Properties

Label 1120.2.bz.c.591.1
Level $1120$
Weight $2$
Character 1120.591
Analytic conductor $8.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(271,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bz (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,2,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 591.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1120.591
Dual form 1120.2.bz.c.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.275255 + 0.158919i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-2.50000 + 0.866025i) q^{7} +(-1.44949 - 2.51059i) q^{9} +(2.44949 - 4.24264i) q^{11} +4.44949 q^{13} +0.317837i q^{15} +(-4.22474 - 2.43916i) q^{17} +(-3.67423 + 2.12132i) q^{19} +(-0.825765 - 0.158919i) q^{21} +(3.94949 - 2.28024i) q^{23} +(-0.500000 + 0.866025i) q^{25} -1.87492i q^{27} -7.24604i q^{29} +(-0.775255 + 1.34278i) q^{31} +(1.34847 - 0.778539i) q^{33} +(-2.00000 - 1.73205i) q^{35} +(3.00000 - 1.73205i) q^{37} +(1.22474 + 0.707107i) q^{39} -8.02458i q^{41} +9.44949 q^{43} +(1.44949 - 2.51059i) q^{45} +(3.00000 + 5.19615i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-0.775255 - 1.34278i) q^{51} +(1.77526 + 1.02494i) q^{53} +4.89898 q^{55} -1.34847 q^{57} +(-3.12372 - 1.80348i) q^{59} +(-0.174235 - 0.301783i) q^{61} +(5.79796 + 5.02118i) q^{63} +(2.22474 + 3.85337i) q^{65} +(6.17423 - 10.6941i) q^{67} +1.44949 q^{69} -1.41421i q^{71} +(-9.67423 - 5.58542i) q^{73} +(-0.275255 + 0.158919i) q^{75} +(-2.44949 + 12.7279i) q^{77} +(-6.67423 + 3.85337i) q^{79} +(-4.05051 + 7.01569i) q^{81} +1.87492i q^{83} -4.87832i q^{85} +(1.15153 - 1.99451i) q^{87} +(9.39898 - 5.42650i) q^{89} +(-11.1237 + 3.85337i) q^{91} +(-0.426786 + 0.246405i) q^{93} +(-3.67423 - 2.12132i) q^{95} +11.9494i q^{97} -14.2020 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 2 q^{5} - 10 q^{7} + 4 q^{9} + 8 q^{13} - 12 q^{17} - 18 q^{21} + 6 q^{23} - 2 q^{25} - 8 q^{31} - 24 q^{33} - 8 q^{35} + 12 q^{37} + 28 q^{43} - 4 q^{45} + 12 q^{47} + 22 q^{49} - 8 q^{51}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.275255 + 0.158919i 0.158919 + 0.0917517i 0.577350 0.816497i \(-0.304087\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) −1.44949 2.51059i −0.483163 0.836863i
\(10\) 0 0
\(11\) 2.44949 4.24264i 0.738549 1.27920i −0.214600 0.976702i \(-0.568845\pi\)
0.953149 0.302502i \(-0.0978220\pi\)
\(12\) 0 0
\(13\) 4.44949 1.23407 0.617033 0.786937i \(-0.288334\pi\)
0.617033 + 0.786937i \(0.288334\pi\)
\(14\) 0 0
\(15\) 0.317837i 0.0820652i
\(16\) 0 0
\(17\) −4.22474 2.43916i −1.02465 0.591583i −0.109203 0.994019i \(-0.534830\pi\)
−0.915448 + 0.402437i \(0.868163\pi\)
\(18\) 0 0
\(19\) −3.67423 + 2.12132i −0.842927 + 0.486664i −0.858258 0.513218i \(-0.828453\pi\)
0.0153309 + 0.999882i \(0.495120\pi\)
\(20\) 0 0
\(21\) −0.825765 0.158919i −0.180197 0.0346789i
\(22\) 0 0
\(23\) 3.94949 2.28024i 0.823526 0.475463i −0.0281052 0.999605i \(-0.508947\pi\)
0.851631 + 0.524142i \(0.175614\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.87492i 0.360828i
\(28\) 0 0
\(29\) 7.24604i 1.34556i −0.739844 0.672778i \(-0.765101\pi\)
0.739844 0.672778i \(-0.234899\pi\)
\(30\) 0 0
\(31\) −0.775255 + 1.34278i −0.139240 + 0.241171i −0.927209 0.374544i \(-0.877799\pi\)
0.787969 + 0.615715i \(0.211133\pi\)
\(32\) 0 0
\(33\) 1.34847 0.778539i 0.234738 0.135526i
\(34\) 0 0
\(35\) −2.00000 1.73205i −0.338062 0.292770i
\(36\) 0 0
\(37\) 3.00000 1.73205i 0.493197 0.284747i −0.232703 0.972548i \(-0.574757\pi\)
0.725900 + 0.687800i \(0.241424\pi\)
\(38\) 0 0
\(39\) 1.22474 + 0.707107i 0.196116 + 0.113228i
\(40\) 0 0
\(41\) 8.02458i 1.25323i −0.779329 0.626614i \(-0.784440\pi\)
0.779329 0.626614i \(-0.215560\pi\)
\(42\) 0 0
\(43\) 9.44949 1.44103 0.720517 0.693437i \(-0.243905\pi\)
0.720517 + 0.693437i \(0.243905\pi\)
\(44\) 0 0
\(45\) 1.44949 2.51059i 0.216077 0.374257i
\(46\) 0 0
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) −0.775255 1.34278i −0.108557 0.188027i
\(52\) 0 0
\(53\) 1.77526 + 1.02494i 0.243850 + 0.140787i 0.616945 0.787006i \(-0.288370\pi\)
−0.373095 + 0.927793i \(0.621703\pi\)
\(54\) 0 0
\(55\) 4.89898 0.660578
\(56\) 0 0
\(57\) −1.34847 −0.178609
\(58\) 0 0
\(59\) −3.12372 1.80348i −0.406674 0.234794i 0.282686 0.959213i \(-0.408775\pi\)
−0.689360 + 0.724419i \(0.742108\pi\)
\(60\) 0 0
\(61\) −0.174235 0.301783i −0.0223085 0.0386394i 0.854656 0.519195i \(-0.173768\pi\)
−0.876964 + 0.480556i \(0.840435\pi\)
\(62\) 0 0
\(63\) 5.79796 + 5.02118i 0.730474 + 0.632609i
\(64\) 0 0
\(65\) 2.22474 + 3.85337i 0.275946 + 0.477952i
\(66\) 0 0
\(67\) 6.17423 10.6941i 0.754303 1.30649i −0.191417 0.981509i \(-0.561308\pi\)
0.945720 0.324982i \(-0.105358\pi\)
\(68\) 0 0
\(69\) 1.44949 0.174498
\(70\) 0 0
\(71\) 1.41421i 0.167836i −0.996473 0.0839181i \(-0.973257\pi\)
0.996473 0.0839181i \(-0.0267434\pi\)
\(72\) 0 0
\(73\) −9.67423 5.58542i −1.13228 0.653724i −0.187775 0.982212i \(-0.560128\pi\)
−0.944508 + 0.328488i \(0.893461\pi\)
\(74\) 0 0
\(75\) −0.275255 + 0.158919i −0.0317837 + 0.0183503i
\(76\) 0 0
\(77\) −2.44949 + 12.7279i −0.279145 + 1.45048i
\(78\) 0 0
\(79\) −6.67423 + 3.85337i −0.750910 + 0.433538i −0.826023 0.563637i \(-0.809402\pi\)
