Properties

Label 1120.2.bi.a.463.20
Level $1120$
Weight $2$
Character 1120.463
Analytic conductor $8.943$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(463,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bi (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.20
Character \(\chi\) \(=\) 1120.463
Dual form 1120.2.bi.a.687.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.161197 + 0.161197i) q^{3} +(-0.0283969 - 2.23589i) q^{5} +(0.707107 + 0.707107i) q^{7} -2.94803i q^{9} -4.93386 q^{11} +(-4.05315 + 4.05315i) q^{13} +(0.355840 - 0.364995i) q^{15} +(-0.793172 + 0.793172i) q^{17} -5.81519i q^{19} +0.227966i q^{21} +(-0.565908 + 0.565908i) q^{23} +(-4.99839 + 0.126984i) q^{25} +(0.958802 - 0.958802i) q^{27} -8.34882 q^{29} +6.01380i q^{31} +(-0.795321 - 0.795321i) q^{33} +(1.56093 - 1.60109i) q^{35} +(3.79589 + 3.79589i) q^{37} -1.30671 q^{39} +1.53295 q^{41} +(3.41409 + 3.41409i) q^{43} +(-6.59147 + 0.0837149i) q^{45} +(-3.43120 - 3.43120i) q^{47} +1.00000i q^{49} -0.255713 q^{51} +(-3.22442 + 3.22442i) q^{53} +(0.140106 + 11.0316i) q^{55} +(0.937389 - 0.937389i) q^{57} +1.96633i q^{59} -5.27850i q^{61} +(2.08457 - 2.08457i) q^{63} +(9.17749 + 8.94730i) q^{65} +(5.02471 - 5.02471i) q^{67} -0.182445 q^{69} -6.02581i q^{71} +(-10.7665 - 10.7665i) q^{73} +(-0.826192 - 0.785253i) q^{75} +(-3.48876 - 3.48876i) q^{77} -8.60880 q^{79} -8.53498 q^{81} +(-10.2290 - 10.2290i) q^{83} +(1.79597 + 1.75092i) q^{85} +(-1.34580 - 1.34580i) q^{87} -0.308629i q^{89} -5.73203 q^{91} +(-0.969404 + 0.969404i) q^{93} +(-13.0021 + 0.165133i) q^{95} +(3.04108 - 3.04108i) q^{97} +14.5452i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 8 q^{17} - 8 q^{25} + 64 q^{43} + 32 q^{51} - 8 q^{65} - 40 q^{73} - 112 q^{75} - 72 q^{81} - 80 q^{83} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.161197 + 0.161197i 0.0930669 + 0.0930669i 0.752107 0.659041i \(-0.229037\pi\)
−0.659041 + 0.752107i \(0.729037\pi\)
\(4\) 0 0
\(5\) −0.0283969 2.23589i −0.0126995 0.999919i
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 0 0
\(9\) 2.94803i 0.982677i
\(10\) 0 0
\(11\) −4.93386 −1.48761 −0.743807 0.668394i \(-0.766982\pi\)
−0.743807 + 0.668394i \(0.766982\pi\)
\(12\) 0 0
\(13\) −4.05315 + 4.05315i −1.12414 + 1.12414i −0.133031 + 0.991112i \(0.542471\pi\)
−0.991112 + 0.133031i \(0.957529\pi\)
\(14\) 0 0
\(15\) 0.355840 0.364995i 0.0918775 0.0942413i
\(16\) 0 0
\(17\) −0.793172 + 0.793172i −0.192372 + 0.192372i −0.796720 0.604348i \(-0.793434\pi\)
0.604348 + 0.796720i \(0.293434\pi\)
\(18\) 0 0
\(19\) 5.81519i 1.33410i −0.745015 0.667048i \(-0.767558\pi\)
0.745015 0.667048i \(-0.232442\pi\)
\(20\) 0 0
\(21\) 0.227966i 0.0497463i
\(22\) 0 0
\(23\) −0.565908 + 0.565908i −0.118000 + 0.118000i −0.763641 0.645641i \(-0.776590\pi\)
0.645641 + 0.763641i \(0.276590\pi\)
\(24\) 0 0
\(25\) −4.99839 + 0.126984i −0.999677 + 0.0253969i
\(26\) 0 0
\(27\) 0.958802 0.958802i 0.184522 0.184522i
\(28\) 0 0
\(29\) −8.34882 −1.55034 −0.775169 0.631754i \(-0.782335\pi\)
−0.775169 + 0.631754i \(0.782335\pi\)
\(30\) 0 0
\(31\) 6.01380i 1.08011i 0.841629 + 0.540055i \(0.181597\pi\)
−0.841629 + 0.540055i \(0.818403\pi\)
\(32\) 0 0
\(33\) −0.795321 0.795321i −0.138448 0.138448i
\(34\) 0 0
\(35\) 1.56093 1.60109i 0.263846 0.270634i
\(36\) 0 0
\(37\) 3.79589 + 3.79589i 0.624040 + 0.624040i 0.946562 0.322522i \(-0.104531\pi\)
−0.322522 + 0.946562i \(0.604531\pi\)
\(38\) 0 0
\(39\) −1.30671 −0.209241
\(40\) 0 0
\(41\) 1.53295 0.239406 0.119703 0.992810i \(-0.461806\pi\)
0.119703 + 0.992810i \(0.461806\pi\)
\(42\) 0 0
\(43\) 3.41409 + 3.41409i 0.520643 + 0.520643i 0.917766 0.397122i \(-0.129991\pi\)
−0.397122 + 0.917766i \(0.629991\pi\)
\(44\) 0 0
\(45\) −6.59147 + 0.0837149i −0.982598 + 0.0124795i
\(46\) 0 0
