(55\) −8.11818 0.857851i −1.09466 0.115673i
\(56\) 0 0
\(57\) 5.41439i 0.717154i
\(58\) 0 0
\(59\) 8.92626i 1.16210i −0.813868 0.581050i \(-0.802642\pi\)
0.813868 0.581050i \(-0.197358\pi\)
\(60\) 0 0
\(61\) −4.08673 −0.523253 −0.261626 0.965169i \(-0.584259\pi\)
−0.261626 + 0.965169i \(0.584259\pi\)
\(62\) 0 0
\(63\) −3.35273 + 2.51002i −0.422404 + 0.316233i
\(64\) 0 0
\(65\) 1.30658 12.3647i 0.162061 1.53365i
\(66\) 0 0
\(67\) 11.7723i 1.43821i −0.694901 0.719105i \(-0.744552\pi\)
0.694901 0.719105i \(-0.255448\pi\)
\(68\) 0 0
\(69\) 2.08897 0.251483
\(70\) 0 0
\(71\) 8.17275i 0.969927i −0.874534 0.484963i \(-0.838833\pi\)
0.874534 0.484963i \(-0.161167\pi\)
\(72\) 0 0
\(73\) 15.1783 1.77648 0.888241 0.459378i \(-0.151928\pi\)
0.888241 + 0.459378i \(0.151928\pi\)
\(74\) 0 0
\(75\) −5.82046 1.24399i −0.672089 0.143644i
\(76\) 0 0
\(77\) 7.73224 5.78875i 0.881170 0.659689i
\(78\) 0 0
\(79\) 2.49307i 0.280492i −0.990117 0.140246i \(-0.955211\pi\)
0.990117 0.140246i \(-0.0447893\pi\)
\(80\) 0 0
\(81\) −1.74517 −0.193908
\(82\) 0 0
\(83\) 5.75885 0.632116 0.316058 0.948740i \(-0.397641\pi\)
0.316058 + 0.948740i \(0.397641\pi\)
\(84\) 0 0
\(85\) 1.79778 + 0.189972i 0.194997 + 0.0206054i
\(86\) 0 0
\(87\) 9.95483i 1.06727i
\(88\) 0 0
\(89\) 4.95764i 0.525509i 0.964863 + 0.262755i \(0.0846310\pi\)
−0.964863 + 0.262755i \(0.915369\pi\)
\(90\) 0 0
\(91\) 8.81676 + 11.7769i 0.924247 + 1.23455i
\(92\) 0 0
\(93\) 5.63387 0.584205
\(94\) 0 0
\(95\) −1.06878 + 10.1143i −0.109655 + 1.03771i
\(96\) 0 0
\(97\) −11.7195 −1.18993 −0.594967 0.803750i \(-0.702835\pi\)
−0.594967 + 0.803750i \(0.702835\pi\)
\(98\) 0 0
\(99\) −5.77914 −0.580826
\(100\) 0 0
\(101\) −7.10724 −0.707197 −0.353598 0.935397i \(-0.615042\pi\)
−0.353598 + 0.935397i \(0.615042\pi\)
\(102\) 0 0
\(103\) 5.06789i 0.499354i −0.968329 0.249677i \(-0.919676\pi\)
0.968329 0.249677i \(-0.0803244\pi\)
\(104\) 0 0
\(105\) 6.04987 3.60478i 0.590407 0.351790i
\(106\) 0 0
\(107\) 10.8670i 1.05056i −0.850931 0.525278i \(-0.823961\pi\)
0.850931 0.525278i \(-0.176039\pi\)
\(108\) 0 0
\(109\) 7.15158i 0.684997i 0.939518 + 0.342498i \(0.111273\pi\)
−0.939518 + 0.342498i \(0.888727\pi\)
\(110\) 0 0
\(111\) 7.32560 0.695315
\(112\) 0 0
\(113\) 0.0847428i 0.00797193i −0.999992 0.00398597i \(-0.998731\pi\)
0.999992 0.00398597i \(-0.00126878\pi\)
\(114\) 0 0
\(115\) 3.90230 + 0.412357i 0.363891 + 0.0384525i
\(116\) 0 0
\(117\) 8.80212i 0.813757i
\(118\) 0 0
\(119\) −1.71231 + 1.28192i −0.156967 + 0.117514i
\(120\) 0 0
\(121\) 2.32816 0.211651
\(122\) 0 0
\(123\) 9.10743i 0.821190i
\(124\) 0 0
\(125\) −10.6273 3.47277i −0.950536 0.310614i
\(126\) 0 0
\(127\) −5.93446 −0.526598 −0.263299 0.964714i \(-0.584811\pi\)
−0.263299 + 0.964714i \(0.584811\pi\)
\(128\) 0 0
\(129\) 3.17216i 0.279293i
\(130\) 0 0
\(131\) 17.2792i 1.50969i −0.655905 0.754844i \(-0.727713\pi\)
0.655905 0.754844i \(-0.272287\pi\)
\(132\) 0 0
\(133\) −7.21212 9.63349i −0.625370 0.835329i
\(134\) 0 0
\(135\) −12.1313 1.28192i −1.04410 0.110330i
\(136\) 0 0
\(137\) 6.59924i 0.563811i 0.959442 + 0.281906i \(0.0909665\pi\)
−0.959442 + 0.281906i \(0.909033\pi\)
\(138\) 0 0
\(139\) 6.37544i 0.540757i 0.962754 + 0.270379i \(0.0871489\pi\)
−0.962754 + 0.270379i \(0.912851\pi\)
\(140\) 0 0
\(141\) 5.70658i 0.480581i
\(142\) 0 0
\(143\) 20.2999i 1.69756i
\(144\) 0 0
\(145\) −1.96505 + 18.5961i −0.163189 + 1.54432i
\(146\) 0 0
\(147\) −2.34697 + 7.99533i −0.193575 + 0.659443i
\(148\) 0 0
\(149\) 17.0131i 1.39377i −0.717184 0.696883i \(-0.754569\pi\)
0.717184 0.696883i \(-0.245431\pi\)
\(150\) 0 0
\(151\) 14.7918i 1.20374i 0.798594 + 0.601870i \(0.205577\pi\)
−0.798594 + 0.601870i \(0.794423\pi\)
\(152\) 0 0
\(153\) 1.27980 0.103465
\(154\) 0 0
\(155\) 10.5243 + 1.11211i 0.845333 + 0.0893267i
\(156\) 0 0
\(157\) 16.6742i 1.33075i 0.746510 + 0.665374i \(0.231728\pi\)
−0.746510 + 0.665374i \(0.768272\pi\)
\(158\) 0 0
\(159\) 3.55881 0.282232
\(160\) 0 0
\(161\) −3.71678 + 2.78257i −0.292923 + 0.219297i
\(162\) 0 0
\(163\) 10.8670i 0.851172i 0.904918 + 0.425586i \(0.139932\pi\)
−0.904918 + 0.425586i \(0.860068\pi\)
\(164\) 0 0
\(165\) 9.66374 + 1.02117i 0.752321 + 0.0794981i
\(166\) 0 0
\(167\) 5.06789i 0.392165i 0.980587 + 0.196082i \(0.0628220\pi\)