0.0751126 + 0.997175i \(0.476068\pi\)
\(80\) 0 0
\(81\) −4.05051 + 7.01569i −0.450057 + 0.779521i
\(82\) 0 0
\(83\) 1.87492i 0.205799i 0.994692 + 0.102899i \(0.0328120\pi\)
−0.994692 + 0.102899i \(0.967188\pi\)
\(84\) 0 0
\(85\) 4.87832i 0.529128i
\(86\) 0 0
\(87\) 1.15153 1.99451i 0.123457 0.213834i
\(88\) 0 0
\(89\) 9.39898 5.42650i 0.996290 0.575208i 0.0891414 0.996019i \(-0.471588\pi\)
0.907148 + 0.420811i \(0.138254\pi\)
\(90\) 0 0
\(91\) −11.1237 + 3.85337i −1.16608 + 0.403943i
\(92\) 0 0
\(93\) −0.426786 + 0.246405i −0.0442556 + 0.0255510i
\(94\) 0 0
\(95\) −3.67423 2.12132i −0.376969 0.217643i
\(96\) 0 0
\(97\) 11.9494i 1.21328i 0.794978 + 0.606638i \(0.207482\pi\)
−0.794978 + 0.606638i \(0.792518\pi\)
\(98\) 0 0
\(99\) −14.2020 −1.42736
\(100\) 0 0
\(101\) −7.62372 + 13.2047i −0.758589 + 1.31391i 0.184981 + 0.982742i \(0.440778\pi\)
−0.943570 + 0.331173i \(0.892556\pi\)
\(102\) 0 0
\(103\) −8.39898 14.5475i −0.827576 1.43340i −0.899935 0.436025i \(-0.856386\pi\)
0.0723585 0.997379i \(-0.476947\pi\)
\(104\) 0 0
\(105\) −0.275255 0.794593i −0.0268622 0.0775443i
\(106\) 0 0
\(107\) −2.72474 4.71940i −0.263411 0.456241i 0.703735 0.710462i \(-0.251514\pi\)
−0.967146 + 0.254221i \(0.918181\pi\)
\(108\) 0 0
\(109\) 6.82577 + 3.94086i 0.653790 + 0.377466i 0.789907 0.613227i \(-0.210129\pi\)
−0.136117 + 0.990693i \(0.543462\pi\)
\(110\) 0 0
\(111\) 1.10102 0.104504
\(112\) 0 0
\(113\) 8.44949 0.794861 0.397431 0.917632i \(-0.369902\pi\)
0.397431 + 0.917632i \(0.369902\pi\)
\(114\) 0 0
\(115\) 3.94949 + 2.28024i 0.368292 + 0.212633i
\(116\) 0 0
\(117\) −6.44949 11.1708i −0.596256 1.03274i
\(118\) 0 0
\(119\) 12.6742 + 2.43916i 1.16185 + 0.223597i
\(120\) 0 0
\(121\) −6.50000 11.2583i −0.590909 1.02348i
\(122\) 0 0
\(123\) 1.27526 2.20881i 0.114986 0.199161i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.92820i 0.614779i −0.951584 0.307389i \(-0.900545\pi\)
0.951584 0.307389i \(-0.0994554\pi\)
\(128\) 0 0
\(129\) 2.60102 + 1.50170i 0.229007 + 0.132217i
\(130\) 0 0
\(131\) 9.79796 5.65685i 0.856052 0.494242i −0.00663646 0.999978i \(-0.502112\pi\)
0.862688 + 0.505736i \(0.168779\pi\)
\(132\) 0 0
\(133\) 7.34847 8.48528i 0.637193 0.735767i
\(134\) 0 0
\(135\) 1.62372 0.937458i 0.139748 0.0806835i
\(136\) 0 0
\(137\) 4.89898 8.48528i 0.418548 0.724947i −0.577246 0.816571i \(-0.695872\pi\)
0.995794 + 0.0916241i \(0.0292058\pi\)
\(138\) 0 0
\(139\) 6.92820i 0.587643i 0.955860 + 0.293821i \(0.0949270\pi\)
−0.955860 + 0.293821i \(0.905073\pi\)
\(140\) 0 0
\(141\) 1.90702i 0.160600i
\(142\) 0 0
\(143\) 10.8990 18.8776i 0.911418 1.57862i
\(144\) 0 0
\(145\) 6.27526 3.62302i 0.521132 0.300875i
\(146\) 0 0
\(147\) 2.20204 0.317837i 0.181621 0.0262148i
\(148\) 0 0
\(149\) −16.6237 + 9.59771i −1.36187 + 0.786275i −0.989873 0.141959i \(-0.954660\pi\)
−0.371996 + 0.928234i \(0.621327\pi\)
\(150\) 0 0
\(151\) −6.67423 3.85337i −0.543142 0.313583i 0.203210 0.979135i \(-0.434863\pi\)
−0.746351 + 0.665552i \(0.768196\pi\)
\(152\) 0 0
\(153\) 14.1421i 1.14332i
\(154\) 0 0
\(155\) −1.55051 −0.124540
\(156\) 0 0
\(157\) −5.34847 + 9.26382i −0.426854 + 0.739333i −0.996592 0.0824935i \(-0.973712\pi\)
0.569737 + 0.821827i \(0.307045\pi\)
\(158\) 0 0
\(159\) 0.325765 + 0.564242i 0.0258349 + 0.0447473i
\(160\) 0 0
\(161\) −7.89898 + 9.12096i −0.622527 + 0.718832i
\(162\) 0 0
\(163\) 2.89898 + 5.02118i 0.227066 + 0.393289i 0.956937 0.290295i \(-0.0937535\pi\)
−0.729872 + 0.683584i \(0.760420\pi\)
\(164\) 0 0
\(165\) 1.34847 + 0.778539i 0.104978 + 0.0606092i
\(166\) 0 0
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 6.79796 0.522920
\(170\) 0 0
\(171\) 10.6515 + 6.14966i 0.814543 + 0.470277i
\(172\) 0 0
\(173\) 5.44949 + 9.43879i 0.414317 + 0.717618i 0.995356 0.0962572i \(-0.0306871\pi\)
−0.581039 + 0.813875i \(0.697354\pi\)
\(174\) 0 0
\(175\) 0.500000 2.59808i 0.0377964 0.196396i
\(176\) 0 0
\(177\) −0.573214 0.992836i −0.0430854 0.0746261i
\(178\) 0 0
\(179\) 4.77526 8.27098i 0.356919 0.618202i −0.630525 0.776169i \(-0.717160\pi\)
0.987444 + 0.157966i \(0.0504938\pi\)
\(180\) 0 0
\(181\) 12.3485 0.917854 0.458927 0.888474i \(-0.348234\pi\)
0.458927 + 0.888474i \(0.348234\pi\)
\(182\) 0 0
\(183\) 0.110756i 0.00818736i
\(184\) 0 0
\(185\) 3.00000 + 1.73205i 0.220564 + 0.127343i
\(186\) 0 0
\(187\) −20.6969 + 11.9494i −1.51351 + 0.873825i
\(188\) 0 0
\(189\) 1.62372 + 4.68729i 0.118109 + 0.340950i
\(190\) 0 0
\(191\) −22.8990 + 13.2207i −1.65691 + 0.956619i −0.682784 + 0.730620i \(0.739231\pi\)
−0.974128 + 0.225999i \(0.927435\pi\)
\(192\) 0 0
\(193\) −11.3485 + 19.6561i −0.816881 + 1.41488i 0.0910889 + 0.995843i \(0.470965\pi\)
−0.907970 + 0.419036i \(0.862368\pi\)
\(194\) 0 0
\(195\) 1.41421i 0.101274i
\(196\) 0 0
\(197\) 0.921404i 0.0656473i −0.999461 0.0328236i \(-0.989550\pi\)
0.999461 0.0328236i \(-0.0104500\pi\)
\(198\) 0 0
\(199\) −12.3485 + 21.3882i −0.875360 + 1.51617i −0.0189808 + 0.999820i \(0.506042\pi\)
−0.856379 + 0.516348i \(0.827291\pi\)
\(200\) 0 0
\(201\) 3.39898 1.96240i 0.239746 0.138417i
\(202\) 0 0
\(203\) 6.27526 + 18.1151i 0.440437 + 1.27143i
\(204\) 0 0
\(205\) 6.94949 4.01229i 0.485373 0.280230i
\(206\) 0 0