\(47\) −3.43120 3.43120i −0.500492 0.500492i 0.411099 0.911591i \(-0.365145\pi\)
−0.911591 + 0.411099i \(0.865145\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −0.255713 −0.0358070
\(52\) 0 0
\(53\) −3.22442 + 3.22442i −0.442909 + 0.442909i −0.892988 0.450080i \(-0.851396\pi\)
0.450080 + 0.892988i \(0.351396\pi\)
\(54\) 0 0
\(55\) 0.140106 + 11.0316i 0.0188919 + 1.48749i
\(56\) 0 0
\(57\) 0.937389 0.937389i 0.124160 0.124160i
\(58\) 0 0
\(59\) 1.96633i 0.255994i 0.991775 + 0.127997i \(0.0408548\pi\)
−0.991775 + 0.127997i \(0.959145\pi\)
\(60\) 0 0
\(61\) 5.27850i 0.675843i −0.941174 0.337922i \(-0.890276\pi\)
0.941174 0.337922i \(-0.109724\pi\)
\(62\) 0 0
\(63\) 2.08457 2.08457i 0.262632 0.262632i
\(64\) 0 0
\(65\) 9.17749 + 8.94730i 1.13833 + 1.10978i
\(66\) 0 0
\(67\) 5.02471 5.02471i 0.613866 0.613866i −0.330085 0.943951i \(-0.607077\pi\)
0.943951 + 0.330085i \(0.107077\pi\)
\(68\) 0 0
\(69\) −0.182445 −0.0219638
\(70\) 0 0
\(71\) 6.02581i 0.715132i −0.933888 0.357566i \(-0.883607\pi\)
0.933888 0.357566i \(-0.116393\pi\)
\(72\) 0 0
\(73\) −10.7665 10.7665i −1.26013 1.26013i −0.951030 0.309098i \(-0.899973\pi\)
−0.309098 0.951030i \(-0.600027\pi\)
\(74\) 0 0
\(75\) −0.826192 0.785253i −0.0954005 0.0906733i
\(76\) 0 0
\(77\) −3.48876 3.48876i −0.397582 0.397582i
\(78\) 0 0
\(79\) −8.60880 −0.968565 −0.484283 0.874912i \(-0.660919\pi\)
−0.484283 + 0.874912i \(0.660919\pi\)
\(80\) 0 0
\(81\) −8.53498 −0.948331
\(82\) 0 0
\(83\) −10.2290 10.2290i −1.12277 1.12277i −0.991323 0.131451i \(-0.958036\pi\)
−0.131451 0.991323i \(-0.541964\pi\)
\(84\) 0 0
\(85\) 1.79597 + 1.75092i 0.194800 + 0.189914i
\(86\) 0 0
\(87\) −1.34580 1.34580i −0.144285 0.144285i
\(88\) 0 0
\(89\) 0.308629i 0.0327146i −0.999866 0.0163573i \(-0.994793\pi\)
0.999866 0.0163573i \(-0.00520692\pi\)
\(90\) 0 0
\(91\) −5.73203 −0.600880
\(92\) 0 0
\(93\) −0.969404 + 0.969404i −0.100523 + 0.100523i
\(94\) 0 0
\(95\) −13.0021 + 0.165133i −1.33399 + 0.0169423i
\(96\) 0 0
\(97\) 3.04108 3.04108i 0.308775 0.308775i −0.535659 0.844434i \(-0.679937\pi\)
0.844434 + 0.535659i \(0.179937\pi\)
\(98\) 0 0
\(99\) 14.5452i 1.46184i
\(100\) 0 0
\(101\) 3.91032i 0.389091i −0.980893 0.194546i \(-0.937677\pi\)
0.980893 0.194546i \(-0.0623232\pi\)
\(102\) 0 0
\(103\) −4.13590 + 4.13590i −0.407522 + 0.407522i −0.880874 0.473352i \(-0.843044\pi\)
0.473352 + 0.880874i \(0.343044\pi\)
\(104\) 0 0
\(105\) 0.509707 0.00647353i 0.0497423 0.000631752i
\(106\) 0 0
\(107\) 9.50203 9.50203i 0.918596 0.918596i −0.0783311 0.996927i \(-0.524959\pi\)
0.996927 + 0.0783311i \(0.0249591\pi\)
\(108\) 0 0
\(109\) 16.9042 1.61913 0.809563 0.587032i \(-0.199704\pi\)
0.809563 + 0.587032i \(0.199704\pi\)
\(110\) 0 0
\(111\) 1.22377i 0.116155i
\(112\) 0 0
\(113\) −10.7566 10.7566i −1.01190 1.01190i −0.999928 0.0119714i \(-0.996189\pi\)
−0.0119714 0.999928i \(-0.503811\pi\)
\(114\) 0 0
\(115\) 1.28138 + 1.24924i 0.119489 + 0.116492i
\(116\) 0 0
\(117\) 11.9488 + 11.9488i 1.10467 + 1.10467i
\(118\) 0 0
\(119\) −1.12171 −0.102827
\(120\) 0 0
\(121\) 13.3429 1.21300
\(122\) 0 0
\(123\) 0.247106 + 0.247106i 0.0222808 + 0.0222808i
\(124\) 0 0
\(125\) 0.425862 + 11.1722i 0.0380902 + 0.999274i
\(126\) 0 0
\(127\) 7.44595 + 7.44595i 0.660722 + 0.660722i 0.955550 0.294829i \(-0.0952626\pi\)
−0.294829 + 0.955550i \(0.595263\pi\)
\(128\) 0 0
\(129\) 1.10068i 0.0969093i
\(130\) 0 0
\(131\) −19.2815 −1.68464 −0.842318 0.538981i \(-0.818809\pi\)
−0.842318 + 0.538981i \(0.818809\pi\)
\(132\) 0 0
\(133\) 4.11196 4.11196i 0.356552 0.356552i
\(134\) 0 0
\(135\) −2.17100 2.11655i −0.186850 0.182163i
\(136\) 0 0
\(137\) 8.17817 8.17817i 0.698708 0.698708i −0.265424 0.964132i \(-0.585512\pi\)
0.964132 + 0.265424i \(0.0855118\pi\)
\(138\) 0 0
