Properties

Label 1120.2.e.a.1119.16
Level $1120$
Weight $2$
Character 1120.1119
Analytic conductor $8.943$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(1119,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.1119"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1119.16
Character \(\chi\) \(=\) 1120.1119
Dual form 1120.2.e.a.1119.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.06386i q^{3} +(1.39003 + 1.75152i) q^{5} +(-2.46063 - 0.972270i) q^{7} -6.38723 q^{9} -5.46601i q^{11} +1.22883 q^{13} +(-5.36640 + 4.25886i) q^{15} -0.813283 q^{17} -6.68583 q^{19} +(2.97890 - 7.53902i) q^{21} -3.51731 q^{23} +(-1.13563 + 4.86933i) q^{25} -10.3780i q^{27} -8.09020 q^{29} -9.00726 q^{31} +16.7471 q^{33} +(-1.71740 - 5.66132i) q^{35} +4.61599i q^{37} +3.76496i q^{39} -2.59512i q^{41} -1.61833 q^{43} +(-8.87844 - 11.1873i) q^{45} +5.97579i q^{47} +(5.10938 + 4.78479i) q^{49} -2.49178i q^{51} -1.51536i q^{53} +(9.57381 - 7.59792i) q^{55} -20.4844i q^{57} +10.1846 q^{59} +3.16168i q^{61} +(15.7166 + 6.21011i) q^{63} +(1.70811 + 2.15231i) q^{65} +13.1445 q^{67} -10.7765i q^{69} +12.4755i q^{71} +7.65228 q^{73} +(-14.9189 - 3.47940i) q^{75} +(-5.31443 + 13.4498i) q^{77} +2.19667i q^{79} +12.6350 q^{81} +7.88172i q^{83} +(-1.13049 - 1.42448i) q^{85} -24.7872i q^{87} +1.19849i q^{89} +(-3.02369 - 1.19475i) q^{91} -27.5970i q^{93} +(-9.29351 - 11.7103i) q^{95} -0.813283 q^{97} +34.9126i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 8 q^{21} - 16 q^{25} + 16 q^{29} + 24 q^{49} - 16 q^{65} - 32 q^{81} + 32 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.06386i 1.76892i 0.466617 + 0.884460i \(0.345473\pi\)
−0.466617 + 0.884460i \(0.654527\pi\)
\(4\) 0 0
\(5\) 1.39003 + 1.75152i 0.621641 + 0.783303i
\(6\) 0 0
\(7\) −2.46063 0.972270i −0.930030 0.367483i
\(8\) 0 0
\(9\) −6.38723 −2.12908
\(10\) 0 0
\(11\) 5.46601i 1.64806i −0.566544 0.824032i \(-0.691720\pi\)
0.566544 0.824032i \(-0.308280\pi\)
\(12\) 0 0
\(13\) 1.22883 0.340816 0.170408 0.985374i \(-0.445491\pi\)
0.170408 + 0.985374i \(0.445491\pi\)
\(14\) 0 0
\(15\) −5.36640 + 4.25886i −1.38560 + 1.09963i
\(16\) 0 0
\(17\) −0.813283 −0.197250 −0.0986250 0.995125i \(-0.531444\pi\)
−0.0986250 + 0.995125i \(0.531444\pi\)
\(18\) 0 0
\(19\) −6.68583 −1.53383 −0.766917 0.641746i \(-0.778210\pi\)
−0.766917 + 0.641746i \(0.778210\pi\)
\(20\) 0 0
\(21\) 2.97890 7.53902i 0.650048 1.64515i
\(22\) 0 0
\(23\) −3.51731 −0.733410 −0.366705 0.930337i \(-0.619514\pi\)
−0.366705 + 0.930337i \(0.619514\pi\)
\(24\) 0 0
\(25\) −1.13563 + 4.86933i −0.227126 + 0.973865i
\(26\) 0 0
\(27\) 10.3780i 1.99724i
\(28\) 0 0
\(29\) −8.09020 −1.50231 −0.751156 0.660125i \(-0.770503\pi\)
−0.751156 + 0.660125i \(0.770503\pi\)
\(30\) 0 0
\(31\) −9.00726 −1.61775 −0.808876 0.587980i \(-0.799923\pi\)
−0.808876 + 0.587980i \(0.799923\pi\)
\(32\) 0 0
\(33\) 16.7471 2.91529
\(34\) 0 0
\(35\) −1.71740 5.66132i −0.290294 0.956938i
\(36\) 0 0
\(37\) 4.61599i 0.758864i 0.925220 + 0.379432i \(0.123881\pi\)
−0.925220 + 0.379432i \(0.876119\pi\)
\(38\) 0 0
\(39\) 3.76496i 0.602875i
\(40\) 0 0
\(41\) 2.59512i 0.405290i −0.979252 0.202645i \(-0.935046\pi\)
0.979252 0.202645i \(-0.0649538\pi\)
\(42\) 0 0
\(43\) −1.61833 −0.246793 −0.123397 0.992357i \(-0.539379\pi\)
−0.123397 + 0.992357i \(0.539379\pi\)
\(44\) 0 0
\(45\) −8.87844 11.1873i −1.32352 1.66771i
\(46\) 0 0
\(47\) 5.97579i 0.871658i 0.900029 + 0.435829i \(0.143545\pi\)
−0.900029 + 0.435829i \(0.856455\pi\)
\(48\) 0 0
\(49\) 5.10938 + 4.78479i 0.729912 + 0.683541i
\(50\) 0 0
\(51\) 2.49178i 0.348919i
\(52\) 0 0
\(53\) 1.51536i 0.208151i −0.994569 0.104076i \(-0.966812\pi\)
0.994569 0.104076i \(-0.0331884\pi\)
\(54\) 0 0
\(55\) 9.57381 7.59792i 1.29093 1.02450i
\(56\) 0 0
\(57\) 20.4844i 2.71323i
\(58\) 0 0
\(59\) 10.1846 1.32593 0.662963 0.748652i \(-0.269299\pi\)
0.662963 + 0.748652i \(0.269299\pi\)
\(60\) 0 0
\(61\) 3.16168i 0.404811i 0.979302 + 0.202406i \(0.0648760\pi\)
−0.979302 + 0.202406i \(0.935124\pi\)
\(62\) 0 0
\(63\) 15.7166 + 6.21011i 1.98010 + 0.782400i
\(64\) 0 0
\(65\) 1.70811 + 2.15231i 0.211865 + 0.266962i
\(66\) 0 0
\(67\) 13.1445 1.60586 0.802931 0.596072i \(-0.203273\pi\)
0.802931 + 0.596072i \(0.203273\pi\)
\(68\) 0 0
\(69\) 10.7765i 1.29734i
\(70\) 0 0
\(71\) 12.4755i 1.48057i 0.672293 + 0.740285i \(0.265310\pi\)
−0.672293 + 0.740285i \(0.734690\pi\)
\(72\) 0 0
\(73\) 7.65228 0.895631 0.447816 0.894126i \(-0.352202\pi\)
0.447816 + 0.894126i \(0.352202\pi\)
\(74\) 0 0
\(75\) −14.9189 3.47940i −1.72269 0.401767i
\(76\) 0 0
\(77\) −5.31443 + 13.4498i −0.605636 + 1.53275i
\(78\) 0 0
\(79\) 2.19667i 0.247145i 0.992336 + 0.123572i \(0.0394351\pi\)
−0.992336 + 0.123572i \(0.960565\pi\)