\(207\) −11.4495 6.61037i −0.795795 0.459452i
\(208\) 0 0
\(209\) 20.7846i 1.43770i
\(210\) 0 0
\(211\) −8.24745 −0.567778 −0.283889 0.958857i \(-0.591625\pi\)
−0.283889 + 0.958857i \(0.591625\pi\)
\(212\) 0 0
\(213\) 0.224745 0.389270i 0.0153993 0.0266723i
\(214\) 0 0
\(215\) 4.72474 + 8.18350i 0.322225 + 0.558110i
\(216\) 0 0
\(217\) 0.775255 4.02834i 0.0526277 0.273462i
\(218\) 0 0
\(219\) −1.77526 3.07483i −0.119961 0.207778i
\(220\) 0 0
\(221\) −18.7980 10.8530i −1.26449 0.730052i
\(222\) 0 0
\(223\) 24.6969 1.65383 0.826915 0.562327i \(-0.190094\pi\)
0.826915 + 0.562327i \(0.190094\pi\)
\(224\) 0 0
\(225\) 2.89898 0.193265
\(226\) 0 0
\(227\) 9.24745 + 5.33902i 0.613775 + 0.354363i 0.774441 0.632646i \(-0.218031\pi\)
−0.160667 + 0.987009i \(0.551364\pi\)
\(228\) 0 0
\(229\) −8.34847 14.4600i −0.551682 0.955542i −0.998153 0.0607438i \(-0.980653\pi\)
0.446471 0.894798i \(-0.352681\pi\)
\(230\) 0 0
\(231\) −2.69694 + 3.11416i −0.177446 + 0.204896i
\(232\) 0 0
\(233\) 0.123724 + 0.214297i 0.00810545 + 0.0140391i 0.870050 0.492964i \(-0.164087\pi\)
−0.861944 + 0.507003i \(0.830753\pi\)
\(234\) 0 0
\(235\) −3.00000 + 5.19615i −0.195698 + 0.338960i
\(236\) 0 0
\(237\) −2.44949 −0.159111
\(238\) 0 0
\(239\) 3.32124i 0.214833i −0.994214 0.107416i \(-0.965742\pi\)
0.994214 0.107416i \(-0.0342578\pi\)
\(240\) 0 0
\(241\) −17.6969 10.2173i −1.13996 0.658156i −0.193539 0.981093i \(-0.561997\pi\)
−0.946421 + 0.322936i \(0.895330\pi\)
\(242\) 0 0
\(243\) −7.10102 + 4.09978i −0.455531 + 0.263001i
\(244\) 0 0
\(245\) 6.50000 + 2.59808i 0.415270 + 0.165985i
\(246\) 0 0
\(247\) −16.3485 + 9.43879i −1.04023 + 0.600576i
\(248\) 0 0
\(249\) −0.297959 + 0.516080i −0.0188824 + 0.0327052i
\(250\) 0 0
\(251\) 13.7135i 0.865591i −0.901492 0.432796i \(-0.857527\pi\)
0.901492 0.432796i \(-0.142473\pi\)
\(252\) 0 0
\(253\) 22.3417i 1.40461i
\(254\) 0 0
\(255\) 0.775255 1.34278i 0.0485484 0.0840882i
\(256\) 0 0
\(257\) −11.4495 + 6.61037i −0.714200 + 0.412343i −0.812614 0.582802i \(-0.801956\pi\)
0.0984145 + 0.995146i \(0.468623\pi\)
\(258\) 0 0
\(259\) −6.00000 + 6.92820i −0.372822 + 0.430498i
\(260\) 0 0
\(261\) −18.1918 + 10.5031i −1.12605 + 0.650123i
\(262\) 0 0
\(263\) 4.74745 + 2.74094i 0.292740 + 0.169014i 0.639177 0.769060i \(-0.279275\pi\)
−0.346437 + 0.938073i \(0.612608\pi\)
\(264\) 0 0
\(265\) 2.04989i 0.125924i
\(266\) 0 0
\(267\) 3.44949 0.211105
\(268\) 0 0
\(269\) 8.17423 14.1582i 0.498392 0.863240i −0.501606 0.865096i \(-0.667257\pi\)
0.999998 + 0.00185590i \(0.000590752\pi\)
\(270\) 0 0
\(271\) 1.67423 + 2.89986i 0.101703 + 0.176154i 0.912386 0.409330i \(-0.134238\pi\)
−0.810684 + 0.585484i \(0.800904\pi\)
\(272\) 0 0
\(273\) −3.67423 0.707107i −0.222375 0.0427960i
\(274\) 0 0
\(275\) 2.44949 + 4.24264i 0.147710 + 0.255841i
\(276\) 0 0
\(277\) −5.02270 2.89986i −0.301785 0.174236i 0.341459 0.939896i \(-0.389079\pi\)
−0.643245 + 0.765661i \(0.722412\pi\)
\(278\) 0 0
\(279\) 4.49490 0.269102
\(280\) 0 0
\(281\) 16.8990 1.00811 0.504054 0.863672i \(-0.331841\pi\)
0.504054 + 0.863672i \(0.331841\pi\)
\(282\) 0 0
\(283\) 7.34847 + 4.24264i 0.436821 + 0.252199i 0.702248 0.711932i \(-0.252180\pi\)
−0.265427 + 0.964131i \(0.585513\pi\)
\(284\) 0 0
\(285\) −0.674235 1.16781i −0.0399382 0.0691750i
\(286\) 0 0
\(287\) 6.94949 + 20.0614i 0.410215 + 1.18419i
\(288\) 0 0
\(289\) 3.39898 + 5.88721i 0.199940 + 0.346306i
\(290\) 0 0
\(291\) −1.89898 + 3.28913i −0.111320 + 0.192812i
\(292\) 0 0
\(293\) 24.4949 1.43101 0.715504 0.698609i \(-0.246197\pi\)
0.715504 + 0.698609i \(0.246197\pi\)
\(294\) 0 0
\(295\) 3.60697i 0.210006i
\(296\) 0 0
\(297\) −7.95459 4.59259i −0.461572 0.266489i
\(298\) 0 0
\(299\) 17.5732 10.1459i 1.01629 0.586753i
\(300\) 0 0
\(301\) −23.6237 + 8.18350i −1.36165 + 0.471689i
\(302\) 0 0
\(303\) −4.19694 + 2.42310i −0.241108 + 0.139204i
\(304\) 0 0
\(305\) 0.174235 0.301783i 0.00997664 0.0172801i
\(306\) 0 0
\(307\) 27.9664i 1.59613i 0.602572 + 0.798064i \(0.294143\pi\)
−0.602572 + 0.798064i \(0.705857\pi\)
\(308\) 0 0
\(309\) 5.33902i 0.303726i
\(310\) 0 0
\(311\) −5.57321 + 9.65309i −0.316028 + 0.547377i −0.979655 0.200687i \(-0.935683\pi\)
0.663628 + 0.748063i \(0.269016\pi\)
\(312\) 0 0
\(313\) −5.69694 + 3.28913i −0.322010 + 0.185913i −0.652288 0.757971i \(-0.726191\pi\)
0.330278 + 0.943884i \(0.392857\pi\)
\(314\) 0 0
\(315\) −1.44949 + 7.53177i −0.0816695 + 0.424367i
\(316\) 0 0
\(317\) −0.426786 + 0.246405i −0.0239707 + 0.0138395i −0.511937 0.859023i \(-0.671072\pi\)
0.487967 + 0.872862i \(0.337739\pi\)
\(318\) 0 0
\(319\) −30.7423 17.7491i −1.72124 0.993759i
\(320\) 0 0
\(321\) 1.73205i 0.0966736i
\(322\) 0 0
\(323\) 20.6969 1.15161
\(324\) 0 0
\(325\) −2.22474 + 3.85337i −0.123407 + 0.213747i
\(326\) 0 0
\(327\) 1.25255 + 2.16948i 0.0692662 + 0.119973i
\(328\) 0 0
\(329\) −12.0000 10.3923i −0.661581 0.572946i
\(330\) 0 0
\(331\) −1.57321 2.72489i −0.0864717 0.149773i 0.819546 0.573014i \(-0.194226\pi\)
−0.906017 + 0.423240i \(0.860893\pi\)
\(332\) 0 0
\(333\) −8.69694 5.02118i −0.476589 0.275159i
\(334\) 0 0
\(335\) 12.3485 0.674669
\(336\) 0 0
\(337\) 20.2474 1.10295 0.551474 0.834192i \(-0.314065\pi\)
0.551474 + 0.834192i \(0.314065\pi\)
\(338\) 0 0