−0.980587 + 0.196082i \(0.937178\pi\)
\(168\) 0 0
\(169\) −17.9185 −1.37835
\(170\) 0 0
\(171\) 7.20015i 0.550609i
\(172\) 0 0
\(173\) 3.71164i 0.282191i −0.989996 0.141095i \(-0.954938\pi\)
0.989996 0.141095i \(-0.0450624\pi\)
\(174\) 0 0
\(175\) 12.0130 5.53965i 0.908098 0.418759i
\(176\) 0 0
\(177\) 10.6257i 0.798674i
\(178\) 0 0
\(179\) −7.26949 −0.543347 −0.271673 0.962390i \(-0.587577\pi\)
−0.271673 + 0.962390i \(0.587577\pi\)
\(180\) 0 0
\(181\) 18.2341 1.35533 0.677666 0.735370i \(-0.262992\pi\)
0.677666 + 0.735370i \(0.262992\pi\)
\(182\) 0 0
\(183\) 4.86477 0.359614
\(184\) 0 0
\(185\) 13.6845 + 1.44605i 1.00611 + 0.106316i
\(186\) 0 0
\(187\) −2.95153 −0.215838
\(188\) 0 0
\(189\) 11.5546 8.65037i 0.840475 0.629222i
\(190\) 0 0
\(191\) 2.49307i 0.180392i 0.995924 + 0.0901960i \(0.0287494\pi\)
−0.995924 + 0.0901960i \(0.971251\pi\)
\(192\) 0 0
\(193\) 14.0190i 1.00911i −0.863380 0.504554i \(-0.831657\pi\)
0.863380 0.504554i \(-0.168343\pi\)
\(194\) 0 0
\(195\) −1.55533 + 14.7187i −0.111380 + 1.05403i
\(196\) 0 0
\(197\) 8.27025 0.589231 0.294615 0.955616i \(-0.404808\pi\)
0.294615 + 0.955616i \(0.404808\pi\)
\(198\) 0 0
\(199\) 27.1530 1.92483 0.962413 0.271592i \(-0.0875500\pi\)
0.962413 + 0.271592i \(0.0875500\pi\)
\(200\) 0 0
\(201\) 14.0135i 0.988435i
\(202\) 0 0
\(203\) −13.2601 17.7120i −0.930677 1.24314i
\(204\) 0 0
\(205\) −1.79778 + 17.0131i −0.125562 + 1.18825i
\(206\) 0 0
\(207\) 2.77795 0.193081
\(208\) 0 0
\(209\) 16.6054i 1.14862i
\(210\) 0 0
\(211\) −20.1183 −1.38500 −0.692501 0.721417i \(-0.743491\pi\)
−0.692501 + 0.721417i \(0.743491\pi\)
\(212\) 0 0
\(213\) 9.72869i 0.666599i
\(214\) 0 0
\(215\) 0.626175 5.92574i 0.0427048 0.404132i
\(216\) 0 0
\(217\) −10.0240 + 7.50446i −0.680472 + 0.509436i
\(218\) 0 0
\(219\) −18.0679 −1.22092
\(220\) 0 0
\(221\) 4.49544i 0.302396i
\(222\) 0 0
\(223\) 15.7322i 1.05350i −0.850019 0.526752i \(-0.823410\pi\)
0.850019 0.526752i \(-0.176590\pi\)
\(224\) 0 0
\(225\) −7.74014 1.65428i −0.516009 0.110285i
\(226\) 0 0
\(227\) 17.5252 1.16319 0.581595 0.813478i \(-0.302429\pi\)
0.581595 + 0.813478i \(0.302429\pi\)
\(228\) 0 0
\(229\) 16.5729 1.09517 0.547583 0.836751i \(-0.315548\pi\)
0.547583 + 0.836751i \(0.315548\pi\)
\(230\) 0 0
\(231\) −9.20432 + 6.89082i −0.605600 + 0.453383i
\(232\) 0 0
\(233\) 14.1037i 0.923964i 0.886889 + 0.461982i \(0.152862\pi\)
−0.886889 + 0.461982i \(0.847138\pi\)
\(234\) 0 0
\(235\) −1.12646 + 10.6602i −0.0734823 + 0.695392i
\(236\) 0 0
\(237\) 2.96770i 0.192773i
\(238\) 0 0
\(239\) 22.7217i 1.46975i −0.678205 0.734873i \(-0.737242\pi\)
0.678205 0.734873i \(-0.262758\pi\)
\(240\) 0 0
\(241\) 15.0216i 0.967629i 0.875171 + 0.483814i \(0.160749\pi\)
−0.875171 + 0.483814i \(0.839251\pi\)
\(242\) 0 0
\(243\) −14.2891 −0.916647
\(244\) 0 0
\(245\) −5.96249 + 14.4723i −0.380930 + 0.924604i
\(246\) 0 0
\(247\) 25.2914 1.60925
\(248\) 0 0
\(249\) −6.85524 −0.434433
\(250\) 0 0
\(251\) 15.4522i 0.975332i 0.873030 + 0.487666i \(0.162152\pi\)
−0.873030 + 0.487666i \(0.837848\pi\)
\(252\) 0 0
\(253\) −6.40666 −0.402783
\(254\) 0 0
\(255\) −2.14005 0.226139i −0.134015 0.0141614i
\(256\) 0 0
\(257\) −19.9954 −1.24728 −0.623640 0.781712i \(-0.714347\pi\)
−0.623640 + 0.781712i \(0.714347\pi\)
\(258\) 0 0
\(259\) −13.0340 + 9.75789i −0.809891 + 0.606326i
\(260\) 0 0
\(261\) 13.2381i 0.819418i
\(262\) 0 0
\(263\) −3.10990 −0.191764 −0.0958822 0.995393i \(-0.530567\pi\)
−0.0958822 + 0.995393i \(0.530567\pi\)
\(264\) 0 0
\(265\) 6.64801 + 0.702498i 0.408384 + 0.0431541i
\(266\) 0 0
\(267\) 5.90149i 0.361165i
\(268\) 0 0
\(269\) 11.2181 0.683980 0.341990 0.939704i \(-0.388899\pi\)
0.341990 + 0.939704i \(0.388899\pi\)
\(270\) 0 0
\(271\) −6.60431 −0.401183 −0.200592 0.979675i \(-0.564286\pi\)
−0.200592 + 0.979675i \(0.564286\pi\)
\(272\) 0 0
\(273\) −10.4953 14.0190i −0.635205 0.848466i
\(274\) 0 0
\(275\) 17.8507 + 3.81519i 1.07644 + 0.230064i
\(276\) 0 0
\(277\) −16.0704 −0.965577 −0.482789 0.875737i \(-0.660376\pi\)
−0.482789 + 0.875737i \(0.660376\pi\)
\(278\) 0 0
\(279\) 7.49201 0.448535
\(280\) 0 0
\(281\) 21.1540 1.26194 0.630972 0.775806i \(-0.282656\pi\)
0.630972 + 0.775806i \(0.282656\pi\)
\(282\) 0 0
\(283\) 24.7231 1.46964 0.734819 0.678263i \(-0.237267\pi\)
0.734819 + 0.678263i \(0.237267\pi\)