\(139\) 9.23438i 0.783250i 0.920125 + 0.391625i \(0.128087\pi\)
−0.920125 + 0.391625i \(0.871913\pi\)
\(140\) 0 0
\(141\) 1.10620i 0.0931585i
\(142\) 0 0
\(143\) 19.9977 19.9977i 1.67229 1.67229i
\(144\) 0 0
\(145\) 0.237080 + 18.6670i 0.0196885 + 1.55021i
\(146\) 0 0
\(147\) −0.161197 + 0.161197i −0.0132953 + 0.0132953i
\(148\) 0 0
\(149\) −4.94060 −0.404750 −0.202375 0.979308i \(-0.564866\pi\)
−0.202375 + 0.979308i \(0.564866\pi\)
\(150\) 0 0
\(151\) 8.15959i 0.664018i −0.943276 0.332009i \(-0.892274\pi\)
0.943276 0.332009i \(-0.107726\pi\)
\(152\) 0 0
\(153\) 2.33829 + 2.33829i 0.189040 + 0.189040i
\(154\) 0 0
\(155\) 13.4462 0.170773i 1.08002 0.0137168i
\(156\) 0 0
\(157\) 0.893861 + 0.893861i 0.0713379 + 0.0713379i 0.741876 0.670538i \(-0.233937\pi\)
−0.670538 + 0.741876i \(0.733937\pi\)
\(158\) 0 0
\(159\) −1.03953 −0.0824403
\(160\) 0 0
\(161\) −0.800315 −0.0630737
\(162\) 0 0
\(163\) 14.3530 + 14.3530i 1.12422 + 1.12422i 0.991101 + 0.133114i \(0.0424978\pi\)
0.133114 + 0.991101i \(0.457502\pi\)
\(164\) 0 0
\(165\) −1.75566 + 1.80083i −0.136678 + 0.140195i
\(166\) 0 0
\(167\) −4.02024 4.02024i −0.311095 0.311095i 0.534239 0.845334i \(-0.320598\pi\)
−0.845334 + 0.534239i \(0.820598\pi\)
\(168\) 0 0
\(169\) 19.8561i 1.52739i
\(170\) 0 0
\(171\) −17.1434 −1.31099
\(172\) 0 0
\(173\) 11.2339 11.2339i 0.854097 0.854097i −0.136538 0.990635i \(-0.543598\pi\)
0.990635 + 0.136538i \(0.0435975\pi\)
\(174\) 0 0
\(175\) −3.62419 3.44460i −0.273963 0.260387i
\(176\) 0 0
\(177\) −0.316965 + 0.316965i −0.0238246 + 0.0238246i
\(178\) 0 0
\(179\) 9.06992i 0.677917i 0.940801 + 0.338959i \(0.110075\pi\)
−0.940801 + 0.338959i \(0.889925\pi\)
\(180\) 0 0
\(181\) 15.8706i 1.17965i −0.807531 0.589826i \(-0.799196\pi\)
0.807531 0.589826i \(-0.200804\pi\)
\(182\) 0 0
\(183\) 0.850877 0.850877i 0.0628986 0.0628986i
\(184\) 0 0
\(185\) 8.37939 8.59497i 0.616065 0.631915i
\(186\) 0 0
\(187\) 3.91340 3.91340i 0.286176 0.286176i
\(188\) 0 0
\(189\) 1.35595 0.0986309
\(190\) 0 0
\(191\) 15.0376i 1.08809i 0.839057 + 0.544043i \(0.183107\pi\)
−0.839057 + 0.544043i \(0.816893\pi\)
\(192\) 0 0
\(193\) 5.19746 + 5.19746i 0.374121 + 0.374121i 0.868976 0.494854i \(-0.164779\pi\)
−0.494854 + 0.868976i \(0.664779\pi\)
\(194\) 0 0
\(195\) 0.0371065 + 2.92165i 0.00265725 + 0.209224i
\(196\) 0 0
\(197\) 4.61388 + 4.61388i 0.328725 + 0.328725i 0.852102 0.523376i \(-0.175328\pi\)
−0.523376 + 0.852102i \(0.675328\pi\)
\(198\) 0 0
\(199\) −4.66360 −0.330594 −0.165297 0.986244i \(-0.552858\pi\)
−0.165297 + 0.986244i \(0.552858\pi\)
\(200\) 0 0
\(201\) 1.61993 0.114261
\(202\) 0 0
\(203\) −5.90351 5.90351i −0.414345 0.414345i
\(204\) 0 0
\(205\) −0.0435309 3.42750i −0.00304033 0.239387i
\(206\) 0 0
\(207\) 1.66832 + 1.66832i 0.115956 + 0.115956i
\(208\) 0 0
\(209\) 28.6913i 1.98462i
\(210\) 0 0
\(211\) 5.48822 0.377824 0.188912 0.981994i \(-0.439504\pi\)
0.188912 + 0.981994i \(0.439504\pi\)
\(212\) 0 0
\(213\) 0.971340 0.971340i 0.0665551 0.0665551i
\(214\) 0 0
\(215\) 7.53656 7.73046i 0.513989 0.527213i
\(216\) 0 0
\(217\) −4.25240 + 4.25240i −0.288672 + 0.288672i
\(218\) 0 0
\(219\) 3.47106i 0.234552i
\(220\) 0 0
\(221\) 6.42969i 0.432508i
\(222\) 0 0
\(223\) −5.41097 + 5.41097i −0.362346 + 0.362346i −0.864676 0.502330i \(-0.832476\pi\)
0.502330 + 0.864676i \(0.332476\pi\)
\(224\) 0 0
\(225\) 0.374354 + 14.7354i 0.0249569 + 0.982360i
\(226\) 0 0
\(227\) 0.614111 0.614111i 0.0407600 0.0407600i −0.686433 0.727193i \(-0.740825\pi\)
0.727193 + 0.686433i \(0.240825\pi\)
\(228\) 0 0
\(229\) −18.2039 −1.20295 −0.601475 0.798892i \(-0.705420\pi\)
−0.601475 + 0.798892i \(0.705420\pi\)
\(230\) 0 0
\(231\) 1.12475i 0.0740034i
\(232\) 0 0
\(233\) 11.7656 + 11.7656i 0.770789 + 0.770789i 0.978245 0.207455i \(-0.0665181\pi\)
