Properties

Label 1120.2.bz.d
Level $1120$
Weight $2$
Character orbit 1120.bz
Analytic conductor $8.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(271,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bz (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{2} + 2) q^{3} + ( - \zeta_{12}^{2} + 1) q^{5} + ( - 3 \zeta_{12}^{3} + \zeta_{12}) q^{7} + ( - 2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{11} + ( - \zeta_{12}^{3} + 2 \zeta_{12} + 3) q^{13}+ \cdots + (4 \zeta_{12}^{2} - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 2 q^{5} + 4 q^{11} + 12 q^{13} + 6 q^{17} + 18 q^{19} - 24 q^{23} - 2 q^{25} + 6 q^{31} + 12 q^{33} + 18 q^{39} + 12 q^{43} - 12 q^{47} - 22 q^{49} + 6 q^{51} + 18 q^{53} + 8 q^{55} + 36 q^{57}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(1 - \zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 1.50000 0.866025i 0 0.500000 0.866025i 0 −0.866025 + 2.50000i 0 0 0
271.2 0 1.50000 0.866025i 0 0.500000 0.866025i 0 0.866025 2.50000i 0 0 0
591.1 0 1.50000 + 0.866025i 0 0.500000 + 0.866025i 0 −0.866025 2.50000i 0 0 0
591.2 0 1.50000 + 0.866025i 0 0.500000 + 0.866025i 0 0.866025 + 2.50000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.m even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.2.bz.d 4
4.b odd 2 1 280.2.bj.d yes 4
7.d odd 6 1 1120.2.bz.a 4
8.b even 2 1 280.2.bj.a 4
8.d odd 2 1 1120.2.bz.a 4
28.f even 6 1 280.2.bj.a 4
56.j odd 6 1 280.2.bj.d yes 4
56.m even 6 1 inner 1120.2.bz.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.bj.a 4 8.b even 2 1
280.2.bj.a 4 28.f even 6 1
280.2.bj.d yes 4 4.b odd 2 1
280.2.bj.d yes 4 56.j odd 6 1
1120.2.bz.a 4 7.d odd 6 1
1120.2.bz.a 4 8.d odd 2 1
1120.2.bz.d 4 1.a even 1 1 trivial
1120.2.bz.d 4 56.m even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1120, [\chi])\):

\( T_{3}^{2} - 3T_{3} + 3 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 11T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T + 6)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$19$ \( T^{4} - 18 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$23$ \( T^{4} + 24 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$29$ \( T^{4} + 122T^{2} + 1369 \) Copy content Toggle raw display
$31$ \( T^{4} - 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$37$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 6 T - 39)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$53$ \( T^{4} - 18 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$59$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$61$ \( T^{4} - 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$67$ \( T^{4} - 2 T^{3} + \cdots + 11449 \) Copy content Toggle raw display
$71$ \( T^{4} + 104T^{2} + 2116 \) Copy content Toggle raw display
$73$ \( T^{4} + 30 T^{3} + \cdots + 4356 \) Copy content Toggle raw display
$79$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$83$ \( T^{4} + 222T^{2} + 1521 \) Copy content Toggle raw display
$89$ \( T^{4} - 30 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$97$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
show more
show less