\(339\) 2.32577 + 1.34278i 0.126318 + 0.0729299i
\(340\) 0 0
\(341\) 3.79796 + 6.57826i 0.205671 + 0.356233i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0.724745 + 1.25529i 0.0390190 + 0.0675828i
\(346\) 0 0
\(347\) −3.82577 + 6.62642i −0.205378 + 0.355725i −0.950253 0.311479i \(-0.899176\pi\)
0.744875 + 0.667204i \(0.232509\pi\)
\(348\) 0 0
\(349\) −7.24745 −0.387947 −0.193974 0.981007i \(-0.562138\pi\)
−0.193974 + 0.981007i \(0.562138\pi\)
\(350\) 0 0
\(351\) 8.34242i 0.445285i
\(352\) 0 0
\(353\) 29.8207 + 17.2170i 1.58719 + 0.916367i 0.993767 + 0.111479i \(0.0355587\pi\)
0.593427 + 0.804888i \(0.297775\pi\)
\(354\) 0 0
\(355\) 1.22474 0.707107i 0.0650027 0.0375293i
\(356\) 0 0
\(357\) 3.10102 + 2.68556i 0.164123 + 0.142135i
\(358\) 0 0
\(359\) 19.7753 11.4172i 1.04370 0.602579i 0.122820 0.992429i \(-0.460806\pi\)
0.920879 + 0.389850i \(0.127473\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 0 0
\(363\) 4.13188i 0.216868i
\(364\) 0 0
\(365\) 11.1708i 0.584709i
\(366\) 0 0
\(367\) −4.05051 + 7.01569i −0.211435 + 0.366216i −0.952164 0.305588i \(-0.901147\pi\)
0.740729 + 0.671804i \(0.234480\pi\)
\(368\) 0 0
\(369\) −20.1464 + 11.6315i −1.04878 + 0.605514i
\(370\) 0 0
\(371\) −5.32577 1.02494i −0.276500 0.0532124i
\(372\) 0 0
\(373\) 15.0000 8.66025i 0.776671 0.448411i −0.0585785 0.998283i \(-0.518657\pi\)
0.835249 + 0.549872i \(0.185323\pi\)
\(374\) 0 0
\(375\) −0.275255 0.158919i −0.0142141 0.00820652i
\(376\) 0 0
\(377\) 32.2412i 1.66051i
\(378\) 0 0
\(379\) 17.3485 0.891131 0.445566 0.895249i \(-0.353003\pi\)
0.445566 + 0.895249i \(0.353003\pi\)
\(380\) 0 0
\(381\) 1.10102 1.90702i 0.0564070 0.0976998i
\(382\) 0 0
\(383\) −2.60102 4.50510i −0.132906 0.230200i 0.791890 0.610664i \(-0.209097\pi\)
−0.924796 + 0.380464i \(0.875764\pi\)
\(384\) 0 0
\(385\) −12.2474 + 4.24264i −0.624188 + 0.216225i
\(386\) 0 0
\(387\) −13.6969 23.7238i −0.696255 1.20595i
\(388\) 0 0
\(389\) 9.79796 + 5.65685i 0.496776 + 0.286814i 0.727381 0.686234i \(-0.240737\pi\)
−0.230605 + 0.973047i \(0.574071\pi\)
\(390\) 0 0
\(391\) −22.2474 −1.12510
\(392\) 0 0
\(393\) 3.59592 0.181390
\(394\) 0 0
\(395\) −6.67423 3.85337i −0.335817 0.193884i
\(396\) 0 0
\(397\) 0.348469 + 0.603566i 0.0174892 + 0.0302921i 0.874638 0.484777i \(-0.161099\pi\)
−0.857148 + 0.515070i \(0.827766\pi\)
\(398\) 0 0
\(399\) 3.37117 1.16781i 0.168770 0.0584636i
\(400\) 0 0
\(401\) 15.3990 + 26.6718i 0.768988 + 1.33193i 0.938112 + 0.346332i \(0.112573\pi\)
−0.169124 + 0.985595i \(0.554094\pi\)
\(402\) 0 0
\(403\) −3.44949 + 5.97469i −0.171831 + 0.297621i
\(404\) 0 0
\(405\) −8.10102 −0.402543
\(406\) 0 0
\(407\) 16.9706i 0.841200i
\(408\) 0 0
\(409\) −10.1969 5.88721i −0.504206 0.291104i 0.226243 0.974071i \(-0.427356\pi\)
−0.730449 + 0.682967i \(0.760689\pi\)
\(410\) 0 0
\(411\) 2.69694 1.55708i 0.133030 0.0768050i
\(412\) 0 0
\(413\) 9.37117 + 1.80348i 0.461125 + 0.0887436i
\(414\) 0 0
\(415\) −1.62372 + 0.937458i −0.0797055 + 0.0460180i
\(416\) 0 0
\(417\) −1.10102 + 1.90702i −0.0539172 + 0.0933873i
\(418\) 0 0
\(419\) 16.6848i 0.815107i 0.913181 + 0.407554i \(0.133618\pi\)
−0.913181 + 0.407554i \(0.866382\pi\)
\(420\) 0 0
\(421\) 4.06767i 0.198246i 0.995075 + 0.0991230i \(0.0316037\pi\)
−0.995075 + 0.0991230i \(0.968396\pi\)
\(422\) 0 0
\(423\) 8.69694 15.0635i 0.422860 0.732414i
\(424\) 0 0
\(425\) 4.22474 2.43916i 0.204930 0.118317i
\(426\) 0 0
\(427\) 0.696938 + 0.603566i 0.0337272 + 0.0292086i
\(428\) 0 0
\(429\) 6.00000 3.46410i 0.289683 0.167248i
\(430\) 0 0
\(431\) 8.20204 + 4.73545i 0.395078 + 0.228099i 0.684358 0.729146i \(-0.260082\pi\)
−0.289280 + 0.957245i \(0.593416\pi\)
\(432\) 0 0
\(433\) 7.70674i 0.370362i 0.982704 + 0.185181i \(0.0592872\pi\)
−0.982704 + 0.185181i \(0.940713\pi\)
\(434\) 0 0
\(435\) 2.30306 0.110423
\(436\) 0 0
\(437\) −9.67423 + 16.7563i −0.462781 + 0.801561i
\(438\) 0 0
\(439\) −5.55051 9.61377i −0.264911 0.458840i 0.702629 0.711556i \(-0.252009\pi\)
−0.967540 + 0.252716i \(0.918676\pi\)
\(440\) 0 0
\(441\) −18.8434 7.53177i −0.897303 0.358656i
\(442\) 0 0
\(443\) −8.17423 14.1582i −0.388370 0.672676i 0.603861 0.797090i \(-0.293628\pi\)
−0.992230 + 0.124414i \(0.960295\pi\)
\(444\) 0 0
\(445\) 9.39898 + 5.42650i 0.445554 + 0.257241i
\(446\) 0 0
\(447\) −6.10102 −0.288568
\(448\) 0 0
\(449\) −1.40408 −0.0662627 −0.0331314 0.999451i \(-0.510548\pi\)
−0.0331314 + 0.999451i \(0.510548\pi\)
\(450\) 0 0
\(451\) −34.0454 19.6561i −1.60314 0.925571i
\(452\) 0 0
\(453\) −1.22474 2.12132i −0.0575435 0.0996683i
\(454\) 0 0
\(455\) −8.89898 7.70674i −0.417191 0.361298i
\(456\) 0 0
\(457\) −4.79796 8.31031i −0.224439 0.388740i 0.731712 0.681614i \(-0.238722\pi\)
−0.956151 + 0.292874i \(0.905388\pi\)
\(458\) 0 0
\(459\) −4.57321 + 7.92104i −0.213459 + 0.369722i
\(460\) 0 0
\(461\) 38.6969 1.80230 0.901148 0.433511i \(-0.142726\pi\)
0.901148 + 0.433511i \(0.142726\pi\)
\(462\) 0 0
\(463\) 12.1244i 0.563467i −0.959493 0.281733i \(-0.909091\pi\)
0.959493 0.281733i \(-0.0909093\pi\)
\(464\) 0 0
\(465\) −0.426786 0.246405i −0.0197917 0.0114268i
\(466\) 0 0
\(467\) 19.6237 11.3298i 0.908078 0.524279i 0.0282655 0.999600i \(-0.491002\pi\)
0.879812 + 0.475322i \(0.157668\pi\)