\(80\) 0 0
\(81\) 12.6350 1.40389
\(82\) 0 0
\(83\) 7.88172i 0.865131i 0.901603 + 0.432565i \(0.142392\pi\)
−0.901603 + 0.432565i \(0.857608\pi\)
\(84\) 0 0
\(85\) −1.13049 1.42448i −0.122619 0.154506i
\(86\) 0 0
\(87\) 24.7872i 2.65747i
\(88\) 0 0
\(89\) 1.19849i 0.127040i 0.997981 + 0.0635198i \(0.0202326\pi\)
−0.997981 + 0.0635198i \(0.979767\pi\)
\(90\) 0 0
\(91\) −3.02369 1.19475i −0.316969 0.125244i
\(92\) 0 0
\(93\) 27.5970i 2.86167i
\(94\) 0 0
\(95\) −9.29351 11.7103i −0.953494 1.20146i
\(96\) 0 0
\(97\) −0.813283 −0.0825764 −0.0412882 0.999147i \(-0.513146\pi\)
−0.0412882 + 0.999147i \(0.513146\pi\)
\(98\) 0 0
\(99\) 34.9126i 3.50885i
\(100\) 0 0
\(101\) 1.76504i 0.175628i −0.996137 0.0878142i \(-0.972012\pi\)
0.996137 0.0878142i \(-0.0279882\pi\)
\(102\) 0 0
\(103\) 10.0600i 0.991242i 0.868539 + 0.495621i \(0.165060\pi\)
−0.868539 + 0.495621i \(0.834940\pi\)
\(104\) 0 0
\(105\) 17.3455 5.26188i 1.69275 0.513507i
\(106\) 0 0
\(107\) −13.1445 −1.27073 −0.635366 0.772211i \(-0.719151\pi\)
−0.635366 + 0.772211i \(0.719151\pi\)
\(108\) 0 0
\(109\) 0.128572 0.0123149 0.00615747 0.999981i \(-0.498040\pi\)
0.00615747 + 0.999981i \(0.498040\pi\)
\(110\) 0 0
\(111\) −14.1427 −1.34237
\(112\) 0 0
\(113\) 2.04955i 0.192806i 0.995342 + 0.0964028i \(0.0307337\pi\)
−0.995342 + 0.0964028i \(0.969266\pi\)
\(114\) 0 0
\(115\) −4.88917 6.16063i −0.455917 0.574482i
\(116\) 0 0
\(117\) −7.84881 −0.725622
\(118\) 0 0
\(119\) 2.00119 + 0.790730i 0.183448 + 0.0724861i
\(120\) 0 0
\(121\) −18.8773 −1.71611
\(122\) 0 0
\(123\) 7.95109 0.716926
\(124\) 0 0
\(125\) −10.1073 + 4.77944i −0.904022 + 0.427486i
\(126\) 0 0
\(127\) −5.81155 −0.515691 −0.257846 0.966186i \(-0.583013\pi\)
−0.257846 + 0.966186i \(0.583013\pi\)
\(128\) 0 0
\(129\) 4.95834i 0.436557i
\(130\) 0 0
\(131\) 16.1544 1.41142 0.705709 0.708501i \(-0.250628\pi\)
0.705709 + 0.708501i \(0.250628\pi\)
\(132\) 0 0
\(133\) 16.4513 + 6.50043i 1.42651 + 0.563659i
\(134\) 0 0
\(135\) 18.1772 14.4257i 1.56445 1.24157i
\(136\) 0 0
\(137\) 5.90852i 0.504799i −0.967623 0.252400i \(-0.918780\pi\)
0.967623 0.252400i \(-0.0812197\pi\)
\(138\) 0 0
\(139\) −3.82751 −0.324645 −0.162323 0.986738i \(-0.551899\pi\)
−0.162323 + 0.986738i \(0.551899\pi\)
\(140\) 0 0
\(141\) −18.3090 −1.54189
\(142\) 0 0
\(143\) 6.71679i 0.561686i
\(144\) 0 0
\(145\) −11.2456 14.1701i −0.933898 1.17676i
\(146\) 0 0
\(147\) −14.6599 + 15.6544i −1.20913 + 1.29116i
\(148\) 0 0
\(149\) −7.10275 −0.581880 −0.290940 0.956741i \(-0.593968\pi\)
−0.290940 + 0.956741i \(0.593968\pi\)
\(150\) 0 0
\(151\) 10.7144i 0.871924i −0.899965 0.435962i \(-0.856408\pi\)
0.899965 0.435962i \(-0.143592\pi\)
\(152\) 0 0
\(153\) 5.19462 0.419960
\(154\) 0 0
\(155\) −12.5204 15.7764i −1.00566 1.26719i
\(156\) 0 0
\(157\) 5.12741 0.409212 0.204606 0.978844i \(-0.434409\pi\)
0.204606 + 0.978844i \(0.434409\pi\)
\(158\) 0 0
\(159\) 4.64286 0.368202
\(160\) 0 0
\(161\) 8.65479 + 3.41977i 0.682093 + 0.269516i
\(162\) 0 0
\(163\) −13.3674 −1.04701 −0.523507 0.852021i \(-0.675377\pi\)
−0.523507 + 0.852021i \(0.675377\pi\)
\(164\) 0 0
\(165\) 23.2790 + 29.3328i 1.81226 + 2.28356i
\(166\) 0 0
\(167\) 20.3403i 1.57398i 0.616966 + 0.786990i \(0.288362\pi\)
−0.616966 + 0.786990i \(0.711638\pi\)
\(168\) 0 0
\(169\) −11.4900 −0.883845
\(170\) 0 0
\(171\) 42.7039 3.26565
\(172\) 0 0
\(173\) −7.38042 −0.561123 −0.280561 0.959836i \(-0.590521\pi\)
−0.280561 + 0.959836i \(0.590521\pi\)
\(174\) 0 0
\(175\) 7.52866 10.8775i 0.569113 0.822259i
\(176\) 0 0
\(177\) 31.2043i 2.34546i
\(178\) 0 0
\(179\) 14.6037i 1.09153i −0.837937 0.545767i \(-0.816239\pi\)
0.837937 0.545767i \(-0.183761\pi\)
\(180\) 0 0
\(181\) 11.2568i 0.836711i −0.908283 0.418355i \(-0.862607\pi\)
0.908283 0.418355i \(-0.137393\pi\)
\(182\) 0 0
\(183\) −9.68693 −0.716079
\(184\) 0 0
\(185\) −8.08499 + 6.41637i −0.594420 + 0.471741i
\(186\) 0 0
\(187\) 4.44541i 0.325081i
\(188\) 0 0
\(189\) −10.0902 + 25.5364i −0.733954 + 1.85750i
\(190\) 0 0
\(191\) 8.19284i 0.592813i 0.955062 + 0.296406i \(0.0957883\pi\)
−0.955062 + 0.296406i \(0.904212\pi\)
\(192\) 0 0
\(193\) 17.6355i 1.26943i 0.772747 + 0.634715i \(0.218882\pi\)
−0.772747 + 0.634715i \(0.781118\pi\)
\(194\) 0 0
\(195\) −6.59439 + 5.23340i −0.472234 + 0.374772i
\(196\) 0 0
\(197\) 6.60429i 0.470536i 0.971931 + 0.235268i \(0.0755968\pi\)
−0.971931 + 0.235268i \(0.924403\pi\)
\(198\) 0 0
\(199\) 6.35712 0.450644 0.225322 0.974284i \(-0.427657\pi\)
0.225322 + 0.974284i \(0.427657\pi\)
\(200\) 0 0
\(201\) 40.2730i 2.84064i
\(202\) 0 0
\(203\) 19.9070 + 7.86585i 1.39720 + 0.552075i
\(204\) 0 0
\(205\) 4.54541 3.60730i 0.317465 0.251945i
\(206\) 0 0
\(207\) 22.4658 1.56148
\(208\) 0 0
\(209\) 36.5448i 2.52786i