−0.207455 + 0.978245i \(0.566518\pi\)
\(234\) 0 0
\(235\) −7.57435 + 7.76922i −0.494096 + 0.506808i
\(236\) 0 0
\(237\) −1.38771 1.38771i −0.0901413 0.0901413i
\(238\) 0 0
\(239\) 8.80908 0.569812 0.284906 0.958555i \(-0.408038\pi\)
0.284906 + 0.958555i \(0.408038\pi\)
\(240\) 0 0
\(241\) −21.3908 −1.37791 −0.688953 0.724806i \(-0.741929\pi\)
−0.688953 + 0.724806i \(0.741929\pi\)
\(242\) 0 0
\(243\) −4.25222 4.25222i −0.272780 0.272780i
\(244\) 0 0
\(245\) 2.23589 0.0283969i 0.142846 0.00181421i
\(246\) 0 0
\(247\) 23.5699 + 23.5699i 1.49971 + 1.49971i
\(248\) 0 0
\(249\) 3.29774i 0.208986i
\(250\) 0 0
\(251\) 31.3913 1.98140 0.990701 0.136057i \(-0.0434431\pi\)
0.990701 + 0.136057i \(0.0434431\pi\)
\(252\) 0 0
\(253\) 2.79211 2.79211i 0.175538 0.175538i
\(254\) 0 0
\(255\) 0.00726145 + 0.571746i 0.000454730 + 0.0358041i
\(256\) 0 0
\(257\) −2.22517 + 2.22517i −0.138802 + 0.138802i −0.773094 0.634292i \(-0.781292\pi\)
0.634292 + 0.773094i \(0.281292\pi\)
\(258\) 0 0
\(259\) 5.36820i 0.333563i
\(260\) 0 0
\(261\) 24.6126i 1.52348i
\(262\) 0 0
\(263\) 5.98405 5.98405i 0.368993 0.368993i −0.498117 0.867110i \(-0.665975\pi\)
0.867110 + 0.498117i \(0.165975\pi\)
\(264\) 0 0
\(265\) 7.30101 + 7.11789i 0.448498 + 0.437248i
\(266\) 0 0
\(267\) 0.0497499 0.0497499i 0.00304465 0.00304465i
\(268\) 0 0
\(269\) 0.590188 0.0359844 0.0179922 0.999838i \(-0.494273\pi\)
0.0179922 + 0.999838i \(0.494273\pi\)
\(270\) 0 0
\(271\) 16.0576i 0.975431i −0.873003 0.487715i \(-0.837830\pi\)
0.873003 0.487715i \(-0.162170\pi\)
\(272\) 0 0
\(273\) −0.923983 0.923983i −0.0559220 0.0559220i
\(274\) 0 0
\(275\) 24.6613 0.626523i 1.48713 0.0377808i
\(276\) 0 0
\(277\) −10.0221 10.0221i −0.602172 0.602172i 0.338716 0.940889i \(-0.390007\pi\)
−0.940889 + 0.338716i \(0.890007\pi\)
\(278\) 0 0
\(279\) 17.7289 1.06140
\(280\) 0 0
\(281\) 3.54046 0.211206 0.105603 0.994408i \(-0.466323\pi\)
0.105603 + 0.994408i \(0.466323\pi\)
\(282\) 0 0
\(283\) 1.18755 + 1.18755i 0.0705928 + 0.0705928i 0.741522 0.670929i \(-0.234104\pi\)
−0.670929 + 0.741522i \(0.734104\pi\)
\(284\) 0 0
\(285\) −2.12251 2.06928i −0.125727 0.122573i
\(286\) 0 0
\(287\) 1.08396 + 1.08396i 0.0639840 + 0.0639840i
\(288\) 0 0
\(289\) 15.7418i 0.925986i
\(290\) 0 0
\(291\) 0.980423 0.0574734
\(292\) 0 0
\(293\) 10.7306 10.7306i 0.626889 0.626889i −0.320395 0.947284i \(-0.603816\pi\)
0.947284 + 0.320395i \(0.103816\pi\)
\(294\) 0 0
\(295\) 4.39649 0.0558376i 0.255973 0.00325099i
\(296\) 0 0
\(297\) −4.73059 + 4.73059i −0.274497 + 0.274497i
\(298\) 0 0
\(299\) 4.58743i 0.265298i
\(300\) 0 0
\(301\) 4.82825i 0.278296i
\(302\) 0 0
\(303\) 0.630330 0.630330i 0.0362115 0.0362115i
\(304\) 0 0
\(305\) −11.8021 + 0.149893i −0.675789 + 0.00858285i
\(306\) 0 0
\(307\) 6.20070 6.20070i 0.353893 0.353893i −0.507663 0.861556i \(-0.669491\pi\)
0.861556 + 0.507663i \(0.169491\pi\)
\(308\) 0 0
\(309\) −1.33339 −0.0758536
\(310\) 0 0
\(311\) 22.9744i 1.30276i −0.758752 0.651380i \(-0.774191\pi\)
0.758752 0.651380i \(-0.225809\pi\)
\(312\) 0 0
\(313\) −15.3383 15.3383i −0.866974 0.866974i 0.125162 0.992136i \(-0.460055\pi\)
−0.992136 + 0.125162i \(0.960055\pi\)
\(314\) 0 0
\(315\) −4.72007 4.60168i −0.265946 0.259275i
\(316\) 0 0
\(317\) 1.54114 + 1.54114i 0.0865589 + 0.0865589i 0.749060 0.662502i \(-0.230505\pi\)
−0.662502 + 0.749060i \(0.730505\pi\)
\(318\) 0 0
\(319\) 41.1919 2.30630
\(320\) 0 0
\(321\) 3.06339 0.170982
\(322\) 0 0
\(323\) 4.61244 + 4.61244i 0.256643 + 0.256643i
\(324\) 0 0
\(325\) 19.7445 20.7739i 1.09523 1.15233i
\(326\) 0 0
\(327\) 2.72490 + 2.72490i 0.150687 + 0.150687i
\(328\) 0 0
\(329\) 4.85245i 0.267524i
\(330\) 0 0
\(331\) −23.1716 −1.27363 −0.636814 0.771017i \(-0.719748\pi\)
−0.636814 + 0.771017i \(0.719748\pi\)
\(332\) 0 0