\(284\) 0 0
\(285\) 1.27226 12.0399i 0.0753623 0.713183i
\(286\) 0 0
\(287\) −12.1313 16.2043i −0.716091 0.956508i
\(288\) 0 0
\(289\) −16.3464 −0.961552
\(290\) 0 0
\(291\) 13.9507 0.817803
\(292\) 0 0
\(293\) 11.4011i 0.666060i 0.942916 + 0.333030i \(0.108071\pi\)
−0.942916 + 0.333030i \(0.891929\pi\)
\(294\) 0 0
\(295\) −2.09747 + 19.8492i −0.122120 + 1.15567i
\(296\) 0 0
\(297\) 19.9168 1.15569
\(298\) 0 0
\(299\) 9.75789i 0.564314i
\(300\) 0 0
\(301\) 4.22540 + 5.64402i 0.243548 + 0.325316i
\(302\) 0 0
\(303\) 8.46033 0.486034
\(304\) 0 0
\(305\) 9.08762 + 0.960292i 0.520355 + 0.0549861i
\(306\) 0 0
\(307\) 0.426554 0.0243447 0.0121723 0.999926i \(-0.496125\pi\)
0.0121723 + 0.999926i \(0.496125\pi\)
\(308\) 0 0
\(309\) 6.03272i 0.343190i
\(310\) 0 0
\(311\) −0.586913 −0.0332808 −0.0166404 0.999862i \(-0.505297\pi\)
−0.0166404 + 0.999862i \(0.505297\pi\)
\(312\) 0 0
\(313\) 6.45704 0.364973 0.182487 0.983208i \(-0.441585\pi\)
0.182487 + 0.983208i \(0.441585\pi\)
\(314\) 0 0
\(315\) 8.04522 4.79369i 0.453297 0.270094i
\(316\) 0 0
\(317\) −10.3086 −0.578986 −0.289493 0.957180i \(-0.593487\pi\)
−0.289493 + 0.957180i \(0.593487\pi\)
\(318\) 0 0
\(319\) 30.5304i 1.70937i
\(320\) 0 0
\(321\) 12.9359i 0.722013i
\(322\) 0 0
\(323\) 3.67728i 0.204609i
\(324\) 0 0
\(325\) −5.81085 + 27.1882i −0.322328 + 1.50813i
\(326\) 0 0
\(327\) 8.51311i 0.470776i
\(328\) 0 0
\(329\) −7.60132 10.1534i −0.419074 0.559773i
\(330\) 0 0
\(331\) −8.02828 −0.441274 −0.220637 0.975356i \(-0.570814\pi\)
−0.220637 + 0.975356i \(0.570814\pi\)
\(332\) 0 0
\(333\) 9.74170 0.533842
\(334\) 0 0
\(335\) −2.76622 + 26.1778i −0.151135 + 1.43025i
\(336\) 0 0
\(337\) 33.3339i 1.81582i −0.419170 0.907908i \(-0.637679\pi\)
0.419170 0.907908i \(-0.362321\pi\)
\(338\) 0 0
\(339\) 0.100876i 0.00547885i
\(340\) 0 0
\(341\) −17.2785 −0.935681
\(342\) 0 0
\(343\) −6.47418 17.3518i −0.349573 0.936909i
\(344\) 0 0
\(345\) −4.64523 0.490863i −0.250091 0.0264272i
\(346\) 0 0
\(347\) 16.7685i 0.900182i 0.892983 + 0.450091i \(0.148608\pi\)
−0.892983 + 0.450091i \(0.851392\pi\)
\(348\) 0 0
\(349\) −0.234376 −0.0125458 −0.00627292 0.999980i \(-0.501997\pi\)
−0.00627292 + 0.999980i \(0.501997\pi\)
\(350\) 0 0
\(351\) 30.3350i 1.61916i
\(352\) 0 0
\(353\) −14.2235 −0.757039 −0.378519 0.925593i \(-0.623567\pi\)
−0.378519 + 0.925593i \(0.623567\pi\)
\(354\) 0 0
\(355\) −1.92041 + 18.1736i −0.101925 + 0.964556i
\(356\) 0 0
\(357\) 2.03831 1.52598i 0.107879 0.0807634i
\(358\) 0 0
\(359\) 14.2398i 0.751549i 0.926711 + 0.375774i \(0.122623\pi\)
−0.926711 + 0.375774i \(0.877377\pi\)
\(360\) 0 0
\(361\) −1.68839 −0.0888626
\(362\) 0 0
\(363\) −2.77140 −0.145461
\(364\) 0 0
\(365\) −33.7517 3.56656i −1.76665 0.186682i
\(366\) 0 0
\(367\) 5.09891i 0.266161i 0.991105 + 0.133080i \(0.0424868\pi\)
−0.991105 + 0.133080i \(0.957513\pi\)
\(368\) 0 0
\(369\) 12.1112i 0.630485i
\(370\) 0 0
\(371\) −6.33196 + 4.74043i −0.328739 + 0.246111i
\(372\) 0 0
\(373\) 25.1282 1.30109 0.650545 0.759468i \(-0.274541\pi\)
0.650545 + 0.759468i \(0.274541\pi\)
\(374\) 0 0
\(375\) 12.6506 + 4.13393i 0.653273 + 0.213475i
\(376\) 0 0
\(377\) 46.5004 2.39489
\(378\) 0 0
\(379\) 5.77914 0.296855 0.148427 0.988923i \(-0.452579\pi\)
0.148427 + 0.988923i \(0.452579\pi\)
\(380\) 0 0
\(381\) 7.06428 0.361914
\(382\) 0 0
\(383\) 24.8199i 1.26824i −0.773237 0.634118i \(-0.781364\pi\)
0.773237 0.634118i \(-0.218636\pi\)
\(384\) 0 0
\(385\) −18.5543 + 11.0555i −0.945615 + 0.563438i
\(386\) 0 0
\(387\) 4.21839i 0.214433i
\(388\) 0 0
\(389\) 7.34694i 0.372505i 0.982502 + 0.186252i \(0.0596342\pi\)
−0.982502 + 0.186252i \(0.940366\pi\)
\(390\) 0 0
\(391\) 1.41876 0.0717499
\(392\) 0 0
\(393\) 20.5688i 1.03756i
\(394\) 0 0
\(395\) −0.585816 + 5.54380i −0.0294756 + 0.278939i
\(396\) 0 0
\(397\) 10.0197i 0.502872i −0.967874 0.251436i \(-0.919097\pi\)
0.967874 0.251436i \(-0.0809029\pi\)
\(398\) 0 0
\(399\) 8.58518 + 11.4675i 0.429796 + 0.574095i
\(400\) 0 0
\(401\) 11.7525 0.586893 0.293447 0.955975i \(-0.405198\pi\)
0.293447 + 0.955975i \(0.405198\pi\)
\(402\) 0 0
\(403\) 26.3166i 1.31092i
\(404\) 0 0
\(405\) 3.88072 + 0.410077i 0.192834 + 0.0203769i
\(406\) 0 0
\(407\) −22.4668 −1.11364
\(408\) 0 0
\(409\) 4.67758i 0.231292i 0.993291 + 0.115646i \(0.0368938\pi\)