\(210\) 0 0
\(211\) 9.97949i 0.687016i −0.939150 0.343508i \(-0.888385\pi\)
0.939150 0.343508i \(-0.111615\pi\)
\(212\) 0 0
\(213\) −38.2232 −2.61901
\(214\) 0 0
\(215\) −2.24953 2.83454i −0.153417 0.193314i
\(216\) 0 0
\(217\) 22.1635 + 8.75748i 1.50456 + 0.594497i
\(218\) 0 0
\(219\) 23.4455i 1.58430i
\(220\) 0 0
\(221\) −0.999385 −0.0672259
\(222\) 0 0
\(223\) 7.18795i 0.481341i 0.970607 + 0.240671i \(0.0773673\pi\)
−0.970607 + 0.240671i \(0.922633\pi\)
\(224\) 0 0
\(225\) 7.25352 31.1015i 0.483568 2.07343i
\(226\) 0 0
\(227\) 3.43607i 0.228060i 0.993477 + 0.114030i \(0.0363760\pi\)
−0.993477 + 0.114030i \(0.963624\pi\)
\(228\) 0 0
\(229\) 4.87652i 0.322250i −0.986934 0.161125i \(-0.948488\pi\)
0.986934 0.161125i \(-0.0515122\pi\)
\(230\) 0 0
\(231\) −41.2083 16.2827i −2.71131 1.07132i
\(232\) 0 0
\(233\) 10.4530i 0.684802i 0.939554 + 0.342401i \(0.111240\pi\)
−0.939554 + 0.342401i \(0.888760\pi\)
\(234\) 0 0
\(235\) −10.4667 + 8.30653i −0.682772 + 0.541858i
\(236\) 0 0
\(237\) −6.73028 −0.437179
\(238\) 0 0
\(239\) 16.9379i 1.09562i −0.836601 0.547812i \(-0.815461\pi\)
0.836601 0.547812i \(-0.184539\pi\)
\(240\) 0 0
\(241\) 17.7741i 1.14493i −0.819928 0.572466i \(-0.805987\pi\)
0.819928 0.572466i \(-0.194013\pi\)
\(242\) 0 0
\(243\) 7.57786i 0.486120i
\(244\) 0 0
\(245\) −1.27844 + 15.6002i −0.0816765 + 0.996659i
\(246\) 0 0
\(247\) −8.21574 −0.522755
\(248\) 0 0
\(249\) −24.1485 −1.53035
\(250\) 0 0
\(251\) −15.6509 −0.987873 −0.493937 0.869498i \(-0.664443\pi\)
−0.493937 + 0.869498i \(0.664443\pi\)
\(252\) 0 0
\(253\) 19.2256i 1.20871i
\(254\) 0 0
\(255\) 4.36440 3.46366i 0.273309 0.216903i
\(256\) 0 0
\(257\) 21.2065 1.32283 0.661414 0.750021i \(-0.269957\pi\)
0.661414 + 0.750021i \(0.269957\pi\)
\(258\) 0 0
\(259\) 4.48799 11.3582i 0.278870 0.705766i
\(260\) 0 0
\(261\) 51.6739 3.19854
\(262\) 0 0
\(263\) −13.0849 −0.806847 −0.403423 0.915013i \(-0.632180\pi\)
−0.403423 + 0.915013i \(0.632180\pi\)
\(264\) 0 0
\(265\) 2.65418 2.10640i 0.163045 0.129395i
\(266\) 0 0
\(267\) −3.67200 −0.224723
\(268\) 0 0
\(269\) 0.357794i 0.0218151i −0.999941 0.0109075i \(-0.996528\pi\)
0.999941 0.0109075i \(-0.00347204\pi\)
\(270\) 0 0
\(271\) 0.151601 0.00920910 0.00460455 0.999989i \(-0.498534\pi\)
0.00460455 + 0.999989i \(0.498534\pi\)
\(272\) 0 0
\(273\) 3.66055 9.26416i 0.221547 0.560692i
\(274\) 0 0
\(275\) 26.6158 + 6.20735i 1.60499 + 0.374318i
\(276\) 0 0
\(277\) 29.1822i 1.75339i −0.481047 0.876695i \(-0.659743\pi\)
0.481047 0.876695i \(-0.340257\pi\)
\(278\) 0 0
\(279\) 57.5314 3.44431
\(280\) 0 0
\(281\) 23.8389 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(282\) 0 0
\(283\) 14.6344i 0.869922i −0.900449 0.434961i \(-0.856762\pi\)
0.900449 0.434961i \(-0.143238\pi\)
\(284\) 0 0
\(285\) 35.8788 28.4740i 2.12528 1.68665i
\(286\) 0 0
\(287\) −2.52316 + 6.38564i −0.148937 + 0.376932i
\(288\) 0 0
\(289\) −16.3386 −0.961092
\(290\) 0 0
\(291\) 2.49178i 0.146071i
\(292\) 0 0
\(293\) −11.4646 −0.669771 −0.334886 0.942259i \(-0.608698\pi\)
−0.334886 + 0.942259i \(0.608698\pi\)
\(294\) 0 0
\(295\) 14.1570 + 17.8386i 0.824250 + 1.03860i
\(296\) 0 0
\(297\) −56.7261 −3.29158
\(298\) 0 0
\(299\) −4.32217 −0.249957
\(300\) 0 0
\(301\) 3.98211 + 1.57345i 0.229525 + 0.0906924i
\(302\) 0 0
\(303\) 5.40784 0.310672
\(304\) 0 0
\(305\) −5.53773 + 4.39483i −0.317090 + 0.251647i
\(306\) 0 0
\(307\) 13.8117i 0.788273i −0.919052 0.394136i \(-0.871044\pi\)
0.919052 0.394136i \(-0.128956\pi\)
\(308\) 0 0
\(309\) −30.8224 −1.75343
\(310\) 0 0
\(311\) 24.0932 1.36620 0.683099 0.730325i \(-0.260632\pi\)
0.683099 + 0.730325i \(0.260632\pi\)
\(312\) 0 0
\(313\) −21.6899 −1.22599 −0.612994 0.790088i \(-0.710035\pi\)
−0.612994 + 0.790088i \(0.710035\pi\)
\(314\) 0 0
\(315\) 10.9694 + 36.1601i 0.618058 + 2.03739i
\(316\) 0 0
\(317\) 12.5279i 0.703638i −0.936068 0.351819i \(-0.885563\pi\)
0.936068 0.351819i \(-0.114437\pi\)
\(318\) 0 0
\(319\) 44.2211i 2.47591i
\(320\) 0 0
\(321\) 40.2730i 2.24782i
\(322\) 0 0
\(323\) 5.43747 0.302549
\(324\) 0 0
\(325\) −1.39549 + 5.98357i −0.0774080 + 0.331909i
\(326\) 0 0
\(327\) 0.393926i 0.0217842i
\(328\) 0 0
\(329\) 5.81008 14.7042i 0.320320 0.810668i
\(330\) 0 0
\(331\) 28.8936i 1.58814i −0.607828 0.794069i \(-0.707959\pi\)
0.607828 0.794069i \(-0.292041\pi\)
\(332\) 0 0
\(333\) 29.4834i 1.61568i
\(334\) 0 0
\(335\) 18.2713 + 23.0229i 0.998269 + 1.25788i
\(336\) 0 0
\(337\) 12.7694i 0.695592i −0.937570 0.347796i \(-0.886930\pi\)
0.937570 0.347796i \(-0.113070\pi\)
\(338\) 0 0
\(339\) −6.27954 −0.341058
\(340\) 0 0
\(341\) 49.2337i 2.66616i
\(342\) 0 0
\(343\) −7.92019 16.7413i −0.427650 0.903944i
\(344\) 0 0
\(345\) 18.8753 14.9797i 1.01621 0.806481i