\(333\) 11.1904 11.1904i 0.613230 0.613230i
\(334\) 0 0
\(335\) −11.3774 11.0920i −0.621613 0.606021i
\(336\) 0 0
\(337\) 8.31200 8.31200i 0.452783 0.452783i −0.443494 0.896277i \(-0.646261\pi\)
0.896277 + 0.443494i \(0.146261\pi\)
\(338\) 0 0
\(339\) 3.46787i 0.188349i
\(340\) 0 0
\(341\) 29.6712i 1.60679i
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) 0.00518087 + 0.407926i 0.000278928 + 0.0219620i
\(346\) 0 0
\(347\) −2.43072 + 2.43072i −0.130488 + 0.130488i −0.769334 0.638846i \(-0.779412\pi\)
0.638846 + 0.769334i \(0.279412\pi\)
\(348\) 0 0
\(349\) 4.27164 0.228656 0.114328 0.993443i \(-0.463529\pi\)
0.114328 + 0.993443i \(0.463529\pi\)
\(350\) 0 0
\(351\) 7.77235i 0.414857i
\(352\) 0 0
\(353\) 1.56759 + 1.56759i 0.0834343 + 0.0834343i 0.747592 0.664158i \(-0.231210\pi\)
−0.664158 + 0.747592i \(0.731210\pi\)
\(354\) 0 0
\(355\) −13.4730 + 0.171114i −0.715075 + 0.00908180i
\(356\) 0 0
\(357\) −0.180816 0.180816i −0.00956982 0.00956982i
\(358\) 0 0
\(359\) −14.1532 −0.746975 −0.373488 0.927635i \(-0.621838\pi\)
−0.373488 + 0.927635i \(0.621838\pi\)
\(360\) 0 0
\(361\) −14.8164 −0.779813
\(362\) 0 0
\(363\) 2.15084 + 2.15084i 0.112890 + 0.112890i
\(364\) 0 0
\(365\) −23.7670 + 24.3785i −1.24402 + 1.27603i
\(366\) 0 0
\(367\) 13.0374 + 13.0374i 0.680544 + 0.680544i 0.960123 0.279578i \(-0.0901947\pi\)
−0.279578 + 0.960123i \(0.590195\pi\)
\(368\) 0 0
\(369\) 4.51918i 0.235259i
\(370\) 0 0
\(371\) −4.56002 −0.236745
\(372\) 0 0
\(373\) −8.98073 + 8.98073i −0.465004 + 0.465004i −0.900292 0.435287i \(-0.856647\pi\)
0.435287 + 0.900292i \(0.356647\pi\)
\(374\) 0 0
\(375\) −1.73228 + 1.86957i −0.0894544 + 0.0965443i
\(376\) 0 0
\(377\) 33.8391 33.8391i 1.74280 1.74280i
\(378\) 0 0
\(379\) 10.9173i 0.560785i 0.959885 + 0.280392i \(0.0904646\pi\)
−0.959885 + 0.280392i \(0.909535\pi\)
\(380\) 0 0
\(381\) 2.40052i 0.122983i
\(382\) 0 0
\(383\) 3.00460 3.00460i 0.153528 0.153528i −0.626164 0.779692i \(-0.715376\pi\)
0.779692 + 0.626164i \(0.215376\pi\)
\(384\) 0 0
\(385\) −7.70141 + 7.89955i −0.392500 + 0.402599i
\(386\) 0 0
\(387\) 10.0648 10.0648i 0.511624 0.511624i
\(388\) 0 0
\(389\) −25.6455 −1.30028 −0.650140 0.759814i \(-0.725290\pi\)
−0.650140 + 0.759814i \(0.725290\pi\)
\(390\) 0 0
\(391\) 0.897725i 0.0453999i
\(392\) 0 0
\(393\) −3.10812 3.10812i −0.156784 0.156784i
\(394\) 0 0
\(395\) 0.244463 + 19.2483i 0.0123003 + 0.968487i
\(396\) 0 0
\(397\) 6.63522 + 6.63522i 0.333012 + 0.333012i 0.853729 0.520717i \(-0.174335\pi\)
−0.520717 + 0.853729i \(0.674335\pi\)
\(398\) 0 0
\(399\) 1.32567 0.0663664
\(400\) 0 0
\(401\) 19.7675 0.987141 0.493570 0.869706i \(-0.335692\pi\)
0.493570 + 0.869706i \(0.335692\pi\)
\(402\) 0 0
\(403\) −24.3749 24.3749i −1.21420 1.21420i
\(404\) 0 0
\(405\) 0.242367 + 19.0833i 0.0120433 + 0.948255i
\(406\) 0 0
\(407\) −18.7284 18.7284i −0.928331 0.928331i
\(408\) 0 0
\(409\) 7.16001i 0.354040i −0.984207 0.177020i \(-0.943354\pi\)
0.984207 0.177020i \(-0.0566457\pi\)
\(410\) 0 0
\(411\) 2.63659 0.130053
\(412\) 0 0
\(413\) −1.39040 + 1.39040i −0.0684173 + 0.0684173i
\(414\) 0 0
\(415\) −22.5803 + 23.1613i −1.10842 + 1.13694i
\(416\) 0 0
\(417\) −1.48855 + 1.48855i −0.0728946 + 0.0728946i
\(418\) 0 0
\(419\) 27.2101i 1.32930i −0.747156 0.664649i \(-0.768581\pi\)
0.747156 0.664649i \(-0.231419\pi\)
\(420\) 0 0
\(421\) 7.10155i 0.346108i −0.984912 0.173054i \(-0.944636\pi\)
0.984912 0.173054i \(-0.0553636\pi\)
\(422\) 0 0
\(423\) −10.1153 + 10.1153i −0.491822 + 0.491822i
\(424\) 0 0
\(425\) 3.86386 4.06530i 0.187425 0.197196i
\(426\) 0 0
\(427\) 3.73247 3.73247i 0.180627 0.180627i
\(428\) 0 0
\(429\) 6.44712 0.311270
\(430\) 0 0
\(431\) 30.0783i 1.44882i −0.689369 0.724410i \(-0.742112\pi\)
0.689369 0.724410i \(-0.257888\pi\)
\(432\) 0 0