−0.993291 + 0.115646i \(0.963106\pi\)
\(410\) 0 0
\(411\) 7.85562i 0.387489i
\(412\) 0 0
\(413\) −14.1537 18.9056i −0.696457 0.930282i
\(414\) 0 0
\(415\) −12.8059 1.35320i −0.628616 0.0664261i
\(416\) 0 0
\(417\) 7.58921i 0.371645i
\(418\) 0 0
\(419\) 21.7400i 1.06207i −0.847351 0.531034i \(-0.821804\pi\)
0.847351 0.531034i \(-0.178196\pi\)
\(420\) 0 0
\(421\) 9.76923i 0.476123i −0.971250 0.238062i \(-0.923488\pi\)
0.971250 0.238062i \(-0.0765120\pi\)
\(422\) 0 0
\(423\) 7.58871i 0.368976i
\(424\) 0 0
\(425\) −3.95306 0.844877i −0.191752 0.0409826i
\(426\) 0 0
\(427\) −8.65559 + 6.48001i −0.418873 + 0.313590i
\(428\) 0 0
\(429\) 24.1647i 1.16668i
\(430\) 0 0
\(431\) 2.12901i 0.102551i 0.998685 + 0.0512753i \(0.0163286\pi\)
−0.998685 + 0.0512753i \(0.983671\pi\)
\(432\) 0 0
\(433\) −1.12265 −0.0539513 −0.0269756 0.999636i \(-0.508588\pi\)
−0.0269756 + 0.999636i \(0.508588\pi\)
\(434\) 0 0
\(435\) 2.33917 22.1364i 0.112154 1.06136i
\(436\) 0 0
\(437\) 7.98197i 0.381829i
\(438\) 0 0
\(439\) 17.9973 0.858964 0.429482 0.903075i \(-0.358696\pi\)
0.429482 + 0.903075i \(0.358696\pi\)
\(440\) 0 0
\(441\) −3.12104 + 10.6323i −0.148621 + 0.506301i
\(442\) 0 0
\(443\) 10.1199i 0.480810i 0.970673 + 0.240405i \(0.0772803\pi\)
−0.970673 + 0.240405i \(0.922720\pi\)
\(444\) 0 0
\(445\) 1.16494 11.0243i 0.0552233 0.522600i
\(446\) 0 0
\(447\) 20.2521i 0.957891i
\(448\) 0 0
\(449\) 0.750627 0.0354243 0.0177121 0.999843i \(-0.494362\pi\)
0.0177121 + 0.999843i \(0.494362\pi\)
\(450\) 0 0
\(451\) 27.9315i 1.31524i
\(452\) 0 0
\(453\) 17.6079i 0.827291i
\(454\) 0 0
\(455\) −16.8384 28.2598i −0.789397 1.32484i
\(456\) 0 0
\(457\) 20.4998i 0.958941i 0.877558 + 0.479471i \(0.159171\pi\)
−0.877558 + 0.479471i \(0.840829\pi\)
\(458\) 0 0
\(459\) −4.41060 −0.205869
\(460\) 0 0
\(461\) −14.9599 −0.696752 −0.348376 0.937355i \(-0.613267\pi\)
−0.348376 + 0.937355i \(0.613267\pi\)
\(462\) 0 0
\(463\) 23.1072 1.07388 0.536941 0.843619i \(-0.319580\pi\)
0.536941 + 0.843619i \(0.319580\pi\)
\(464\) 0 0
\(465\) −12.5280 1.32383i −0.580970 0.0613913i
\(466\) 0 0
\(467\) −22.3760 −1.03544 −0.517720 0.855550i \(-0.673219\pi\)
−0.517720 + 0.855550i \(0.673219\pi\)
\(468\) 0 0
\(469\) −18.6663 24.9333i −0.861932 1.15131i
\(470\) 0 0
\(471\) 19.8487i 0.914580i
\(472\) 0 0
\(473\) 9.72868i 0.447325i
\(474\) 0 0
\(475\) 4.75329 22.2400i 0.218096 1.02044i
\(476\) 0 0
\(477\) 4.73256 0.216689
\(478\) 0 0
\(479\) −32.6071 −1.48986 −0.744928 0.667145i \(-0.767516\pi\)
−0.744928 + 0.667145i \(0.767516\pi\)
\(480\) 0 0
\(481\) 34.2189i 1.56025i
\(482\) 0 0
\(483\) 4.42439 3.31232i 0.201317 0.150716i
\(484\) 0 0
\(485\) 26.0605 + 2.75382i 1.18335 + 0.125045i
\(486\) 0 0
\(487\) −3.90400 −0.176907 −0.0884536 0.996080i \(-0.528192\pi\)
−0.0884536 + 0.996080i \(0.528192\pi\)
\(488\) 0 0
\(489\) 12.9359i 0.584983i
\(490\) 0 0
\(491\) 20.5527 0.927532 0.463766 0.885958i \(-0.346498\pi\)
0.463766 + 0.885958i \(0.346498\pi\)
\(492\) 0 0
\(493\) 6.76099i 0.304500i
\(494\) 0 0
\(495\) 12.8510 + 1.35797i 0.577610 + 0.0610362i
\(496\) 0 0
\(497\) −12.9589 17.3096i −0.581285 0.776444i
\(498\) 0 0
\(499\) 25.8654 1.15789 0.578947 0.815365i \(-0.303464\pi\)
0.578947 + 0.815365i \(0.303464\pi\)
\(500\) 0 0
\(501\) 6.03272i 0.269522i
\(502\) 0 0
\(503\) 31.0150i 1.38289i 0.722428 + 0.691446i \(0.243026\pi\)
−0.722428 + 0.691446i \(0.756974\pi\)
\(504\) 0 0
\(505\) 15.8043 + 1.67004i 0.703281 + 0.0743160i
\(506\) 0 0
\(507\) 21.3299 0.947293
\(508\) 0 0
\(509\) −14.2066 −0.629695 −0.314847 0.949142i \(-0.601953\pi\)
−0.314847 + 0.949142i \(0.601953\pi\)
\(510\) 0 0
\(511\) 32.1471 24.0670i 1.42211 1.06466i
\(512\) 0 0
\(513\) 24.8141i 1.09557i
\(514\) 0 0
\(515\) −1.19084 + 11.2694i −0.0524747 + 0.496589i
\(516\) 0 0
\(517\) 17.5015i 0.769714i
\(518\) 0 0
\(519\) 4.41827i 0.193940i
\(520\) 0 0
\(521\) 37.9559i 1.66288i −0.555617 0.831438i \(-0.687518\pi\)
0.555617 0.831438i \(-0.312482\pi\)
\(522\) 0 0
\(523\) −20.8846 −0.913219 −0.456609 0.889667i \(-0.650936\pi\)
−0.456609 + 0.889667i \(0.650936\pi\)
\(524\) 0 0
\(525\) −14.3001 + 6.59431i −0.624106 + 0.287799i
\(526\) 0 0
\(527\) 3.82633 0.166678
\(528\) 0 0
\(529\) −19.9204 −0.866105
\(530\) 0 0
\(531\) 14.1302i 0.613198i
\(532\) 0 0