\(346\) 0 0
\(347\) 29.6898 1.59383 0.796916 0.604091i \(-0.206463\pi\)
0.796916 + 0.604091i \(0.206463\pi\)
\(348\) 0 0
\(349\) 29.5579i 1.58220i 0.611688 + 0.791099i \(0.290491\pi\)
−0.611688 + 0.791099i \(0.709509\pi\)
\(350\) 0 0
\(351\) 12.7528i 0.680692i
\(352\) 0 0
\(353\) −21.0795 −1.12195 −0.560973 0.827834i \(-0.689573\pi\)
−0.560973 + 0.827834i \(0.689573\pi\)
\(354\) 0 0
\(355\) −21.8511 + 17.3413i −1.15973 + 0.920383i
\(356\) 0 0
\(357\) −2.42268 + 6.13135i −0.128222 + 0.324506i
\(358\) 0 0
\(359\) 14.8898i 0.785854i 0.919570 + 0.392927i \(0.128538\pi\)
−0.919570 + 0.392927i \(0.871462\pi\)
\(360\) 0 0
\(361\) 25.7003 1.35265
\(362\) 0 0
\(363\) 57.8372i 3.03567i
\(364\) 0 0
\(365\) 10.6369 + 13.4031i 0.556761 + 0.701550i
\(366\) 0 0
\(367\) 25.1814i 1.31446i 0.753691 + 0.657229i \(0.228272\pi\)
−0.753691 + 0.657229i \(0.771728\pi\)
\(368\) 0 0
\(369\) 16.5756i 0.862894i
\(370\) 0 0
\(371\) −1.47334 + 3.72874i −0.0764920 + 0.193587i
\(372\) 0 0
\(373\) 23.2586i 1.20428i −0.798389 0.602142i \(-0.794314\pi\)
0.798389 0.602142i \(-0.205686\pi\)
\(374\) 0 0
\(375\) −14.6435 30.9672i −0.756189 1.59914i
\(376\) 0 0
\(377\) −9.94146 −0.512011
\(378\) 0 0
\(379\) 1.86285i 0.0956884i −0.998855 0.0478442i \(-0.984765\pi\)
0.998855 0.0478442i \(-0.0152351\pi\)
\(380\) 0 0
\(381\) 17.8058i 0.912216i
\(382\) 0 0
\(383\) 5.15731i 0.263526i 0.991281 + 0.131763i \(0.0420638\pi\)
−0.991281 + 0.131763i \(0.957936\pi\)
\(384\) 0 0
\(385\) −30.9448 + 9.38734i −1.57709 + 0.478423i
\(386\) 0 0
\(387\) 10.3367 0.525442
\(388\) 0 0
\(389\) 10.6749 0.541240 0.270620 0.962686i \(-0.412771\pi\)
0.270620 + 0.962686i \(0.412771\pi\)
\(390\) 0 0
\(391\) 2.86057 0.144665
\(392\) 0 0
\(393\) 49.4949i 2.49669i
\(394\) 0 0
\(395\) −3.84750 + 3.05344i −0.193589 + 0.153635i
\(396\) 0 0
\(397\) 21.1047 1.05922 0.529608 0.848243i \(-0.322339\pi\)
0.529608 + 0.848243i \(0.322339\pi\)
\(398\) 0 0
\(399\) −19.9164 + 50.4046i −0.997067 + 2.52339i
\(400\) 0 0
\(401\) −3.97650 −0.198577 −0.0992886 0.995059i \(-0.531657\pi\)
−0.0992886 + 0.995059i \(0.531657\pi\)
\(402\) 0 0
\(403\) −11.0684 −0.551355
\(404\) 0 0
\(405\) 17.5630 + 22.1304i 0.872714 + 1.09967i
\(406\) 0 0
\(407\) 25.2310 1.25066
\(408\) 0 0
\(409\) 24.1166i 1.19249i −0.802803 0.596244i \(-0.796659\pi\)
0.802803 0.596244i \(-0.203341\pi\)
\(410\) 0 0
\(411\) 18.1029 0.892949
\(412\) 0 0
\(413\) −25.0606 9.90221i −1.23315 0.487256i
\(414\) 0 0
\(415\) −13.8050 + 10.9558i −0.677659 + 0.537801i
\(416\) 0 0
\(417\) 11.7270i 0.574271i
\(418\) 0 0
\(419\) 5.64109 0.275585 0.137793 0.990461i \(-0.455999\pi\)
0.137793 + 0.990461i \(0.455999\pi\)
\(420\) 0 0
\(421\) 14.9114 0.726738 0.363369 0.931645i \(-0.381626\pi\)
0.363369 + 0.931645i \(0.381626\pi\)
\(422\) 0 0
\(423\) 38.1687i 1.85583i
\(424\) 0 0
\(425\) 0.923587 3.96014i 0.0448005 0.192095i
\(426\) 0 0
\(427\) 3.07400 7.77971i 0.148761 0.376487i
\(428\) 0 0
\(429\) 20.5793 0.993577
\(430\) 0 0
\(431\) 17.1329i 0.825264i 0.910898 + 0.412632i \(0.135390\pi\)
−0.910898 + 0.412632i \(0.864610\pi\)
\(432\) 0 0
\(433\) −18.2171 −0.875460 −0.437730 0.899106i \(-0.644217\pi\)
−0.437730 + 0.899106i \(0.644217\pi\)
\(434\) 0 0
\(435\) 43.4152 34.4550i 2.08160 1.65199i
\(436\) 0 0
\(437\) 23.5161 1.12493
\(438\) 0 0
\(439\) −29.5281 −1.40930 −0.704650 0.709555i \(-0.748896\pi\)
−0.704650 + 0.709555i \(0.748896\pi\)
\(440\) 0 0
\(441\) −32.6348 30.5615i −1.55404 1.45531i
\(442\) 0 0
\(443\) −4.42623 −0.210296 −0.105148 0.994457i \(-0.533532\pi\)
−0.105148 + 0.994457i \(0.533532\pi\)
\(444\) 0 0
\(445\) −2.09918 + 1.66594i −0.0995104 + 0.0789730i
\(446\) 0 0
\(447\) 21.7618i 1.02930i
\(448\) 0 0
\(449\) 13.2925 0.627313 0.313657 0.949536i \(-0.398446\pi\)
0.313657 + 0.949536i \(0.398446\pi\)
\(450\) 0 0
\(451\) −14.1850 −0.667944
\(452\) 0 0
\(453\) 32.8274 1.54236
\(454\) 0 0
\(455\) −2.11039 6.95679i −0.0989367 0.326139i
\(456\) 0 0
\(457\) 12.2949i 0.575130i −0.957761 0.287565i \(-0.907154\pi\)
0.957761 0.287565i \(-0.0928458\pi\)
\(458\) 0 0
\(459\) 8.44023i 0.393956i
\(460\) 0 0
\(461\) 23.4068i 1.09016i −0.838383 0.545082i \(-0.816499\pi\)
0.838383 0.545082i \(-0.183501\pi\)
\(462\) 0 0
\(463\) −21.7828 −1.01233 −0.506165 0.862437i \(-0.668937\pi\)
−0.506165 + 0.862437i \(0.668937\pi\)
\(464\) 0 0
\(465\) 48.3366 38.3606i 2.24155 1.77893i
\(466\) 0 0
\(467\) 32.6245i 1.50968i 0.655909 + 0.754840i \(0.272285\pi\)
−0.655909 + 0.754840i \(0.727715\pi\)
\(468\) 0 0
\(469\) −32.3439 12.7800i −1.49350 0.590128i
\(470\) 0 0
\(471\) 15.7097i 0.723863i
\(472\) 0 0
\(473\) 8.84582i 0.406731i
\(474\) 0 0
\(475\) 7.59262 32.5555i 0.348373 1.49375i
\(476\) 0 0
\(477\) 9.67896i 0.443169i
\(478\) 0 0