\(468\) 0 0
\(469\) −6.17423 + 32.0823i −0.285100 + 1.48142i
\(470\) 0 0
\(471\) −2.94439 + 1.69994i −0.135670 + 0.0783292i
\(472\) 0 0
\(473\) 23.1464 40.0908i 1.06427 1.84338i
\(474\) 0 0
\(475\) 4.24264i 0.194666i
\(476\) 0 0
\(477\) 5.94258i 0.272092i
\(478\) 0 0
\(479\) −4.22474 + 7.31747i −0.193034 + 0.334344i −0.946254 0.323424i \(-0.895166\pi\)
0.753221 + 0.657768i \(0.228499\pi\)
\(480\) 0 0
\(481\) 13.3485 7.70674i 0.608638 0.351397i
\(482\) 0 0
\(483\) −3.62372 + 1.25529i −0.164885 + 0.0571179i
\(484\) 0 0
\(485\) −10.3485 + 5.97469i −0.469900 + 0.271297i
\(486\) 0 0
\(487\) 26.3939 + 15.2385i 1.19602 + 0.690523i 0.959666 0.281144i \(-0.0907138\pi\)
0.236355 + 0.971667i \(0.424047\pi\)
\(488\) 0 0
\(489\) 1.84281i 0.0833346i
\(490\) 0 0
\(491\) −0.853572 −0.0385212 −0.0192606 0.999814i \(-0.506131\pi\)
−0.0192606 + 0.999814i \(0.506131\pi\)
\(492\) 0 0
\(493\) −17.6742 + 30.6127i −0.796007 + 1.37873i
\(494\) 0 0
\(495\) −7.10102 12.2993i −0.319167 0.552814i
\(496\) 0 0
\(497\) 1.22474 + 3.53553i 0.0549373 + 0.158590i
\(498\) 0 0
\(499\) −13.6969 23.7238i −0.613159 1.06202i −0.990704 0.136032i \(-0.956565\pi\)
0.377545 0.925991i \(-0.376768\pi\)
\(500\) 0 0
\(501\) −0.825765 0.476756i −0.0368925 0.0212999i
\(502\) 0 0
\(503\) 23.6969 1.05659 0.528297 0.849060i \(-0.322831\pi\)
0.528297 + 0.849060i \(0.322831\pi\)
\(504\) 0 0
\(505\) −15.2474 −0.678503
\(506\) 0 0
\(507\) 1.87117 + 1.08032i 0.0831017 + 0.0479788i
\(508\) 0 0
\(509\) 8.72474 + 15.1117i 0.386718 + 0.669814i 0.992006 0.126192i \(-0.0402755\pi\)
−0.605288 + 0.796006i \(0.706942\pi\)
\(510\) 0 0
\(511\) 29.0227 + 5.58542i 1.28389 + 0.247085i
\(512\) 0 0
\(513\) 3.97730 + 6.88888i 0.175602 + 0.304151i
\(514\) 0 0
\(515\) 8.39898 14.5475i 0.370103 0.641038i
\(516\) 0 0
\(517\) 29.3939 1.29274
\(518\) 0 0
\(519\) 3.46410i 0.152057i
\(520\) 0 0
\(521\) −9.24745 5.33902i −0.405138 0.233907i 0.283560 0.958954i \(-0.408484\pi\)
−0.688699 + 0.725048i \(0.741818\pi\)
\(522\) 0 0
\(523\) 10.3485 5.97469i 0.452507 0.261255i −0.256381 0.966576i \(-0.582530\pi\)
0.708888 + 0.705321i \(0.249197\pi\)
\(524\) 0 0
\(525\) 0.550510 0.635674i 0.0240262 0.0277431i
\(526\) 0 0
\(527\) 6.55051 3.78194i 0.285345 0.164744i
\(528\) 0 0
\(529\) −1.10102 + 1.90702i −0.0478705 + 0.0829141i
\(530\) 0 0
\(531\) 10.4565i 0.453774i
\(532\) 0 0
\(533\) 35.7053i 1.54657i
\(534\) 0 0
\(535\) 2.72474 4.71940i 0.117801 0.204037i
\(536\) 0 0
\(537\) 2.62883 1.51775i 0.113442 0.0654959i
\(538\) 0 0
\(539\) −4.89898 33.9411i −0.211014 1.46195i
\(540\) 0 0
\(541\) −24.5227 + 14.1582i −1.05431 + 0.608708i −0.923854 0.382746i \(-0.874979\pi\)
−0.130460 + 0.991454i \(0.541645\pi\)
\(542\) 0 0
\(543\) 3.39898 + 1.96240i 0.145864 + 0.0842147i
\(544\) 0 0
\(545\) 7.88171i 0.337616i
\(546\) 0 0
\(547\) −9.04541 −0.386754 −0.193377 0.981125i \(-0.561944\pi\)
−0.193377 + 0.981125i \(0.561944\pi\)
\(548\) 0 0
\(549\) −0.505103 + 0.874863i −0.0215573 + 0.0373383i
\(550\) 0 0
\(551\) 15.3712 + 26.6237i 0.654834 + 1.13421i
\(552\) 0 0
\(553\) 13.3485 15.4135i 0.567635 0.655448i
\(554\) 0 0
\(555\) 0.550510 + 0.953512i 0.0233679 + 0.0404743i
\(556\) 0 0
\(557\) −13.8990 8.02458i −0.588919 0.340012i 0.175751 0.984435i \(-0.443765\pi\)
−0.764670 + 0.644422i \(0.777098\pi\)
\(558\) 0 0
\(559\) 42.0454 1.77833
\(560\) 0 0
\(561\) −7.59592 −0.320700
\(562\) 0 0
\(563\) −16.6237 9.59771i −0.700606 0.404495i 0.106967 0.994263i \(-0.465886\pi\)
−0.807573 + 0.589767i \(0.799219\pi\)
\(564\) 0 0
\(565\) 4.22474 + 7.31747i 0.177736 + 0.307848i
\(566\) 0 0
\(567\) 4.05051 21.0471i 0.170105 0.883894i
\(568\) 0 0
\(569\) −20.6969 35.8481i −0.867661 1.50283i −0.864381 0.502838i \(-0.832289\pi\)
−0.00328010 0.999995i \(-0.501044\pi\)
\(570\) 0 0
\(571\) 5.22474 9.04952i 0.218649 0.378711i −0.735746 0.677257i \(-0.763168\pi\)
0.954395 + 0.298546i \(0.0965018\pi\)
\(572\) 0 0
\(573\) −8.40408 −0.351086
\(574\) 0 0
\(575\) 4.56048i 0.190185i
\(576\) 0 0
\(577\) 25.3485 + 14.6349i 1.05527 + 0.609261i 0.924120 0.382102i \(-0.124800\pi\)
0.131150 + 0.991362i \(0.458133\pi\)
\(578\) 0 0
\(579\) −6.24745 + 3.60697i −0.259635 + 0.149900i
\(580\) 0 0
\(581\) −1.62372 4.68729i −0.0673634 0.194461i
\(582\) 0 0
\(583\) 8.69694 5.02118i 0.360190 0.207956i
\(584\) 0 0
\(585\) 6.44949 11.1708i 0.266654 0.461858i
\(586\) 0 0
\(587\) 5.30691i 0.219040i −0.993985 0.109520i \(-0.965069\pi\)
0.993985 0.109520i \(-0.0349313\pi\)
\(588\) 0 0
\(589\) 6.57826i 0.271052i
\(590\) 0 0
\(591\) 0.146428 0.253621i 0.00602325 0.0104326i
\(592\) 0 0
\(593\) 8.57321 4.94975i 0.352060 0.203262i −0.313532 0.949578i \(-0.601512\pi\)
0.665592 + 0.746316i \(0.268179\pi\)
\(594\) 0 0
\(595\) 4.22474 + 12.1958i 0.173198 + 0.499979i
\(596\) 0 0
\(597\) −6.79796 + 3.92480i −0.278222 + 0.160632i
\(598\) 0 0
\(599\) −11.1464 6.43539i −0.455431 0.262943i 0.254690 0.967023i \(-0.418026\pi\)
−0.710121 + 0.704080i \(0.751360\pi\)
\(600\) 0 0
\(601\) 25.8058i 1.05264i −0.850287 0.526320i \(-0.823571\pi\)
0.850287 0.526320i \(-0.176429\pi\)
\(602\) 0 0
\(603\) −35.7980 −1.45781
\(604\) 0 0
\(605\) 6.50000 11.2583i 0.264263 0.457716i
\(606\) 0 0