\(533\) 42.5421 1.84270
\(534\) 0 0
\(535\) −2.55351 + 24.1649i −0.110398 + 1.04474i
\(536\) 0 0
\(537\) 8.65347 0.373425
\(538\) 0 0
\(539\) 7.19790 24.5208i 0.310036 1.05619i
\(540\) 0 0
\(541\) 1.19268i 0.0512773i −0.999671 0.0256387i \(-0.991838\pi\)
0.999671 0.0256387i \(-0.00816194\pi\)
\(542\) 0 0
\(543\) −21.7056 −0.931476
\(544\) 0 0
\(545\) 1.68046 15.9029i 0.0719831 0.681204i
\(546\) 0 0
\(547\) 15.5500i 0.664872i 0.943126 + 0.332436i \(0.107871\pi\)
−0.943126 + 0.332436i \(0.892129\pi\)
\(548\) 0 0
\(549\) 6.46926 0.276101
\(550\) 0 0
\(551\) −38.0374 −1.62045
\(552\) 0 0
\(553\) −3.95306 5.28025i −0.168101 0.224539i
\(554\) 0 0
\(555\) −16.2898 1.72135i −0.691465 0.0730674i
\(556\) 0 0
\(557\) 31.9739 1.35478 0.677390 0.735624i \(-0.263111\pi\)
0.677390 + 0.735624i \(0.263111\pi\)
\(558\) 0 0
\(559\) −14.8176 −0.626718
\(560\) 0 0
\(561\) 3.51345 0.148338
\(562\) 0 0
\(563\) 6.48451 0.273290 0.136645 0.990620i \(-0.456368\pi\)
0.136645 + 0.990620i \(0.456368\pi\)
\(564\) 0 0
\(565\) −0.0199127 + 0.188441i −0.000837733 + 0.00792779i
\(566\) 0 0
\(567\) −3.69622 + 2.76718i −0.155227 + 0.116211i
\(568\) 0 0
\(569\) 36.4610 1.52853 0.764263 0.644905i \(-0.223103\pi\)
0.764263 + 0.644905i \(0.223103\pi\)
\(570\) 0 0
\(571\) −24.9527 −1.04424 −0.522119 0.852872i \(-0.674858\pi\)
−0.522119 + 0.852872i \(0.674858\pi\)
\(572\) 0 0
\(573\) 2.96770i 0.123978i
\(574\) 0 0
\(575\) −8.58060 1.83391i −0.357836 0.0764792i
\(576\) 0 0
\(577\) 21.7435 0.905192 0.452596 0.891716i \(-0.350498\pi\)
0.452596 + 0.891716i \(0.350498\pi\)
\(578\) 0 0
\(579\) 16.6879i 0.693526i
\(580\) 0 0
\(581\) 12.1971 9.13136i 0.506020 0.378833i
\(582\) 0 0
\(583\) −10.9145 −0.452032
\(584\) 0 0
\(585\) −2.06830 + 19.5732i −0.0855139 + 0.809251i
\(586\) 0 0
\(587\) −24.7885 −1.02313 −0.511565 0.859245i \(-0.670934\pi\)
−0.511565 + 0.859245i \(0.670934\pi\)
\(588\) 0 0
\(589\) 21.5270i 0.887004i
\(590\) 0 0
\(591\) −9.84476 −0.404959
\(592\) 0 0
\(593\) −41.5751 −1.70728 −0.853642 0.520860i \(-0.825611\pi\)
−0.853642 + 0.520860i \(0.825611\pi\)
\(594\) 0 0
\(595\) 4.10887 2.44824i 0.168447 0.100368i
\(596\) 0 0
\(597\) −32.3224 −1.32287
\(598\) 0 0
\(599\) 38.2863i 1.56434i −0.623068 0.782168i \(-0.714114\pi\)
0.623068 0.782168i \(-0.285886\pi\)
\(600\) 0 0
\(601\) 22.8512i 0.932121i 0.884753 + 0.466060i \(0.154327\pi\)
−0.884753 + 0.466060i \(0.845673\pi\)
\(602\) 0 0
\(603\) 18.6354i 0.758891i
\(604\) 0 0
\(605\) −5.17710 0.547067i −0.210479 0.0222414i
\(606\) 0 0
\(607\) 3.04718i 0.123681i 0.998086 + 0.0618407i \(0.0196971\pi\)
−0.998086 + 0.0618407i \(0.980303\pi\)
\(608\) 0 0
\(609\) 15.7846 + 21.0841i 0.639624 + 0.854369i
\(610\) 0 0
\(611\) 26.6562 1.07840
\(612\) 0 0
\(613\) −36.3023 −1.46624 −0.733118 0.680101i \(-0.761936\pi\)
−0.733118 + 0.680101i \(0.761936\pi\)
\(614\) 0 0
\(615\) 2.14005 20.2521i 0.0862950 0.816643i
\(616\) 0 0
\(617\) 15.0501i 0.605894i −0.953007 0.302947i \(-0.902029\pi\)
0.953007 0.302947i \(-0.0979705\pi\)
\(618\) 0 0
\(619\) 1.73303i 0.0696563i −0.999393 0.0348281i \(-0.988912\pi\)
0.999393 0.0348281i \(-0.0110884\pi\)
\(620\) 0 0
\(621\) −9.57375 −0.384181
\(622\) 0 0
\(623\) 7.86095 + 10.5002i 0.314942 + 0.420680i
\(624\) 0 0
\(625\) 22.8158 + 10.2195i 0.912632 + 0.408782i
\(626\) 0 0
\(627\) 19.7667i 0.789407i
\(628\) 0 0
\(629\) 4.97530 0.198378
\(630\) 0 0
\(631\) 19.5984i 0.780202i −0.920772 0.390101i \(-0.872440\pi\)
0.920772 0.390101i \(-0.127560\pi\)
\(632\) 0 0
\(633\) 23.9485 0.951866
\(634\) 0 0
\(635\) 13.1964 + 1.39447i 0.523682 + 0.0553377i
\(636\) 0 0
\(637\) 37.3473 + 10.9630i 1.47975 + 0.434371i
\(638\) 0 0
\(639\) 12.9374i 0.511795i
\(640\) 0 0
\(641\) 5.76448 0.227683 0.113842 0.993499i \(-0.463684\pi\)
0.113842 + 0.993499i \(0.463684\pi\)
\(642\) 0 0
\(643\) −12.8313 −0.506017 −0.253009 0.967464i \(-0.581420\pi\)
−0.253009 + 0.967464i \(0.581420\pi\)
\(644\) 0 0
\(645\) −0.745388 + 7.05389i −0.0293496 + 0.277747i
\(646\) 0 0
\(647\) 1.42452i 0.0560037i 0.999608 + 0.0280018i \(0.00891443\pi\)
−0.999608 + 0.0280018i \(0.991086\pi\)
\(648\) 0 0
\(649\) 32.5878i 1.27918i
\(650\) 0 0
\(651\) 11.9324 8.93318i 0.467666 0.350119i
\(652\) 0 0
\(653\) −29.1628 −1.14123 −0.570615 0.821218i \(-0.693295\pi\)
−0.570615 + 0.821218i \(0.693295\pi\)