\(479\) 10.7215 0.489879 0.244939 0.969538i \(-0.421232\pi\)
0.244939 + 0.969538i \(0.421232\pi\)
\(480\) 0 0
\(481\) 5.67226i 0.258633i
\(482\) 0 0
\(483\) −10.4777 + 26.5170i −0.476752 + 1.20657i
\(484\) 0 0
\(485\) −1.13049 1.42448i −0.0513328 0.0646823i
\(486\) 0 0
\(487\) −35.7679 −1.62080 −0.810398 0.585880i \(-0.800749\pi\)
−0.810398 + 0.585880i \(0.800749\pi\)
\(488\) 0 0
\(489\) 40.9557i 1.85208i
\(490\) 0 0
\(491\) 22.9944i 1.03772i −0.854859 0.518860i \(-0.826356\pi\)
0.854859 0.518860i \(-0.173644\pi\)
\(492\) 0 0
\(493\) 6.57962 0.296331
\(494\) 0 0
\(495\) −61.1501 + 48.5296i −2.74849 + 2.18125i
\(496\) 0 0
\(497\) 12.1296 30.6976i 0.544085 1.37697i
\(498\) 0 0
\(499\) 13.0307i 0.583336i 0.956520 + 0.291668i \(0.0942103\pi\)
−0.956520 + 0.291668i \(0.905790\pi\)
\(500\) 0 0
\(501\) −62.3198 −2.78424
\(502\) 0 0
\(503\) 12.3987i 0.552832i −0.961038 0.276416i \(-0.910853\pi\)
0.961038 0.276416i \(-0.0891468\pi\)
\(504\) 0 0
\(505\) 3.09150 2.45346i 0.137570 0.109178i
\(506\) 0 0
\(507\) 35.2037i 1.56345i
\(508\) 0 0
\(509\) 14.8884i 0.659918i 0.943995 + 0.329959i \(0.107035\pi\)
−0.943995 + 0.329959i \(0.892965\pi\)
\(510\) 0 0
\(511\) −18.8294 7.44008i −0.832964 0.329130i
\(512\) 0 0
\(513\) 69.3854i 3.06344i
\(514\) 0 0
\(515\) −17.6203 + 13.9837i −0.776442 + 0.616196i
\(516\) 0 0
\(517\) 32.6637 1.43655
\(518\) 0 0
\(519\) 22.6126i 0.992581i
\(520\) 0 0
\(521\) 40.6065i 1.77900i 0.456932 + 0.889502i \(0.348948\pi\)
−0.456932 + 0.889502i \(0.651052\pi\)
\(522\) 0 0
\(523\) 0.346454i 0.0151494i −0.999971 0.00757469i \(-0.997589\pi\)
0.999971 0.00757469i \(-0.00241112\pi\)
\(524\) 0 0
\(525\) 33.3270 + 23.0667i 1.45451 + 1.00672i
\(526\) 0 0
\(527\) 7.32545 0.319101
\(528\) 0 0
\(529\) −10.6285 −0.462110
\(530\) 0 0
\(531\) −65.0515 −2.82300
\(532\) 0 0
\(533\) 3.18896i 0.138129i
\(534\) 0 0
\(535\) −18.2713 23.0229i −0.789938 0.995367i
\(536\) 0 0
\(537\) 44.7437 1.93083
\(538\) 0 0
\(539\) 26.1537 27.9279i 1.12652 1.20294i
\(540\) 0 0
\(541\) −14.3137 −0.615396 −0.307698 0.951484i \(-0.599559\pi\)
−0.307698 + 0.951484i \(0.599559\pi\)
\(542\) 0 0
\(543\) 34.4892 1.48007
\(544\) 0 0
\(545\) 0.178719 + 0.225196i 0.00765547 + 0.00964633i
\(546\) 0 0
\(547\) 39.7534 1.69973 0.849865 0.527000i \(-0.176683\pi\)
0.849865 + 0.527000i \(0.176683\pi\)
\(548\) 0 0
\(549\) 20.1944i 0.861874i
\(550\) 0 0
\(551\) 54.0897 2.30430
\(552\) 0 0
\(553\) 2.13575 5.40519i 0.0908215 0.229852i
\(554\) 0 0
\(555\) −19.6588 24.7713i −0.834471 1.05148i
\(556\) 0 0
\(557\) 33.2813i 1.41018i 0.709120 + 0.705088i \(0.249092\pi\)
−0.709120 + 0.705088i \(0.750908\pi\)
\(558\) 0 0
\(559\) −1.98865 −0.0841110
\(560\) 0 0
\(561\) −13.6201 −0.575041
\(562\) 0 0
\(563\) 16.3139i 0.687549i −0.939052 0.343774i \(-0.888294\pi\)
0.939052 0.343774i \(-0.111706\pi\)
\(564\) 0 0
\(565\) −3.58983 + 2.84894i −0.151025 + 0.119856i
\(566\) 0 0
\(567\) −31.0900 12.2846i −1.30566 0.515905i
\(568\) 0 0
\(569\) 6.54541 0.274398 0.137199 0.990544i \(-0.456190\pi\)
0.137199 + 0.990544i \(0.456190\pi\)
\(570\) 0 0
\(571\) 39.5547i 1.65531i 0.561234 + 0.827657i \(0.310327\pi\)
−0.561234 + 0.827657i \(0.689673\pi\)
\(572\) 0 0
\(573\) −25.1017 −1.04864
\(574\) 0 0
\(575\) 3.99435 17.1269i 0.166576 0.714242i
\(576\) 0 0
\(577\) −40.4544 −1.68414 −0.842069 0.539369i \(-0.818663\pi\)
−0.842069 + 0.539369i \(0.818663\pi\)
\(578\) 0 0
\(579\) −54.0326 −2.24552
\(580\) 0 0
\(581\) 7.66315 19.3940i 0.317921 0.804598i
\(582\) 0 0
\(583\) −8.28298 −0.343046
\(584\) 0 0
\(585\) −10.9101 13.7473i −0.451076 0.568382i
\(586\) 0 0
\(587\) 29.6642i 1.22437i 0.790714 + 0.612185i \(0.209709\pi\)
−0.790714 + 0.612185i \(0.790291\pi\)
\(588\) 0 0
\(589\) 60.2210 2.48136
\(590\) 0 0
\(591\) −20.2346 −0.832340
\(592\) 0 0
\(593\) −6.50273 −0.267035 −0.133517 0.991046i \(-0.542627\pi\)
−0.133517 + 0.991046i \(0.542627\pi\)
\(594\) 0 0
\(595\) 1.39673 + 4.60425i 0.0572605 + 0.188756i
\(596\) 0 0
\(597\) 19.4773i 0.797153i
\(598\) 0 0
\(599\) 4.70631i 0.192295i 0.995367 + 0.0961474i \(0.0306520\pi\)
−0.995367 + 0.0961474i \(0.969348\pi\)
\(600\) 0 0
\(601\) 21.0706i 0.859490i −0.902950 0.429745i \(-0.858604\pi\)
0.902950 0.429745i \(-0.141396\pi\)
\(602\) 0 0
\(603\) −83.9572 −3.41900
\(604\) 0 0
\(605\) −26.2400 33.0638i −1.06681 1.34424i
\(606\) 0 0
\(607\) 8.45732i 0.343272i −0.985160 0.171636i \(-0.945095\pi\)
0.985160 0.171636i \(-0.0549053\pi\)
\(608\) 0 0
\(609\) −24.0999 + 60.9921i −0.976575 + 2.47153i
\(610\) 0 0
\(611\) 7.34322i 0.297075i
\(612\) 0 0
\(613\) 39.7547i 1.60568i −0.596198 0.802838i \(-0.703323\pi\)
0.596198 0.802838i \(-0.296677\pi\)
\(614\) 0 0
\(615\) 11.0523 + 13.9265i 0.445670 + 0.561570i
\(616\) 0 0