\(607\) −10.8485 18.7901i −0.440326 0.762667i 0.557388 0.830252i \(-0.311804\pi\)
−0.997713 + 0.0675857i \(0.978470\pi\)
\(608\) 0 0
\(609\) −1.15153 + 5.98353i −0.0466624 + 0.242465i
\(610\) 0 0
\(611\) 13.3485 + 23.1202i 0.540021 + 0.935344i
\(612\) 0 0
\(613\) −0.674235 0.389270i −0.0272321 0.0157224i 0.486322 0.873780i \(-0.338338\pi\)
−0.513554 + 0.858057i \(0.671671\pi\)
\(614\) 0 0
\(615\) 2.55051 0.102846
\(616\) 0 0
\(617\) 3.30306 0.132976 0.0664881 0.997787i \(-0.478821\pi\)
0.0664881 + 0.997787i \(0.478821\pi\)
\(618\) 0 0
\(619\) 13.3485 + 7.70674i 0.536520 + 0.309760i 0.743668 0.668550i \(-0.233085\pi\)
−0.207147 + 0.978310i \(0.566418\pi\)
\(620\) 0 0
\(621\) −4.27526 7.40496i −0.171560 0.297151i
\(622\) 0 0
\(623\) −18.7980 + 21.7060i −0.753124 + 0.869633i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −3.30306 + 5.72107i −0.131912 + 0.228478i
\(628\) 0 0
\(629\) −16.8990 −0.673806
\(630\) 0 0
\(631\) 39.3123i 1.56500i −0.622653 0.782498i \(-0.713945\pi\)
0.622653 0.782498i \(-0.286055\pi\)
\(632\) 0 0
\(633\) −2.27015 1.31067i −0.0902305 0.0520946i
\(634\) 0 0
\(635\) 6.00000 3.46410i 0.238103 0.137469i
\(636\) 0 0
\(637\) 24.4722 19.2669i 0.969624 0.763381i
\(638\) 0 0
\(639\) −3.55051 + 2.04989i −0.140456 + 0.0810923i
\(640\) 0 0
\(641\) 21.6464 37.4927i 0.854983 1.48087i −0.0216787 0.999765i \(-0.506901\pi\)
0.876661 0.481108i \(-0.159766\pi\)
\(642\) 0 0
\(643\) 6.57826i 0.259421i −0.991552 0.129711i \(-0.958595\pi\)
0.991552 0.129711i \(-0.0414048\pi\)
\(644\) 0 0
\(645\) 3.00340i 0.118259i
\(646\) 0 0
\(647\) −5.29796 + 9.17633i −0.208284 + 0.360759i −0.951174 0.308655i \(-0.900121\pi\)
0.742890 + 0.669414i \(0.233455\pi\)
\(648\) 0 0
\(649\) −15.3031 + 8.83523i −0.600698 + 0.346813i
\(650\) 0 0
\(651\) 0.853572 0.985620i 0.0334541 0.0386295i
\(652\) 0 0
\(653\) −16.7753 + 9.68520i −0.656466 + 0.379011i −0.790929 0.611908i \(-0.790402\pi\)
0.134463 + 0.990919i \(0.457069\pi\)
\(654\) 0 0
\(655\) 9.79796 + 5.65685i 0.382838 + 0.221032i
\(656\) 0 0
\(657\) 32.3840i 1.26342i
\(658\) 0 0
\(659\) 36.7423 1.43128 0.715639 0.698470i \(-0.246135\pi\)
0.715639 + 0.698470i \(0.246135\pi\)
\(660\) 0 0
\(661\) 24.8712 43.0781i 0.967377 1.67555i 0.264287 0.964444i \(-0.414863\pi\)
0.703090 0.711101i \(-0.251803\pi\)
\(662\) 0 0
\(663\) −3.44949 5.97469i −0.133967 0.232038i
\(664\) 0 0
\(665\) 11.0227 + 2.12132i 0.427442 + 0.0822613i
\(666\) 0 0
\(667\) −16.5227 28.6182i −0.639762 1.10810i
\(668\) 0 0
\(669\) 6.79796 + 3.92480i 0.262824 + 0.151742i
\(670\) 0 0
\(671\) −1.70714 −0.0659035
\(672\) 0 0
\(673\) −26.8990 −1.03688 −0.518440 0.855114i \(-0.673487\pi\)
−0.518440 + 0.855114i \(0.673487\pi\)
\(674\) 0 0
\(675\) 1.62372 + 0.937458i 0.0624972 + 0.0360828i
\(676\) 0 0
\(677\) −15.6742 27.1486i −0.602410 1.04340i −0.992455 0.122609i \(-0.960874\pi\)
0.390045 0.920796i \(-0.372459\pi\)
\(678\) 0 0
\(679\) −10.3485 29.8735i −0.397138 1.14644i
\(680\) 0 0
\(681\) 1.69694 + 2.93918i 0.0650268 + 0.112630i
\(682\) 0 0
\(683\) −5.72474 + 9.91555i −0.219051 + 0.379408i −0.954518 0.298153i \(-0.903630\pi\)
0.735467 + 0.677561i \(0.236963\pi\)
\(684\) 0 0
\(685\) 9.79796 0.374361
\(686\) 0 0
\(687\) 5.30691i 0.202471i
\(688\) 0 0
\(689\) 7.89898 + 4.56048i 0.300927 + 0.173740i
\(690\) 0 0
\(691\) 27.0000 15.5885i 1.02713 0.593013i 0.110968 0.993824i \(-0.464605\pi\)
0.916161 + 0.400811i \(0.131272\pi\)
\(692\) 0 0
\(693\) 35.5051 12.2993i 1.34873 0.467213i
\(694\) 0 0
\(695\) −6.00000 + 3.46410i −0.227593 + 0.131401i
\(696\) 0 0
\(697\) −19.5732 + 33.9018i −0.741388 + 1.28412i
\(698\) 0 0
\(699\) 0.0786484i 0.00297476i
\(700\) 0 0
\(701\) 23.5809i 0.890639i 0.895372 + 0.445320i \(0.146910\pi\)
−0.895372 + 0.445320i \(0.853090\pi\)
\(702\) 0 0
\(703\) −7.34847 + 12.7279i −0.277153 + 0.480043i
\(704\) 0 0
\(705\) −1.65153 + 0.953512i −0.0622002 + 0.0359113i
\(706\) 0 0
\(707\) 7.62372 39.6140i 0.286720 1.48984i
\(708\) 0 0
\(709\) −9.21964 + 5.32296i −0.346251 + 0.199908i −0.663033 0.748590i \(-0.730731\pi\)
0.316782 + 0.948498i \(0.397398\pi\)
\(710\) 0 0
\(711\) 19.3485 + 11.1708i 0.725624 + 0.418939i
\(712\) 0 0
\(713\) 7.07107i 0.264814i
\(714\) 0 0
\(715\) 21.7980 0.815197
\(716\) 0 0
\(717\) 0.527806 0.914188i 0.0197113 0.0341410i
\(718\) 0 0
\(719\) 19.5959 + 33.9411i 0.730804 + 1.26579i 0.956540 + 0.291602i \(0.0941882\pi\)
−0.225735 + 0.974189i \(0.572478\pi\)
\(720\) 0 0
\(721\) 33.5959 + 29.0949i 1.25118 + 1.08355i
\(722\) 0 0
\(723\) −3.24745 5.62475i −0.120774 0.209187i
\(724\) 0 0
\(725\) 6.27526 + 3.62302i 0.233057 + 0.134556i
\(726\) 0 0
\(727\) 14.5959 0.541333 0.270666 0.962673i \(-0.412756\pi\)
0.270666 + 0.962673i \(0.412756\pi\)
\(728\) 0 0
\(729\) 21.6969 0.803590
\(730\) 0 0
\(731\) −39.9217 23.0488i −1.47656 0.852490i
\(732\) 0 0
\(733\) 8.55051 + 14.8099i 0.315820 + 0.547017i 0.979612 0.200901i \(-0.0643870\pi\)
−0.663791 + 0.747918i \(0.731054\pi\)
\(734\) 0 0
\(735\) 1.37628 + 1.74810i 0.0507647 + 0.0644798i
\(736\) 0 0
\(737\) −30.2474 52.3901i −1.11418 1.92981i
\(738\) 0 0
\(739\) −0.348469 + 0.603566i −0.0128186 + 0.0222025i −0.872364 0.488858i \(-0.837414\pi\)
0.859545 + 0.511060i \(0.170747\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 51.1509i 1.87654i 0.345899 + 0.938272i \(0.387574\pi\)