\(433\) 23.6663 + 23.6663i 1.13733 + 1.13733i 0.988927 + 0.148403i \(0.0474133\pi\)
0.148403 + 0.988927i \(0.452587\pi\)
\(434\) 0 0
\(435\) −2.97084 + 3.04728i −0.142441 + 0.146106i
\(436\) 0 0
\(437\) 3.29086 + 3.29086i 0.157423 + 0.157423i
\(438\) 0 0
\(439\) −11.9778 −0.571670 −0.285835 0.958279i \(-0.592271\pi\)
−0.285835 + 0.958279i \(0.592271\pi\)
\(440\) 0 0
\(441\) 2.94803 0.140382
\(442\) 0 0
\(443\) 7.85823 + 7.85823i 0.373356 + 0.373356i 0.868698 0.495342i \(-0.164957\pi\)
−0.495342 + 0.868698i \(0.664957\pi\)
\(444\) 0 0
\(445\) −0.690059 + 0.00876410i −0.0327120 + 0.000415458i
\(446\) 0 0
\(447\) −0.796408 0.796408i −0.0376688 0.0376688i
\(448\) 0 0
\(449\) 30.5279i 1.44070i 0.693609 + 0.720351i \(0.256019\pi\)
−0.693609 + 0.720351i \(0.743981\pi\)
\(450\) 0 0
\(451\) −7.56335 −0.356144
\(452\) 0 0
\(453\) 1.31530 1.31530i 0.0617981 0.0617981i
\(454\) 0 0
\(455\) 0.162772 + 12.8162i 0.00763085 + 0.600831i
\(456\) 0 0
\(457\) 15.9007 15.9007i 0.743805 0.743805i −0.229503 0.973308i \(-0.573710\pi\)
0.973308 + 0.229503i \(0.0737100\pi\)
\(458\) 0 0
\(459\) 1.52099i 0.0709937i
\(460\) 0 0
\(461\) 10.3015i 0.479789i 0.970799 + 0.239895i \(0.0771129\pi\)
−0.970799 + 0.239895i \(0.922887\pi\)
\(462\) 0 0
\(463\) −29.5149 + 29.5149i −1.37167 + 1.37167i −0.513708 + 0.857965i \(0.671729\pi\)
−0.857965 + 0.513708i \(0.828271\pi\)
\(464\) 0 0
\(465\) 2.19501 + 2.13995i 0.101791 + 0.0992379i
\(466\) 0 0
\(467\) −12.4119 + 12.4119i −0.574357 + 0.574357i −0.933343 0.358986i \(-0.883122\pi\)
0.358986 + 0.933343i \(0.383122\pi\)
\(468\) 0 0
\(469\) 7.10602 0.328125
\(470\) 0 0
\(471\) 0.288175i 0.0132784i
\(472\) 0 0
\(473\) −16.8446 16.8446i −0.774516 0.774516i
\(474\) 0 0
\(475\) 0.738439 + 29.0666i 0.0338819 + 1.33367i
\(476\) 0 0
\(477\) 9.50570 + 9.50570i 0.435236 + 0.435236i
\(478\) 0 0
\(479\) −38.2100 −1.74586 −0.872929 0.487848i \(-0.837782\pi\)
−0.872929 + 0.487848i \(0.837782\pi\)
\(480\) 0 0
\(481\) −30.7706 −1.40302
\(482\) 0 0
\(483\) −0.129008 0.129008i −0.00587007 0.00587007i
\(484\) 0 0
\(485\) −6.88587 6.71316i −0.312671 0.304829i
\(486\) 0 0
\(487\) 10.0740 + 10.0740i 0.456496 + 0.456496i 0.897503 0.441007i \(-0.145379\pi\)
−0.441007 + 0.897503i \(0.645379\pi\)
\(488\) 0 0
\(489\) 4.62731i 0.209254i
\(490\) 0 0
\(491\) −1.05766 −0.0477314 −0.0238657 0.999715i \(-0.507597\pi\)
−0.0238657 + 0.999715i \(0.507597\pi\)
\(492\) 0 0
\(493\) 6.62205 6.62205i 0.298242 0.298242i
\(494\) 0 0
\(495\) 32.5214 0.413037i 1.46173 0.0185646i
\(496\) 0 0
\(497\) 4.26089 4.26089i 0.191127 0.191127i
\(498\) 0 0
\(499\) 27.3238i 1.22318i 0.791175 + 0.611590i \(0.209470\pi\)
−0.791175 + 0.611590i \(0.790530\pi\)
\(500\) 0 0
\(501\) 1.29610i 0.0579053i
\(502\) 0 0
\(503\) −4.15122 + 4.15122i −0.185094 + 0.185094i −0.793571 0.608477i \(-0.791781\pi\)
0.608477 + 0.793571i \(0.291781\pi\)
\(504\) 0 0
\(505\) −8.74303 + 0.111041i −0.389060 + 0.00494125i
\(506\) 0 0
\(507\) 3.20074 3.20074i 0.142150 0.142150i
\(508\) 0 0
\(509\) 1.69580 0.0751651 0.0375826 0.999294i \(-0.488034\pi\)
0.0375826 + 0.999294i \(0.488034\pi\)
\(510\) 0 0
\(511\) 15.2262i 0.673567i
\(512\) 0 0
\(513\) −5.57562 5.57562i −0.246170 0.246170i
\(514\) 0 0
\(515\) 9.36485 + 9.12996i 0.412665 + 0.402314i
\(516\) 0 0
\(517\) 16.9291 + 16.9291i 0.744539 + 0.744539i
\(518\) 0 0
\(519\) 3.62173 0.158976
\(520\) 0 0
\(521\) −17.5802 −0.770204 −0.385102 0.922874i \(-0.625834\pi\)
−0.385102 + 0.922874i \(0.625834\pi\)
\(522\) 0 0
\(523\) −17.3356 17.3356i −0.758034 0.758034i 0.217931 0.975964i \(-0.430069\pi\)
−0.975964 + 0.217931i \(0.930069\pi\)
\(524\) 0 0
\(525\) −0.0289482 1.13946i −0.00126340 0.0497303i
\(526\) 0 0
\(527\) −4.76998 4.76998i −0.207784 0.207784i
\(528\) 0 0
\(529\) 22.3595i 0.972152i