\(617\) 19.7088i 0.793446i 0.917938 + 0.396723i \(0.129853\pi\)
−0.917938 + 0.396723i \(0.870147\pi\)
\(618\) 0 0
\(619\) 40.1553 1.61398 0.806990 0.590566i \(-0.201095\pi\)
0.806990 + 0.590566i \(0.201095\pi\)
\(620\) 0 0
\(621\) 36.5026i 1.46480i
\(622\) 0 0
\(623\) 1.16525 2.94904i 0.0466849 0.118151i
\(624\) 0 0
\(625\) −22.4207 11.0595i −0.896828 0.442380i
\(626\) 0 0
\(627\) −111.968 −4.47157
\(628\) 0 0
\(629\) 3.75410i 0.149686i
\(630\) 0 0
\(631\) 25.4148i 1.01175i −0.862608 0.505873i \(-0.831170\pi\)
0.862608 0.505873i \(-0.168830\pi\)
\(632\) 0 0
\(633\) 30.5757 1.21528
\(634\) 0 0
\(635\) −8.07823 10.1790i −0.320575 0.403942i
\(636\) 0 0
\(637\) 6.27856 + 5.87968i 0.248765 + 0.232962i
\(638\) 0 0
\(639\) 79.6839i 3.15225i
\(640\) 0 0
\(641\) −44.0099 −1.73829 −0.869143 0.494561i \(-0.835329\pi\)
−0.869143 + 0.494561i \(0.835329\pi\)
\(642\) 0 0
\(643\) 11.9892i 0.472807i 0.971655 + 0.236404i \(0.0759687\pi\)
−0.971655 + 0.236404i \(0.924031\pi\)
\(644\) 0 0
\(645\) 8.68462 6.89224i 0.341957 0.271382i
\(646\) 0 0
\(647\) 15.1947i 0.597366i −0.954352 0.298683i \(-0.903453\pi\)
0.954352 0.298683i \(-0.0965473\pi\)
\(648\) 0 0
\(649\) 55.6693i 2.18521i
\(650\) 0 0
\(651\) −26.8317 + 67.9059i −1.05162 + 2.66144i
\(652\) 0 0
\(653\) 23.4965i 0.919490i 0.888051 + 0.459745i \(0.152059\pi\)
−0.888051 + 0.459745i \(0.847941\pi\)
\(654\) 0 0
\(655\) 22.4552 + 28.2948i 0.877395 + 1.10557i
\(656\) 0 0
\(657\) −48.8768 −1.90687
\(658\) 0 0
\(659\) 20.6544i 0.804583i 0.915512 + 0.402292i \(0.131786\pi\)
−0.915512 + 0.402292i \(0.868214\pi\)
\(660\) 0 0
\(661\) 30.8321i 1.19923i 0.800289 + 0.599614i \(0.204679\pi\)
−0.800289 + 0.599614i \(0.795321\pi\)
\(662\) 0 0
\(663\) 3.06197i 0.118917i
\(664\) 0 0
\(665\) 11.4823 + 37.8506i 0.445263 + 1.46778i
\(666\) 0 0
\(667\) 28.4557 1.10181
\(668\) 0 0
\(669\) −22.0229 −0.851453
\(670\) 0 0
\(671\) 17.2818 0.667155
\(672\) 0 0
\(673\) 26.7263i 1.03022i 0.857123 + 0.515111i \(0.172249\pi\)
−0.857123 + 0.515111i \(0.827751\pi\)
\(674\) 0 0
\(675\) 50.5338 + 11.7855i 1.94505 + 0.453625i
\(676\) 0 0
\(677\) −31.9033 −1.22614 −0.613071 0.790028i \(-0.710066\pi\)
−0.613071 + 0.790028i \(0.710066\pi\)
\(678\) 0 0
\(679\) 2.00119 + 0.790730i 0.0767985 + 0.0303454i
\(680\) 0 0
\(681\) −10.5276 −0.403420
\(682\) 0 0
\(683\) 8.92815 0.341626 0.170813 0.985303i \(-0.445361\pi\)
0.170813 + 0.985303i \(0.445361\pi\)
\(684\) 0 0
\(685\) 10.3489 8.21303i 0.395410 0.313804i
\(686\) 0 0
\(687\) 14.9410 0.570034
\(688\) 0 0
\(689\) 1.86212i 0.0709411i
\(690\) 0 0
\(691\) 14.7006 0.559238 0.279619 0.960111i \(-0.409792\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(692\) 0 0
\(693\) 33.9445 85.9070i 1.28944 3.26334i
\(694\) 0 0
\(695\) −5.32036 6.70395i −0.201813 0.254295i
\(696\) 0 0
\(697\) 2.11057i 0.0799435i
\(698\) 0 0
\(699\) −32.0267 −1.21136
\(700\) 0 0
\(701\) 17.7065 0.668766 0.334383 0.942437i \(-0.391472\pi\)
0.334383 + 0.942437i \(0.391472\pi\)
\(702\) 0 0
\(703\) 30.8617i 1.16397i
\(704\) 0 0
\(705\) −25.4500 32.0685i −0.958503 1.20777i
\(706\) 0 0
\(707\) −1.71610 + 4.34311i −0.0645405 + 0.163340i
\(708\) 0 0
\(709\) −42.7222 −1.60447 −0.802234 0.597010i \(-0.796355\pi\)
−0.802234 + 0.597010i \(0.796355\pi\)
\(710\) 0 0
\(711\) 14.0306i 0.526189i
\(712\) 0 0
\(713\) 31.6813 1.18647
\(714\) 0 0
\(715\) 11.7646 9.33654i 0.439970 0.349167i
\(716\) 0 0
\(717\) 51.8954 1.93807
\(718\) 0 0
\(719\) −26.2758 −0.979923 −0.489961 0.871744i \(-0.662989\pi\)
−0.489961 + 0.871744i \(0.662989\pi\)
\(720\) 0 0
\(721\) 9.78104 24.7539i 0.364265 0.921885i
\(722\) 0 0
\(723\) 54.4574 2.02529
\(724\) 0 0
\(725\) 9.18745 39.3938i 0.341214 1.46305i
\(726\) 0 0
\(727\) 21.4192i 0.794393i 0.917734 + 0.397196i \(0.130017\pi\)
−0.917734 + 0.397196i \(0.869983\pi\)
\(728\) 0 0
\(729\) 14.6875 0.543981
\(730\) 0 0
\(731\) 1.31616 0.0486800
\(732\) 0 0
\(733\) 25.3586 0.936642 0.468321 0.883558i \(-0.344859\pi\)
0.468321 + 0.883558i \(0.344859\pi\)
\(734\) 0 0
\(735\) −47.7967 3.91696i −1.76301 0.144479i
\(736\) 0 0
\(737\) 71.8482i 2.64656i
\(738\) 0 0
\(739\) 9.43697i 0.347145i −0.984821 0.173572i \(-0.944469\pi\)
0.984821 0.173572i \(-0.0555310\pi\)
\(740\) 0 0
\(741\) 25.1719i 0.924711i
\(742\) 0 0
\(743\) 40.7813 1.49612 0.748061 0.663630i \(-0.230985\pi\)
0.748061 + 0.663630i \(0.230985\pi\)
\(744\) 0 0
\(745\) −9.87305 12.4406i −0.361720 0.455788i
\(746\) 0 0
\(747\) 50.3423i 1.84193i
\(748\) 0 0
\(749\) 32.3439 + 12.7800i 1.18182 + 0.466973i
\(750\) 0 0
\(751\) 14.1304i 0.515624i 0.966195 + 0.257812i \(0.0830016\pi\)
−0.966195 + 0.257812i \(0.916998\pi\)
\(752\) 0 0
\(753\) 47.9520i 1.74747i
\(754\) 0 0
\(755\) 18.7664 14.8933i 0.682980 0.542024i
\(756\) 0 0