−0.345899 + 0.938272i \(0.612426\pi\)
\(744\) 0 0
\(745\) −16.6237 9.59771i −0.609046 0.351633i
\(746\) 0 0
\(747\) 4.70714 2.71767i 0.172225 0.0994344i
\(748\) 0 0
\(749\) 10.8990 + 9.43879i 0.398240 + 0.344886i
\(750\) 0 0
\(751\) −43.0454 + 24.8523i −1.57075 + 0.906872i −0.574672 + 0.818384i \(0.694870\pi\)
−0.996077 + 0.0884887i \(0.971796\pi\)
\(752\) 0 0
\(753\) 2.17934 3.77472i 0.0794195 0.137559i
\(754\) 0 0
\(755\) 7.70674i 0.280477i
\(756\) 0 0
\(757\) 33.5125i 1.21803i 0.793157 + 0.609017i \(0.208436\pi\)
−0.793157 + 0.609017i \(0.791564\pi\)
\(758\) 0 0
\(759\) 3.55051 6.14966i 0.128875 0.223219i
\(760\) 0 0
\(761\) 10.5959 6.11756i 0.384102 0.221761i −0.295500 0.955343i \(-0.595486\pi\)
0.679601 + 0.733582i \(0.262153\pi\)
\(762\) 0 0
\(763\) −20.4773 3.94086i −0.741328 0.142669i
\(764\) 0 0
\(765\) −12.2474 + 7.07107i −0.442807 + 0.255655i
\(766\) 0 0
\(767\) −13.8990 8.02458i −0.501863 0.289751i
\(768\) 0 0
\(769\) 46.5904i 1.68009i −0.542515 0.840046i \(-0.682528\pi\)
0.542515 0.840046i \(-0.317472\pi\)
\(770\) 0 0
\(771\) −4.20204 −0.151333
\(772\) 0 0
\(773\) 5.87628 10.1780i 0.211355 0.366078i −0.740784 0.671743i \(-0.765546\pi\)
0.952139 + 0.305666i \(0.0988791\pi\)
\(774\) 0 0
\(775\) −0.775255 1.34278i −0.0278480 0.0482341i
\(776\) 0 0
\(777\) −2.75255 + 0.953512i −0.0987472 + 0.0342070i
\(778\) 0 0
\(779\) 17.0227 + 29.4842i 0.609902 + 1.05638i
\(780\) 0 0
\(781\) −6.00000 3.46410i −0.214697 0.123955i
\(782\) 0 0
\(783\) −13.5857 −0.485514
\(784\) 0 0
\(785\) −10.6969 −0.381790
\(786\) 0 0
\(787\) 7.87117 + 4.54442i 0.280577 + 0.161991i 0.633685 0.773592i \(-0.281542\pi\)
−0.353108 + 0.935583i \(0.614875\pi\)
\(788\) 0 0
\(789\) 0.871173 + 1.50892i 0.0310146 + 0.0537188i
\(790\) 0 0
\(791\) −21.1237 + 7.31747i −0.751073 + 0.260179i
\(792\) 0 0
\(793\) −0.775255 1.34278i −0.0275301 0.0476836i
\(794\) 0 0
\(795\) −0.325765 + 0.564242i −0.0115537 + 0.0200116i
\(796\) 0 0
\(797\) 3.30306 0.117000 0.0585002 0.998287i \(-0.481368\pi\)
0.0585002 + 0.998287i \(0.481368\pi\)
\(798\) 0 0
\(799\) 29.2699i 1.03549i
\(800\) 0 0
\(801\) −27.2474 15.7313i −0.962741 0.555839i
\(802\) 0 0
\(803\) −47.3939 + 27.3629i −1.67249 + 0.965615i
\(804\) 0 0
\(805\) −11.8485 2.28024i −0.417604 0.0803679i
\(806\) 0 0
\(807\) 4.50000 2.59808i 0.158408 0.0914566i
\(808\) 0 0
\(809\) 6.39898 11.0834i 0.224976 0.389670i −0.731336 0.682017i \(-0.761103\pi\)
0.956312 + 0.292347i \(0.0944363\pi\)
\(810\) 0 0
\(811\) 47.3689i 1.66335i 0.555264 + 0.831674i \(0.312617\pi\)
−0.555264 + 0.831674i \(0.687383\pi\)
\(812\) 0 0
\(813\) 1.06427i 0.0373255i
\(814\) 0 0
\(815\) −2.89898 + 5.02118i −0.101547 + 0.175884i
\(816\) 0 0
\(817\) −34.7196 + 20.0454i −1.21469 + 0.701300i
\(818\) 0 0
\(819\) 25.7980 + 22.3417i 0.901454 + 0.780682i
\(820\) 0 0
\(821\) 43.2929 24.9951i 1.51093 0.872336i 0.511013 0.859573i \(-0.329271\pi\)
0.999919 0.0127632i \(-0.00406277\pi\)
\(822\) 0 0
\(823\) 9.15153 + 5.28364i 0.319002 + 0.184176i 0.650948 0.759123i \(-0.274372\pi\)
−0.331945 + 0.943299i \(0.607705\pi\)
\(824\) 0 0
\(825\) 1.55708i 0.0542105i
\(826\) 0 0
\(827\) 13.0454 0.453633 0.226817 0.973937i \(-0.427168\pi\)
0.226817 + 0.973937i \(0.427168\pi\)
\(828\) 0 0
\(829\) 12.6515 21.9131i 0.439406 0.761073i −0.558238 0.829681i \(-0.688522\pi\)
0.997644 + 0.0686077i \(0.0218557\pi\)
\(830\) 0 0
\(831\) −0.921683 1.59640i −0.0319728 0.0553786i
\(832\) 0 0
\(833\) −33.7980 + 4.87832i −1.17103 + 0.169024i
\(834\) 0 0
\(835\) −1.50000 2.59808i −0.0519096 0.0899101i
\(836\) 0 0
\(837\) 2.51760 + 1.45354i 0.0870210 + 0.0502416i
\(838\) 0 0
\(839\) −30.4949 −1.05280 −0.526400 0.850237i \(-0.676459\pi\)
−0.526400 + 0.850237i \(0.676459\pi\)
\(840\) 0 0
\(841\) −23.5051 −0.810521
\(842\) 0 0
\(843\) 4.65153 + 2.68556i 0.160207 + 0.0924957i
\(844\) 0 0
\(845\) 3.39898 + 5.88721i 0.116928 + 0.202526i
\(846\) 0 0
\(847\) 26.0000 + 22.5167i 0.893371 + 0.773682i
\(848\) 0 0
\(849\) 1.34847 + 2.33562i 0.0462793 + 0.0801582i
\(850\) 0 0
\(851\) 7.89898 13.6814i 0.270774 0.468994i
\(852\) 0 0
\(853\) −48.4495 −1.65888 −0.829439 0.558597i \(-0.811340\pi\)
−0.829439 + 0.558597i \(0.811340\pi\)
\(854\) 0 0
\(855\) 12.2993i 0.420628i
\(856\) 0 0
\(857\) 48.1918 + 27.8236i 1.64620 + 0.950435i 0.978562 + 0.205950i \(0.0660285\pi\)
0.667639 + 0.744485i \(0.267305\pi\)
\(858\) 0 0
\(859\) −21.0000 + 12.1244i −0.716511 + 0.413678i −0.813467 0.581611i \(-0.802423\pi\)
0.0969563 + 0.995289i \(0.469089\pi\)
\(860\) 0 0
\(861\) −1.27526 + 6.62642i −0.0434606 + 0.225828i
\(862\) 0 0
\(863\) −2.05051 + 1.18386i −0.0698002 + 0.0402992i −0.534494 0.845172i \(-0.679498\pi\)
0.464694 + 0.885471i \(0.346164\pi\)
\(864\) 0 0
\(865\) −5.44949 + 9.43879i −0.185288 + 0.320929i
\(866\) 0 0
\(867\) 2.16064i 0.0733793i
\(868\) 0 0
\(869\) 37.7552i 1.28076i
\(870\) 0 0
\(871\) 27.4722 47.5832i 0.930860 1.61230i
\(872\) 0 0
\(873\) 30.0000 17.3205i 1.01535 0.586210i
\(874\) 0 0
\(875\) 2.50000 0.866025i 0.0845154 0.0292770i
\(876\) 0 0
\(877\) 1.71964 0.992836i 0.0580682 0.0335257i −0.470685 0.882301i \(-0.655993\pi\)
0.528753 + 0.848776i \(0.322660\pi\)