\(654\) 0 0
\(655\) −4.06022 + 38.4234i −0.158646 + 1.50133i
\(656\) 0 0
\(657\) −24.0270 −0.937384
\(658\) 0 0
\(659\) 7.06968 0.275396 0.137698 0.990474i \(-0.456030\pi\)
0.137698 + 0.990474i \(0.456030\pi\)
\(660\) 0 0
\(661\) 3.04463 0.118423 0.0592113 0.998245i \(-0.481141\pi\)
0.0592113 + 0.998245i \(0.481141\pi\)
\(662\) 0 0
\(663\) 5.35129i 0.207827i
\(664\) 0 0
\(665\) 13.7738 + 23.1166i 0.534127 + 0.896421i
\(666\) 0 0
\(667\) 14.6755i 0.568239i
\(668\) 0 0
\(669\) 18.7273i 0.724038i
\(670\) 0 0
\(671\) −14.9197 −0.575970
\(672\) 0 0
\(673\) 45.1287i 1.73958i 0.493420 + 0.869791i \(0.335747\pi\)
−0.493420 + 0.869791i \(0.664253\pi\)
\(674\) 0 0
\(675\) 26.6751 + 5.70120i 1.02673 + 0.219439i
\(676\) 0 0
\(677\) 3.41915i 0.131408i −0.997839 0.0657042i \(-0.979071\pi\)
0.997839 0.0657042i \(-0.0209294\pi\)
\(678\) 0 0
\(679\) −24.8215 + 18.5827i −0.952563 + 0.713138i
\(680\) 0 0
\(681\) −20.8617 −0.799423
\(682\) 0 0
\(683\) 52.1925i 1.99709i −0.0539068 0.998546i \(-0.517167\pi\)
0.0539068 0.998546i \(-0.482833\pi\)
\(684\) 0 0
\(685\) 1.55068 14.6747i 0.0592483 0.560690i
\(686\) 0 0
\(687\) −19.7281 −0.752673
\(688\) 0 0
\(689\) 16.6237i 0.633312i
\(690\) 0 0
\(691\) 22.1744i 0.843554i 0.906700 + 0.421777i \(0.138594\pi\)
−0.906700 + 0.421777i \(0.861406\pi\)
\(692\) 0 0
\(693\) −12.2401 + 9.16353i −0.464961 + 0.348094i
\(694\) 0 0
\(695\) 1.49809 14.1770i 0.0568256 0.537763i
\(696\) 0 0
\(697\) 6.18546i 0.234291i
\(698\) 0 0
\(699\) 16.7888i 0.635011i
\(700\) 0 0
\(701\) 17.3192i 0.654138i 0.945001 + 0.327069i \(0.106061\pi\)
−0.945001 + 0.327069i \(0.893939\pi\)
\(702\) 0 0
\(703\) 27.9911i 1.05570i
\(704\) 0 0
\(705\) 1.34092 12.6897i 0.0505020 0.477920i
\(706\) 0 0
\(707\) −15.0529 + 11.2694i −0.566124 + 0.423829i
\(708\) 0 0
\(709\) 3.57195i 0.134147i −0.997748 0.0670737i \(-0.978634\pi\)
0.997748 0.0670737i \(-0.0213663\pi\)
\(710\) 0 0
\(711\) 3.94650i 0.148005i
\(712\) 0 0
\(713\) 8.30552 0.311044
\(714\) 0 0
\(715\) 4.77003 45.1407i 0.178389 1.68817i
\(716\) 0 0
\(717\) 27.0475i 1.01011i
\(718\) 0 0
\(719\) −1.20606 −0.0449783 −0.0224891 0.999747i \(-0.507159\pi\)
−0.0224891 + 0.999747i \(0.507159\pi\)
\(720\) 0 0
\(721\) −8.03575 10.7336i −0.299267 0.399742i
\(722\) 0 0
\(723\) 17.8815i 0.665020i
\(724\) 0 0
\(725\) 8.73933 40.8901i 0.324571 1.51862i
\(726\) 0 0
\(727\) 28.9323i 1.07304i −0.843888 0.536520i \(-0.819739\pi\)
0.843888 0.536520i \(-0.180261\pi\)
\(728\) 0 0
\(729\) 22.2450 0.823890
\(730\) 0 0
\(731\) 2.15443i 0.0796843i
\(732\) 0 0
\(733\) 11.5527i 0.426710i −0.976975 0.213355i \(-0.931561\pi\)
0.976975 0.213355i \(-0.0684391\pi\)
\(734\) 0 0
\(735\) 7.09765 17.2276i 0.261801 0.635450i
\(736\) 0 0
\(737\) 42.9779i 1.58311i
\(738\) 0 0
\(739\) 11.3868 0.418869 0.209434 0.977823i \(-0.432838\pi\)
0.209434 + 0.977823i \(0.432838\pi\)
\(740\) 0 0
\(741\) −30.1064 −1.10599
\(742\) 0 0
\(743\) 48.8376 1.79168 0.895840 0.444377i \(-0.146575\pi\)
0.895840 + 0.444377i \(0.146575\pi\)
\(744\) 0 0
\(745\) −3.99770 + 37.8318i −0.146464 + 1.38605i
\(746\) 0 0
\(747\) −9.11621 −0.333545
\(748\) 0 0
\(749\) −17.2310 23.0161i −0.629607 0.840989i
\(750\) 0 0
\(751\) 0.434842i 0.0158676i 0.999969 + 0.00793381i \(0.00252544\pi\)
−0.999969 + 0.00793381i \(0.997475\pi\)
\(752\) 0 0
\(753\) 18.3940i 0.670314i
\(754\) 0 0
\(755\) 3.47575 32.8923i 0.126495 1.19707i
\(756\) 0 0
\(757\) −13.5346 −0.491923 −0.245962 0.969280i \(-0.579104\pi\)
−0.245962 + 0.969280i \(0.579104\pi\)
\(758\) 0 0
\(759\) 7.62638 0.276820
\(760\) 0 0
\(761\) 28.4347i 1.03076i −0.856963 0.515378i \(-0.827651\pi\)
0.856963 0.515378i \(-0.172349\pi\)
\(762\) 0 0
\(763\) 11.3397 + 15.1468i 0.410524 + 0.548352i
\(764\) 0 0
\(765\) −2.84587 0.300724i −0.102893 0.0108727i
\(766\) 0 0
\(767\) 49.6339 1.79218
\(768\) 0 0
\(769\) 37.6894i 1.35912i 0.733622 + 0.679558i \(0.237828\pi\)
−0.733622 + 0.679558i \(0.762172\pi\)
\(770\) 0 0
\(771\) 23.8022 0.857215
\(772\) 0 0
\(773\) 8.24274i 0.296471i 0.988952 + 0.148235i \(0.0473593\pi\)
−0.988952 + 0.148235i \(0.952641\pi\)
\(774\) 0 0
\(775\) −23.1415 4.94596i −0.831266 0.177664i
\(776\) 0 0
\(777\) 15.5154 11.6156i 0.556612 0.416708i
\(778\) 0 0
\(779\) −34.7995 −1.24682
\(780\) 0 0
\(781\) 29.8369i 1.06765i
\(782\) 0 0