\(530\) 0 0
\(531\) 5.79680 0.251560
\(532\) 0 0
\(533\) −6.21327 + 6.21327i −0.269127 + 0.269127i
\(534\) 0 0
\(535\) −21.5153 20.9757i −0.930188 0.906857i
\(536\) 0 0
\(537\) −1.46204 + 1.46204i −0.0630917 + 0.0630917i
\(538\) 0 0
\(539\) 4.93386i 0.212516i
\(540\) 0 0
\(541\) 40.8275i 1.75531i 0.479292 + 0.877655i \(0.340893\pi\)
−0.479292 + 0.877655i \(0.659107\pi\)
\(542\) 0 0
\(543\) 2.55828 2.55828i 0.109786 0.109786i
\(544\) 0 0
\(545\) −0.480026 37.7959i −0.0205621 1.61900i
\(546\) 0 0
\(547\) 9.45318 9.45318i 0.404189 0.404189i −0.475518 0.879706i \(-0.657739\pi\)
0.879706 + 0.475518i \(0.157739\pi\)
\(548\) 0 0
\(549\) −15.5612 −0.664136
\(550\) 0 0
\(551\) 48.5500i 2.06830i
\(552\) 0 0
\(553\) −6.08734 6.08734i −0.258860 0.258860i
\(554\) 0 0
\(555\) 2.73621 0.0347512i 0.116146 0.00147511i
\(556\) 0 0
\(557\) −19.2588 19.2588i −0.816023 0.816023i 0.169507 0.985529i \(-0.445783\pi\)
−0.985529 + 0.169507i \(0.945783\pi\)
\(558\) 0 0
\(559\) −27.6756 −1.17055
\(560\) 0 0
\(561\) 1.26165 0.0532670
\(562\) 0 0
\(563\) −22.4254 22.4254i −0.945119 0.945119i 0.0534519 0.998570i \(-0.482978\pi\)
−0.998570 + 0.0534519i \(0.982978\pi\)
\(564\) 0 0
\(565\) −23.7452 + 24.3561i −0.998968 + 1.02467i
\(566\) 0 0
\(567\) −6.03514 6.03514i −0.253452 0.253452i
\(568\) 0 0
\(569\) 31.3785i 1.31545i −0.753256 0.657727i \(-0.771518\pi\)
0.753256 0.657727i \(-0.228482\pi\)
\(570\) 0 0
\(571\) 15.2261 0.637194 0.318597 0.947890i \(-0.396788\pi\)
0.318597 + 0.947890i \(0.396788\pi\)
\(572\) 0 0
\(573\) −2.42402 + 2.42402i −0.101265 + 0.101265i
\(574\) 0 0
\(575\) 2.75677 2.90049i 0.114965 0.120959i
\(576\) 0 0
\(577\) −23.1621 + 23.1621i −0.964252 + 0.964252i −0.999383 0.0351312i \(-0.988815\pi\)
0.0351312 + 0.999383i \(0.488815\pi\)
\(578\) 0 0
\(579\) 1.67563i 0.0696366i
\(580\) 0 0
\(581\) 14.4659i 0.600148i
\(582\) 0 0
\(583\) 15.9088 15.9088i 0.658877 0.658877i
\(584\) 0 0
\(585\) 26.3769 27.0555i 1.09055 1.11861i
\(586\) 0 0
\(587\) −6.02231 + 6.02231i −0.248567 + 0.248567i −0.820382 0.571815i \(-0.806239\pi\)
0.571815 + 0.820382i \(0.306239\pi\)
\(588\) 0 0
\(589\) 34.9714 1.44097
\(590\) 0 0
\(591\) 1.48748i 0.0611869i
\(592\) 0 0
\(593\) −5.40684 5.40684i −0.222032 0.222032i 0.587321 0.809354i \(-0.300182\pi\)
−0.809354 + 0.587321i \(0.800182\pi\)
\(594\) 0 0
\(595\) 0.0318532 + 2.50803i 0.00130585 + 0.102819i
\(596\) 0 0
\(597\) −0.751756 0.751756i −0.0307673 0.0307673i
\(598\) 0 0
\(599\) −47.4665 −1.93943 −0.969715 0.244240i \(-0.921462\pi\)
−0.969715 + 0.244240i \(0.921462\pi\)
\(600\) 0 0
\(601\) −47.1229 −1.92218 −0.961092 0.276227i \(-0.910916\pi\)
−0.961092 + 0.276227i \(0.910916\pi\)
\(602\) 0 0
\(603\) −14.8130 14.8130i −0.603232 0.603232i
\(604\) 0 0
\(605\) −0.378898 29.8333i −0.0154044 1.21290i
\(606\) 0 0
\(607\) −20.6362 20.6362i −0.837599 0.837599i 0.150943 0.988542i \(-0.451769\pi\)
−0.988542 + 0.150943i \(0.951769\pi\)
\(608\) 0 0
\(609\) 1.90325i 0.0771236i
\(610\) 0 0
\(611\) 27.8144 1.12525
\(612\) 0 0
\(613\) −15.1404 + 15.1404i −0.611514 + 0.611514i −0.943340 0.331827i \(-0.892335\pi\)
0.331827 + 0.943340i \(0.392335\pi\)
\(614\) 0 0
\(615\) 0.545484 0.559518i 0.0219960 0.0225620i
\(616\) 0 0
\(617\) 14.1397 14.1397i 0.569242 0.569242i −0.362674 0.931916i \(-0.618136\pi\)
0.931916 + 0.362674i \(0.118136\pi\)
\(618\) 0 0
\(619\) 41.2646i 1.65857i −0.558829 0.829283i \(-0.688749\pi\)
0.558829 0.829283i \(-0.311251\pi\)
\(620\) 0 0
\(621\) 1.08519i 0.0435471i
\(622\) 0 0
\(623\) 0.218234 0.218234i 0.00874334 0.00874334i
\(624\) 0 0
\(625\) 24.9677 1.26944i 0.998710 0.0507774i
\(626\) 0 0
\(627\) −4.62494 + 4.62494i −0.184702 + 0.184702i
\(628\) 0 0
\(629\) −6.02158 −0.240096
\(630\) 0 0
\(631\) 0.491483i 0.0195656i −0.999952 0.00978281i \(-0.996886\pi\)