\(757\) 15.5846i 0.566432i −0.959056 0.283216i \(-0.908599\pi\)
0.959056 0.283216i \(-0.0914013\pi\)
\(758\) 0 0
\(759\) −58.9046 −2.13810
\(760\) 0 0
\(761\) 10.6693i 0.386763i −0.981124 0.193382i \(-0.938054\pi\)
0.981124 0.193382i \(-0.0619455\pi\)
\(762\) 0 0
\(763\) −0.316368 0.125006i −0.0114533 0.00452554i
\(764\) 0 0
\(765\) 7.22068 + 9.09847i 0.261064 + 0.328956i
\(766\) 0 0
\(767\) 12.5152 0.451896
\(768\) 0 0
\(769\) 10.6332i 0.383441i −0.981450 0.191721i \(-0.938593\pi\)
0.981450 0.191721i \(-0.0614068\pi\)
\(770\) 0 0
\(771\) 64.9738i 2.33998i
\(772\) 0 0
\(773\) −48.0043 −1.72659 −0.863297 0.504696i \(-0.831605\pi\)
−0.863297 + 0.504696i \(0.831605\pi\)
\(774\) 0 0
\(775\) 10.2289 43.8593i 0.367433 1.57547i
\(776\) 0 0
\(777\) 34.8000 + 13.7506i 1.24844 + 0.493298i
\(778\) 0 0
\(779\) 17.3506i 0.621648i
\(780\) 0 0
\(781\) 68.1912 2.44007
\(782\) 0 0
\(783\) 83.9599i 3.00048i
\(784\) 0 0
\(785\) 7.12726 + 8.98076i 0.254383 + 0.320537i
\(786\) 0 0
\(787\) 52.3628i 1.86653i 0.359185 + 0.933266i \(0.383055\pi\)
−0.359185 + 0.933266i \(0.616945\pi\)
\(788\) 0 0
\(789\) 40.0901i 1.42725i
\(790\) 0 0
\(791\) 1.99272 5.04318i 0.0708528 0.179315i
\(792\) 0 0
\(793\) 3.88516i 0.137966i
\(794\) 0 0
\(795\) 6.45371 + 8.13204i 0.228890 + 0.288414i
\(796\) 0 0
\(797\) 40.2475 1.42564 0.712820 0.701347i \(-0.247418\pi\)
0.712820 + 0.701347i \(0.247418\pi\)
\(798\) 0 0
\(799\) 4.86000i 0.171935i
\(800\) 0 0
\(801\) 7.65502i 0.270477i
\(802\) 0 0
\(803\) 41.8274i 1.47606i
\(804\) 0 0
\(805\) 6.04063 + 19.9126i 0.212904 + 0.701827i
\(806\) 0 0
\(807\) 1.09623 0.0385891
\(808\) 0 0
\(809\) −16.1962 −0.569429 −0.284714 0.958612i \(-0.591899\pi\)
−0.284714 + 0.958612i \(0.591899\pi\)
\(810\) 0 0
\(811\) −37.9985 −1.33431 −0.667154 0.744920i \(-0.732488\pi\)
−0.667154 + 0.744920i \(0.732488\pi\)
\(812\) 0 0
\(813\) 0.464484i 0.0162902i
\(814\) 0 0
\(815\) −18.5811 23.4132i −0.650866 0.820129i
\(816\) 0 0
\(817\) 10.8199 0.378540
\(818\) 0 0
\(819\) 19.3130 + 7.63115i 0.674851 + 0.266654i
\(820\) 0 0
\(821\) −25.7149 −0.897456 −0.448728 0.893668i \(-0.648123\pi\)
−0.448728 + 0.893668i \(0.648123\pi\)
\(822\) 0 0
\(823\) 48.5297 1.69164 0.845819 0.533469i \(-0.179112\pi\)
0.845819 + 0.533469i \(0.179112\pi\)
\(824\) 0 0
\(825\) −19.0185 + 81.5470i −0.662137 + 2.83910i
\(826\) 0 0
\(827\) 10.4578 0.363654 0.181827 0.983331i \(-0.441799\pi\)
0.181827 + 0.983331i \(0.441799\pi\)
\(828\) 0 0
\(829\) 13.7971i 0.479195i 0.970872 + 0.239597i \(0.0770154\pi\)
−0.970872 + 0.239597i \(0.922985\pi\)
\(830\) 0 0
\(831\) 89.4102 3.10161
\(832\) 0 0
\(833\) −4.15537 3.89139i −0.143975 0.134829i
\(834\) 0 0
\(835\) −35.6264 + 28.2736i −1.23290 + 0.978450i
\(836\) 0 0
\(837\) 93.4772i 3.23104i
\(838\) 0 0
\(839\) −40.8691 −1.41096 −0.705479 0.708731i \(-0.749268\pi\)
−0.705479 + 0.708731i \(0.749268\pi\)
\(840\) 0 0
\(841\) 36.4513 1.25694
\(842\) 0 0
\(843\) 73.0389i 2.51559i
\(844\) 0 0
\(845\) −15.9714 20.1249i −0.549434 0.692318i
\(846\) 0 0
\(847\) 46.4499 + 18.3538i 1.59604 + 0.630643i
\(848\) 0 0
\(849\) 44.8376 1.53882
\(850\) 0 0
\(851\) 16.2359i 0.556558i
\(852\) 0 0
\(853\) −19.9104 −0.681721 −0.340860 0.940114i \(-0.610718\pi\)
−0.340860 + 0.940114i \(0.610718\pi\)
\(854\) 0 0
\(855\) 59.3598 + 74.7967i 2.03006 + 2.55799i
\(856\) 0 0
\(857\) −46.2728 −1.58065 −0.790324 0.612689i \(-0.790088\pi\)
−0.790324 + 0.612689i \(0.790088\pi\)
\(858\) 0 0
\(859\) 36.6565 1.25070 0.625352 0.780343i \(-0.284955\pi\)
0.625352 + 0.780343i \(0.284955\pi\)
\(860\) 0 0
\(861\) −19.5647 7.73060i −0.666763 0.263458i
\(862\) 0 0
\(863\) −25.1182 −0.855032 −0.427516 0.904008i \(-0.640611\pi\)
−0.427516 + 0.904008i \(0.640611\pi\)
\(864\) 0 0
\(865\) −10.2590 12.9269i −0.348817 0.439529i
\(866\) 0 0
\(867\) 50.0591i 1.70009i
\(868\) 0 0
\(869\) 12.0070 0.407310
\(870\) 0 0
\(871\) 16.1524 0.547303
\(872\) 0 0
\(873\) 5.19462 0.175811
\(874\) 0 0
\(875\) 29.5171 1.93344i 0.997862 0.0653622i
\(876\) 0 0
\(877\) 26.7977i 0.904896i −0.891791 0.452448i \(-0.850551\pi\)
0.891791 0.452448i \(-0.149449\pi\)
\(878\) 0 0
\(879\) 35.1260i 1.18477i
\(880\) 0 0
\(881\) 38.7099i 1.30417i 0.758146 + 0.652084i \(0.226105\pi\)
−0.758146 + 0.652084i \(0.773895\pi\)
\(882\) 0 0
\(883\) 33.3515 1.12237 0.561183 0.827692i \(-0.310346\pi\)
0.561183 + 0.827692i \(0.310346\pi\)
\(884\) 0 0
\(885\) −54.6548 + 43.3749i −1.83720 + 1.45803i
\(886\) 0 0
\(887\) 30.9373i 1.03877i 0.854539 + 0.519386i \(0.173839\pi\)
−0.854539 + 0.519386i \(0.826161\pi\)
\(888\) 0 0
\(889\) 14.3001 + 5.65039i 0.479609 + 0.189508i
\(890\) 0 0
\(891\) 69.0629i 2.31370i
\(892\) 0 0
\(893\) 39.9531i 1.33698i
\(894\) 0 0
\(895\) 25.5787 20.2996i 0.855001 0.678541i
\(896\) 0 0