\(783\) 45.6229i 1.63043i
\(784\) 0 0
\(785\) 3.91808 37.0783i 0.139842 1.32338i
\(786\) 0 0
\(787\) −22.9785 −0.819095 −0.409547 0.912289i \(-0.634313\pi\)
−0.409547 + 0.912289i \(0.634313\pi\)
\(788\) 0 0
\(789\) 3.70197 0.131793
\(790\) 0 0
\(791\) −0.134370 0.179483i −0.00477765 0.00638167i
\(792\) 0 0
\(793\) 22.7240i 0.806954i
\(794\) 0 0
\(795\) −7.91367 0.836241i −0.280669 0.0296584i
\(796\) 0 0
\(797\) 33.7838i 1.19668i 0.801241 + 0.598341i \(0.204173\pi\)
−0.801241 + 0.598341i \(0.795827\pi\)
\(798\) 0 0
\(799\) 3.87572i 0.137113i
\(800\) 0 0
\(801\) 7.84790i 0.277292i
\(802\) 0 0
\(803\) 55.4124 1.95546
\(804\) 0 0
\(805\) 8.91880 5.31421i 0.314346 0.187301i
\(806\) 0 0
\(807\) −13.3538 −0.470077
\(808\) 0 0
\(809\) 20.4803 0.720049 0.360024 0.932943i \(-0.382768\pi\)
0.360024 + 0.932943i \(0.382768\pi\)
\(810\) 0 0
\(811\) 12.3156i 0.432460i −0.976342 0.216230i \(-0.930624\pi\)
0.976342 0.216230i \(-0.0693762\pi\)
\(812\) 0 0
\(813\) 7.86166 0.275720
\(814\) 0 0
\(815\) 2.55351 24.1649i 0.0894457 0.846459i
\(816\) 0 0
\(817\) 12.1208 0.424054
\(818\) 0 0
\(819\) −13.9568 18.6427i −0.487691 0.651427i
\(820\) 0 0
\(821\) 26.8208i 0.936053i 0.883715 + 0.468026i \(0.155035\pi\)
−0.883715 + 0.468026i \(0.844965\pi\)
\(822\) 0 0
\(823\) −26.3764 −0.919425 −0.459712 0.888068i \(-0.652047\pi\)
−0.459712 + 0.888068i \(0.652047\pi\)
\(824\) 0 0
\(825\) −21.2492 4.54153i −0.739802 0.158116i
\(826\) 0 0
\(827\) 13.0913i 0.455228i 0.973751 + 0.227614i \(0.0730924\pi\)
−0.973751 + 0.227614i \(0.926908\pi\)
\(828\) 0 0
\(829\) −13.7348 −0.477030 −0.238515 0.971139i \(-0.576661\pi\)
−0.238515 + 0.971139i \(0.576661\pi\)
\(830\) 0 0
\(831\) 19.1299 0.663610
\(832\) 0 0
\(833\) −1.59398 + 5.43016i −0.0552282 + 0.188144i
\(834\) 0 0
\(835\) 1.19084 11.2694i 0.0412108 0.389994i
\(836\) 0 0
\(837\) −25.8200 −0.892468
\(838\) 0 0
\(839\) 25.7342 0.888445 0.444222 0.895917i \(-0.353480\pi\)
0.444222 + 0.895917i \(0.353480\pi\)
\(840\) 0 0
\(841\) −40.9351 −1.41155
\(842\) 0 0
\(843\) −25.1814 −0.867293
\(844\) 0 0
\(845\) 39.8452 + 4.21045i 1.37072 + 0.144844i
\(846\) 0 0
\(847\) 4.93098 3.69158i 0.169431 0.126844i
\(848\) 0 0
\(849\) −29.4300 −1.01003
\(850\) 0 0
\(851\) 10.7995 0.370202
\(852\) 0 0
\(853\) 8.40578i 0.287808i 0.989592 + 0.143904i \(0.0459657\pi\)
−0.989592 + 0.143904i \(0.954034\pi\)
\(854\) 0 0
\(855\) 1.69188 16.0109i 0.0578609 0.547561i
\(856\) 0 0
\(857\) −25.2022 −0.860892 −0.430446 0.902616i \(-0.641644\pi\)
−0.430446 + 0.902616i \(0.641644\pi\)
\(858\) 0 0
\(859\) 44.9663i 1.53423i 0.641510 + 0.767114i \(0.278308\pi\)
−0.641510 + 0.767114i \(0.721692\pi\)
\(860\) 0 0
\(861\) 14.4409 + 19.2893i 0.492146 + 0.657377i
\(862\) 0 0
\(863\) −21.2327 −0.722768 −0.361384 0.932417i \(-0.617696\pi\)
−0.361384 + 0.932417i \(0.617696\pi\)
\(864\) 0 0
\(865\) −0.872153 + 8.25352i −0.0296541 + 0.280628i
\(866\) 0 0
\(867\) 19.4584 0.660843
\(868\) 0 0
\(869\) 9.10163i 0.308752i
\(870\) 0 0
\(871\) 65.4590 2.21799
\(872\) 0 0
\(873\) 18.5518 0.627884
\(874\) 0 0
\(875\) −28.0149 + 9.49567i −0.947075 + 0.321012i
\(876\) 0 0
\(877\) 23.4510 0.791884 0.395942 0.918275i \(-0.370418\pi\)
0.395942 + 0.918275i \(0.370418\pi\)
\(878\) 0 0
\(879\) 13.5717i 0.457762i
\(880\) 0 0
\(881\) 30.2220i 1.01821i 0.860706 + 0.509103i \(0.170023\pi\)
−0.860706 + 0.509103i \(0.829977\pi\)
\(882\) 0 0
\(883\) 55.2980i 1.86092i 0.366387 + 0.930462i \(0.380595\pi\)
−0.366387 + 0.930462i \(0.619405\pi\)
\(884\) 0 0
\(885\) 2.49680 23.6281i 0.0839289 0.794252i
\(886\) 0 0
\(887\) 8.28733i 0.278261i −0.990274 0.139131i \(-0.955569\pi\)
0.990274 0.139131i \(-0.0444308\pi\)
\(888\) 0 0
\(889\) −12.5690 + 9.40981i −0.421551 + 0.315595i
\(890\) 0 0
\(891\) −6.37123 −0.213444
\(892\) 0 0
\(893\) −21.8048 −0.729671
\(894\) 0 0
\(895\) 16.1651 + 1.70817i 0.540338 + 0.0570978i
\(896\) 0 0
\(897\) 11.6156i 0.387834i
\(898\) 0 0
\(899\) 39.5793i 1.32004i
\(900\) 0 0
\(901\) 2.41702 0.0805227
\(902\) 0 0
\(903\) −5.02985 6.71855i −0.167383 0.223579i
\(904\) 0 0
\(905\) −40.5470 4.28462i −1.34783 0.142425i
\(906\) 0 0
\(907\) 18.0875i 0.600587i −0.953847 0.300293i \(-0.902915\pi\)
0.953847 0.300293i \(-0.0970845\pi\)
\(908\) 0 0
\(909\) 11.2507 0.373162
\(910\) 0 0