\(878\) 0 0
\(879\) 6.74235 + 3.89270i 0.227414 + 0.131297i
\(880\) 0 0
\(881\) 36.6588i 1.23507i 0.786545 + 0.617533i \(0.211868\pi\)
−0.786545 + 0.617533i \(0.788132\pi\)
\(882\) 0 0
\(883\) 40.4949 1.36276 0.681381 0.731929i \(-0.261380\pi\)
0.681381 + 0.731929i \(0.261380\pi\)
\(884\) 0 0
\(885\) 0.573214 0.992836i 0.0192684 0.0333738i
\(886\) 0 0
\(887\) −13.5000 23.3827i −0.453286 0.785114i 0.545302 0.838240i \(-0.316415\pi\)
−0.998588 + 0.0531258i \(0.983082\pi\)
\(888\) 0 0
\(889\) 6.00000 + 17.3205i 0.201234 + 0.580911i
\(890\) 0 0
\(891\) 19.8434 + 34.3697i 0.664778 + 1.15143i
\(892\) 0 0
\(893\) −22.0454 12.7279i −0.737721 0.425924i
\(894\) 0 0
\(895\) 9.55051 0.319238
\(896\) 0 0
\(897\) 6.44949 0.215342
\(898\) 0 0
\(899\) 9.72985 + 5.61753i 0.324509 + 0.187355i
\(900\) 0 0
\(901\) −5.00000 8.66025i −0.166574 0.288515i
\(902\) 0 0
\(903\) −7.80306 1.50170i −0.259670 0.0499734i
\(904\) 0 0
\(905\) 6.17423 + 10.6941i 0.205239 + 0.355484i
\(906\) 0 0
\(907\) −4.17423 + 7.22999i −0.138603 + 0.240068i −0.926968 0.375140i \(-0.877595\pi\)
0.788365 + 0.615208i \(0.210928\pi\)
\(908\) 0 0
\(909\) 44.2020 1.46609
\(910\) 0 0
\(911\) 41.5050i 1.37512i −0.726127 0.687561i \(-0.758681\pi\)
0.726127 0.687561i \(-0.241319\pi\)
\(912\) 0 0
\(913\) 7.95459 + 4.59259i 0.263259 + 0.151992i
\(914\) 0 0
\(915\) 0.0959179 0.0553782i 0.00317095 0.00183075i
\(916\) 0 0
\(917\) −19.5959 + 22.6274i −0.647114 + 0.747223i
\(918\) 0 0
\(919\) −12.3712 + 7.14250i −0.408087 + 0.235609i −0.689968 0.723840i \(-0.742375\pi\)
0.281880 + 0.959450i \(0.409042\pi\)
\(920\) 0 0
\(921\) −4.44439 + 7.69790i −0.146448 + 0.253655i
\(922\) 0 0
\(923\) 6.29253i 0.207121i
\(924\) 0 0
\(925\) 3.46410i 0.113899i
\(926\) 0 0
\(927\) −24.3485 + 42.1728i −0.799709 + 1.38514i
\(928\) 0 0
\(929\) −5.29796 + 3.05878i −0.173820 + 0.100355i −0.584386 0.811476i \(-0.698665\pi\)
0.410566 + 0.911831i \(0.365331\pi\)
\(930\) 0 0
\(931\) −11.0227 + 27.5772i −0.361255 + 0.903805i
\(932\) 0 0
\(933\) −3.06811 + 1.77138i −0.100445 + 0.0579922i
\(934\) 0 0
\(935\) −20.6969 11.9494i −0.676862 0.390787i
\(936\) 0 0
\(937\) 10.0424i 0.328070i 0.986455 + 0.164035i \(0.0524509\pi\)
−0.986455 + 0.164035i \(0.947549\pi\)
\(938\) 0 0
\(939\) −2.09082 −0.0682312
\(940\) 0 0
\(941\) 7.89898 13.6814i 0.257499 0.446002i −0.708072 0.706140i \(-0.750435\pi\)
0.965571 + 0.260138i \(0.0837681\pi\)
\(942\) 0 0
\(943\) −18.2980 31.6930i −0.595864 1.03207i
\(944\) 0 0
\(945\) −3.24745 + 3.74983i −0.105640 + 0.121982i
\(946\) 0 0
\(947\) 23.7247 + 41.0925i 0.770951 + 1.33533i 0.937042 + 0.349215i \(0.113552\pi\)
−0.166092 + 0.986110i \(0.553115\pi\)
\(948\) 0 0
\(949\) −43.0454 24.8523i −1.39731 0.806739i
\(950\) 0 0
\(951\) −0.156633 −0.00507918
\(952\) 0 0
\(953\) −10.8990 −0.353053 −0.176526 0.984296i \(-0.556486\pi\)
−0.176526 + 0.984296i \(0.556486\pi\)
\(954\) 0 0
\(955\) −22.8990 13.2207i −0.740994 0.427813i
\(956\) 0 0
\(957\) −5.64133 9.77106i −0.182358 0.315854i
\(958\) 0 0
\(959\) −4.89898 + 25.4558i −0.158196 + 0.822012i
\(960\) 0 0
\(961\) 14.2980 + 24.7648i 0.461224 + 0.798864i
\(962\) 0 0
\(963\) −7.89898 + 13.6814i −0.254541 + 0.440878i
\(964\) 0 0
\(965\) −22.6969 −0.730640
\(966\) 0 0
\(967\) 52.6437i 1.69291i 0.532461 + 0.846454i \(0.321267\pi\)
−0.532461 + 0.846454i \(0.678733\pi\)
\(968\) 0 0
\(969\) 5.69694 + 3.28913i 0.183012 + 0.105662i
\(970\) 0 0
\(971\) 26.1464 15.0956i 0.839079 0.484442i −0.0178722 0.999840i \(-0.505689\pi\)
0.856951 + 0.515398i \(0.172356\pi\)
\(972\) 0 0
\(973\) −6.00000 17.3205i −0.192351 0.555270i
\(974\) 0 0
\(975\) −1.22474 + 0.707107i −0.0392232 + 0.0226455i
\(976\) 0 0
\(977\) 14.6969 25.4558i 0.470197 0.814405i −0.529222 0.848483i \(-0.677516\pi\)
0.999419 + 0.0340785i \(0.0108496\pi\)
\(978\) 0 0
\(979\) 53.1687i 1.69928i
\(980\) 0 0
\(981\) 22.8489i 0.729510i
\(982\) 0 0
\(983\) −7.50000 + 12.9904i −0.239213 + 0.414329i −0.960489 0.278319i \(-0.910223\pi\)
0.721276 + 0.692648i \(0.243556\pi\)
\(984\) 0 0
\(985\) 0.797959 0.460702i 0.0254251 0.0146792i
\(986\) 0 0
\(987\) −1.65153 4.76756i −0.0525688 0.151753i
\(988\) 0 0
\(989\) 37.3207 21.5471i 1.18673 0.685158i
\(990\) 0 0
\(991\) 25.7196 + 14.8492i 0.817011 + 0.471702i 0.849385 0.527774i \(-0.176973\pi\)
−0.0323734 + 0.999476i \(0.510307\pi\)
\(992\) 0 0
\(993\) 1.00005i 0.0317357i
\(994\) 0 0
\(995\) −24.6969 −0.782946
\(996\) 0 0
\(997\) 13.3258 23.0809i 0.422031 0.730980i −0.574107 0.818780i \(-0.694651\pi\)
0.996138 + 0.0878009i \(0.0279839\pi\)
\(998\) 0 0
\(999\) −3.24745 5.62475i −0.102745 0.177959i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.bz.c.591.1 4
4.3 odd 2 280.2.bj.c.171.2 yes 4
7.5 odd 6 1120.2.bz.b.271.1 4
8.3 odd 2 1120.2.bz.b.591.1 4
8.5 even 2 280.2.bj.b.171.2 yes 4
28.19 even 6 280.2.bj.b.131.1 4
56.5 odd 6 280.2.bj.c.131.2 yes 4
56.19 even 6 inner 1120.2.bz.c.271.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.bj.b.131.1 4 28.19 even 6
280.2.bj.b.171.2 yes 4 8.5 even 2
280.2.bj.c.131.2 yes 4 56.5 odd 6
280.2.bj.c.171.2 yes 4 4.3 odd 2
1120.2.bz.b.271.1 4 7.5 odd 6
1120.2.bz.b.591.1 4 8.3 odd 2
1120.2.bz.c.271.1 4 56.19 even 6 inner
1120.2.bz.c.591.1 4 1.1 even 1 trivial