\(897\) 13.2425i 0.442155i
\(898\) 0 0
\(899\) 72.8705 2.43037
\(900\) 0 0
\(901\) 1.23242i 0.0410578i
\(902\) 0 0
\(903\) −4.82084 + 12.2006i −0.160428 + 0.406012i
\(904\) 0 0
\(905\) 19.7165 15.6473i 0.655397 0.520133i
\(906\) 0 0
\(907\) −19.1073 −0.634449 −0.317224 0.948350i \(-0.602751\pi\)
−0.317224 + 0.948350i \(0.602751\pi\)
\(908\) 0 0
\(909\) 11.2737i 0.373926i
\(910\) 0 0
\(911\) 38.5483i 1.27716i −0.769554 0.638582i \(-0.779521\pi\)
0.769554 0.638582i \(-0.220479\pi\)
\(912\) 0 0
\(913\) 43.0815 1.42579
\(914\) 0 0
\(915\) −13.4651 16.9668i −0.445144 0.560906i
\(916\) 0 0
\(917\) −39.7500 15.7065i −1.31266 0.518673i
\(918\) 0 0
\(919\) 14.5994i 0.481589i 0.970576 + 0.240795i \(0.0774080\pi\)
−0.970576 + 0.240795i \(0.922592\pi\)
\(920\) 0 0
\(921\) 42.3170 1.39439
\(922\) 0 0
\(923\) 15.3303i 0.504602i
\(924\) 0 0
\(925\) −22.4768 5.24205i −0.739031 0.172357i
\(926\) 0 0
\(927\) 64.2556i 2.11043i
\(928\) 0 0
\(929\) 18.4422i 0.605068i 0.953139 + 0.302534i \(0.0978326\pi\)
−0.953139 + 0.302534i \(0.902167\pi\)
\(930\) 0 0
\(931\) −34.1605 31.9903i −1.11956 1.04844i
\(932\) 0 0
\(933\) 73.8181i 2.41670i
\(934\) 0 0
\(935\) −7.78622 + 6.17926i −0.254636 + 0.202083i
\(936\) 0 0
\(937\) 3.27094 0.106857 0.0534285 0.998572i \(-0.482985\pi\)
0.0534285 + 0.998572i \(0.482985\pi\)
\(938\) 0 0
\(939\) 66.4549i 2.16867i
\(940\) 0 0
\(941\) 23.1015i 0.753086i −0.926399 0.376543i \(-0.877113\pi\)
0.926399 0.376543i \(-0.122887\pi\)
\(942\) 0 0
\(943\) 9.12785i 0.297244i
\(944\) 0 0
\(945\) −58.7531 + 17.8232i −1.91124 + 0.579788i
\(946\) 0 0
\(947\) −30.1476 −0.979666 −0.489833 0.871816i \(-0.662942\pi\)
−0.489833 + 0.871816i \(0.662942\pi\)
\(948\) 0 0
\(949\) 9.40334 0.305245
\(950\) 0 0
\(951\) 38.3838 1.24468
\(952\) 0 0
\(953\) 15.9517i 0.516725i 0.966048 + 0.258363i \(0.0831829\pi\)
−0.966048 + 0.258363i \(0.916817\pi\)
\(954\) 0 0
\(955\) −14.3499 + 11.3883i −0.464352 + 0.368517i
\(956\) 0 0
\(957\) −135.487 −4.37968
\(958\) 0 0
\(959\) −5.74468 + 14.5387i −0.185505 + 0.469478i
\(960\) 0 0
\(961\) 50.1307 1.61712
\(962\) 0 0
\(963\) 83.9572 2.70548
\(964\) 0 0
\(965\) −30.8888 + 24.5139i −0.994347 + 0.789129i
\(966\) 0 0
\(967\) −3.80814 −0.122461 −0.0612307 0.998124i \(-0.519503\pi\)
−0.0612307 + 0.998124i \(0.519503\pi\)
\(968\) 0 0
\(969\) 16.6596i 0.535185i
\(970\) 0 0
\(971\) −41.7036 −1.33833 −0.669167 0.743112i \(-0.733349\pi\)
−0.669167 + 0.743112i \(0.733349\pi\)
\(972\) 0 0
\(973\) 9.41808 + 3.72137i 0.301930 + 0.119302i
\(974\) 0 0
\(975\) −18.3328 4.27559i −0.587120 0.136928i
\(976\) 0 0
\(977\) 55.5801i 1.77816i 0.457748 + 0.889082i \(0.348656\pi\)
−0.457748 + 0.889082i \(0.651344\pi\)
\(978\) 0 0
\(979\) 6.55095 0.209369
\(980\) 0 0
\(981\) −0.821218 −0.0262195
\(982\) 0 0
\(983\) 57.6224i 1.83787i 0.394409 + 0.918935i \(0.370949\pi\)
−0.394409 + 0.918935i \(0.629051\pi\)
\(984\) 0 0
\(985\) −11.5675 + 9.18016i −0.368572 + 0.292504i
\(986\) 0 0
\(987\) 45.0516 + 17.8012i 1.43401 + 0.566620i
\(988\) 0 0
\(989\) 5.69217 0.181001
\(990\) 0 0
\(991\) 16.7139i 0.530934i −0.964120 0.265467i \(-0.914474\pi\)
0.964120 0.265467i \(-0.0855261\pi\)
\(992\) 0 0
\(993\) 88.5260 2.80929
\(994\) 0 0
\(995\) 8.83659 + 11.1346i 0.280139 + 0.352991i
\(996\) 0 0
\(997\) 36.3449 1.15106 0.575528 0.817782i \(-0.304797\pi\)
0.575528 + 0.817782i \(0.304797\pi\)
\(998\) 0 0
\(999\) 47.9047 1.51564
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.e.a.1119.16 yes 48
4.3 odd 2 inner 1120.2.e.a.1119.19 yes 48
5.4 even 2 inner 1120.2.e.a.1119.7 yes 48
7.6 odd 2 inner 1120.2.e.a.1119.3 48
8.3 odd 2 2240.2.e.g.2239.4 48
8.5 even 2 2240.2.e.g.2239.7 48
20.19 odd 2 inner 1120.2.e.a.1119.4 yes 48
28.27 even 2 inner 1120.2.e.a.1119.8 yes 48
35.34 odd 2 inner 1120.2.e.a.1119.20 yes 48
40.19 odd 2 2240.2.e.g.2239.19 48
40.29 even 2 2240.2.e.g.2239.16 48
56.13 odd 2 2240.2.e.g.2239.20 48
56.27 even 2 2240.2.e.g.2239.15 48
140.139 even 2 inner 1120.2.e.a.1119.15 yes 48
280.69 odd 2 2240.2.e.g.2239.3 48
280.139 even 2 2240.2.e.g.2239.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.e.a.1119.3 48 7.6 odd 2 inner
1120.2.e.a.1119.4 yes 48 20.19 odd 2 inner
1120.2.e.a.1119.7 yes 48 5.4 even 2 inner
1120.2.e.a.1119.8 yes 48 28.27 even 2 inner
1120.2.e.a.1119.15 yes 48 140.139 even 2 inner
1120.2.e.a.1119.16 yes 48 1.1 even 1 trivial
1120.2.e.a.1119.19 yes 48 4.3 odd 2 inner
1120.2.e.a.1119.20 yes 48 35.34 odd 2 inner
2240.2.e.g.2239.3 48 280.69 odd 2
2240.2.e.g.2239.4 48 8.3 odd 2
2240.2.e.g.2239.7 48 8.5 even 2
2240.2.e.g.2239.8 48 280.139 even 2
2240.2.e.g.2239.15 48 56.27 even 2
2240.2.e.g.2239.16 48 40.29 even 2
2240.2.e.g.2239.19 48 40.19 odd 2
2240.2.e.g.2239.20 48 56.13 odd 2