\(911\) 6.16833i 0.204366i 0.994766 + 0.102183i \(0.0325827\pi\)
−0.994766 + 0.102183i \(0.967417\pi\)
\(912\) 0 0
\(913\) 21.0243 0.695802
\(914\) 0 0
\(915\) −10.8177 1.14311i −0.357623 0.0377902i
\(916\) 0 0
\(917\) −27.3982 36.5968i −0.904768 1.20853i
\(918\) 0 0
\(919\) 55.8085i 1.84095i 0.390797 + 0.920477i \(0.372199\pi\)
−0.390797 + 0.920477i \(0.627801\pi\)
\(920\) 0 0
\(921\) −0.507762 −0.0167313
\(922\) 0 0
\(923\) 45.4441 1.49581
\(924\) 0 0
\(925\) −30.0904 6.43113i −0.989365 0.211454i
\(926\) 0 0
\(927\) 8.02241i 0.263491i
\(928\) 0 0
\(929\) 14.2579i 0.467787i 0.972262 + 0.233894i \(0.0751467\pi\)
−0.972262 + 0.233894i \(0.924853\pi\)
\(930\) 0 0
\(931\) −30.5501 8.96776i −1.00124 0.293907i
\(932\) 0 0
\(933\) 0.698651 0.0228728
\(934\) 0 0
\(935\) 6.56329 + 0.693545i 0.214643 + 0.0226814i
\(936\) 0 0
\(937\) −22.5672 −0.737237 −0.368618 0.929581i \(-0.620169\pi\)
−0.368618 + 0.929581i \(0.620169\pi\)
\(938\) 0 0
\(939\) −7.68634 −0.250834
\(940\) 0 0
\(941\) −12.3410 −0.402307 −0.201153 0.979560i \(-0.564469\pi\)
−0.201153 + 0.979560i \(0.564469\pi\)
\(942\) 0 0
\(943\) 13.4263i 0.437220i
\(944\) 0 0
\(945\) −27.7265 + 16.5206i −0.901943 + 0.537417i
\(946\) 0 0
\(947\) 38.9941i 1.26714i −0.773687 0.633568i \(-0.781590\pi\)
0.773687 0.633568i \(-0.218410\pi\)
\(948\) 0 0
\(949\) 84.3979i 2.73967i
\(950\) 0 0
\(951\) 12.2711 0.397918
\(952\) 0 0
\(953\) 57.1070i 1.84988i 0.380117 + 0.924938i \(0.375884\pi\)
−0.380117 + 0.924938i \(0.624116\pi\)
\(954\) 0 0
\(955\) 0.585816 5.54380i 0.0189565 0.179393i
\(956\) 0 0
\(957\) 36.3429i 1.17480i
\(958\) 0 0
\(959\) 10.4639 + 13.9770i 0.337897 + 0.451341i
\(960\) 0 0
\(961\) −8.60041 −0.277433
\(962\) 0 0
\(963\) 17.2024i 0.554340i
\(964\) 0 0
\(965\) −3.29415 + 31.1738i −0.106042 + 1.00352i
\(966\) 0 0
\(967\) −11.1371 −0.358146 −0.179073 0.983836i \(-0.557310\pi\)
−0.179073 + 0.983836i \(0.557310\pi\)
\(968\) 0 0
\(969\) 4.37736i 0.140621i
\(970\) 0 0
\(971\) 7.38403i 0.236965i 0.992956 + 0.118482i \(0.0378029\pi\)
−0.992956 + 0.118482i \(0.962197\pi\)
\(972\) 0 0
\(973\) 10.1090 + 13.5030i 0.324081 + 0.432886i
\(974\) 0 0
\(975\) 6.91714 32.3643i 0.221526 1.03649i
\(976\) 0 0
\(977\) 23.4951i 0.751675i 0.926686 + 0.375838i \(0.122645\pi\)
−0.926686 + 0.375838i \(0.877355\pi\)
\(978\) 0 0
\(979\) 18.0992i 0.578454i
\(980\) 0 0
\(981\) 11.3209i 0.361448i
\(982\) 0 0
\(983\) 60.7158i 1.93653i −0.249918 0.968267i \(-0.580404\pi\)
0.249918 0.968267i \(-0.419596\pi\)
\(984\) 0 0
\(985\) −18.3905 1.94333i −0.585969 0.0619195i
\(986\) 0 0
\(987\) 9.04848 + 12.0864i 0.288016 + 0.384714i
\(988\) 0 0
\(989\) 4.67644i 0.148702i
\(990\) 0 0
\(991\) 8.22655i 0.261325i −0.991427 0.130663i \(-0.958290\pi\)
0.991427 0.130663i \(-0.0417104\pi\)
\(992\) 0 0
\(993\) 9.55672 0.303273
\(994\) 0 0
\(995\) −60.3798 6.38035i −1.91417 0.202271i
\(996\) 0 0
\(997\) 49.5766i 1.57011i −0.619428 0.785054i \(-0.712635\pi\)
0.619428 0.785054i \(-0.287365\pi\)
\(998\) 0 0
\(999\) −33.5731 −1.06221
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.n.b.559.14 40
4.3 odd 2 280.2.n.b.139.12 yes 40
5.4 even 2 inner 1120.2.n.b.559.28 40
7.6 odd 2 inner 1120.2.n.b.559.27 40
8.3 odd 2 inner 1120.2.n.b.559.13 40
8.5 even 2 280.2.n.b.139.32 yes 40
20.19 odd 2 280.2.n.b.139.29 yes 40
28.27 even 2 280.2.n.b.139.11 yes 40
35.34 odd 2 inner 1120.2.n.b.559.16 40
40.19 odd 2 inner 1120.2.n.b.559.26 40
40.29 even 2 280.2.n.b.139.9 40
56.13 odd 2 280.2.n.b.139.31 yes 40
56.27 even 2 inner 1120.2.n.b.559.25 40
140.139 even 2 280.2.n.b.139.30 yes 40
280.69 odd 2 280.2.n.b.139.10 yes 40
280.139 even 2 inner 1120.2.n.b.559.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.n.b.139.9 40 40.29 even 2
280.2.n.b.139.10 yes 40 280.69 odd 2
280.2.n.b.139.11 yes 40 28.27 even 2
280.2.n.b.139.12 yes 40 4.3 odd 2
280.2.n.b.139.29 yes 40 20.19 odd 2
280.2.n.b.139.30 yes 40 140.139 even 2
280.2.n.b.139.31 yes 40 56.13 odd 2
280.2.n.b.139.32 yes 40 8.5 even 2
1120.2.n.b.559.13 40 8.3 odd 2 inner
1120.2.n.b.559.14 40 1.1 even 1 trivial
1120.2.n.b.559.15 40 280.139 even 2 inner
1120.2.n.b.559.16 40 35.34 odd 2 inner
1120.2.n.b.559.25 40 56.27 even 2 inner
1120.2.n.b.559.26 40 40.19 odd 2 inner
1120.2.n.b.559.27 40 7.6 odd 2 inner
1120.2.n.b.559.28 40 5.4 even 2 inner