0.999952 0.00978281i \(-0.00311401\pi\)
\(632\) 0 0
\(633\) 0.884682 + 0.884682i 0.0351629 + 0.0351629i
\(634\) 0 0
\(635\) 16.4369 16.8598i 0.652277 0.669059i
\(636\) 0 0
\(637\) −4.05315 4.05315i −0.160592 0.160592i
\(638\) 0 0
\(639\) −17.7643 −0.702744
\(640\) 0 0
\(641\) 18.4768 0.729791 0.364896 0.931048i \(-0.381105\pi\)
0.364896 + 0.931048i \(0.381105\pi\)
\(642\) 0 0
\(643\) 0.743869 + 0.743869i 0.0293353 + 0.0293353i 0.721622 0.692287i \(-0.243397\pi\)
−0.692287 + 0.721622i \(0.743397\pi\)
\(644\) 0 0
\(645\) 2.46099 0.0312558i 0.0969015 0.00123070i
\(646\) 0 0
\(647\) 17.5707 + 17.5707i 0.690777 + 0.690777i 0.962403 0.271626i \(-0.0875614\pi\)
−0.271626 + 0.962403i \(0.587561\pi\)
\(648\) 0 0
\(649\) 9.70158i 0.380820i
\(650\) 0 0
\(651\) −1.37094 −0.0537316
\(652\) 0 0
\(653\) −5.81323 + 5.81323i −0.227489 + 0.227489i −0.811643 0.584154i \(-0.801426\pi\)
0.584154 + 0.811643i \(0.301426\pi\)
\(654\) 0 0
\(655\) 0.547535 + 43.1113i 0.0213940 + 1.68450i
\(656\) 0 0
\(657\) −31.7401 + 31.7401i −1.23830 + 1.23830i
\(658\) 0 0
\(659\) 9.18508i 0.357800i −0.983867 0.178900i \(-0.942746\pi\)
0.983867 0.178900i \(-0.0572539\pi\)
\(660\) 0 0
\(661\) 17.3173i 0.673563i 0.941583 + 0.336782i \(0.109338\pi\)
−0.941583 + 0.336782i \(0.890662\pi\)
\(662\) 0 0
\(663\) 1.03644 1.03644i 0.0402522 0.0402522i
\(664\) 0 0
\(665\) −9.31065 9.07712i −0.361051 0.351995i
\(666\) 0 0
\(667\) 4.72467 4.72467i 0.182940 0.182940i
\(668\) 0 0
\(669\) −1.74446 −0.0674448
\(670\) 0 0
\(671\) 26.0434i 1.00539i
\(672\) 0 0
\(673\) 14.5702 + 14.5702i 0.561639 + 0.561639i 0.929773 0.368134i \(-0.120003\pi\)
−0.368134 + 0.929773i \(0.620003\pi\)
\(674\) 0 0
\(675\) −4.67071 + 4.91422i −0.179776 + 0.189148i
\(676\) 0 0
\(677\) 0.273066 + 0.273066i 0.0104948 + 0.0104948i 0.712335 0.701840i \(-0.247638\pi\)
−0.701840 + 0.712335i \(0.747638\pi\)
\(678\) 0 0
\(679\) 4.30074 0.165047
\(680\) 0 0
\(681\) 0.197985 0.00758681
\(682\) 0 0
\(683\) −4.61975 4.61975i −0.176770 0.176770i 0.613176 0.789946i \(-0.289892\pi\)
−0.789946 + 0.613176i \(0.789892\pi\)
\(684\) 0 0
\(685\) −18.5177 18.0532i −0.707525 0.689779i
\(686\) 0 0
\(687\) −2.93441 2.93441i −0.111955 0.111955i
\(688\) 0 0
\(689\) 26.1382i 0.995785i
\(690\) 0 0
\(691\) 21.8634 0.831722 0.415861 0.909428i \(-0.363480\pi\)
0.415861 + 0.909428i \(0.363480\pi\)
\(692\) 0 0
\(693\) −10.2850 + 10.2850i −0.390694 + 0.390694i
\(694\) 0 0
\(695\) 20.6470 0.262228i 0.783187 0.00994686i
\(696\) 0 0
\(697\) −1.21589 + 1.21589i −0.0460552 + 0.0460552i
\(698\) 0 0
\(699\) 3.79314i 0.143470i
\(700\) 0 0
\(701\) 13.2692i 0.501170i −0.968095 0.250585i \(-0.919377\pi\)
0.968095 0.250585i \(-0.0806229\pi\)
\(702\) 0 0
\(703\) 22.0738 22.0738i 0.832529 0.832529i
\(704\) 0 0
\(705\) −2.47333 + 0.0314125i −0.0931510 + 0.00118306i
\(706\) 0 0
\(707\) 2.76501 2.76501i 0.103989 0.103989i
\(708\) 0 0
\(709\) −15.1247 −0.568020 −0.284010 0.958821i \(-0.591665\pi\)
−0.284010 + 0.958821i \(0.591665\pi\)
\(710\) 0 0
\(711\) 25.3790i 0.951787i
\(712\) 0 0
\(713\) −3.40326 3.40326i −0.127453 0.127453i
\(714\) 0 0
\(715\) −45.2804 44.1447i −1.69339 1.65092i
\(716\) 0 0
\(717\) 1.41999 + 1.41999i 0.0530306 + 0.0530306i
\(718\) 0 0
\(719\) 22.8933 0.853776 0.426888 0.904304i \(-0.359610\pi\)
0.426888 + 0.904304i \(0.359610\pi\)
\(720\) 0 0
\(721\) −5.84904 −0.217830
\(722\) 0 0
\(723\) −3.44813 3.44813i −0.128237 0.128237i
\(724\) 0 0
\(725\) 41.7306 1.06017i 1.54984 0.0393737i
\(726\) 0 0
\(727\) −0.712383 0.712383i −0.0264208 0.0264208i 0.693773 0.720194i \(-0.255947\pi\)
−0.720194 + 0.693773i \(0.755947\pi\)
\(728\) 0 0
\(729\) 24.2341i 0.897558i
\(730\) 0 0
\(731\) −5.41591 −0.200315
\(732\) 0 0
\(733\) 13.0673 13.0673i 0.482653 0.482653i −0.423325 0.905978i \(-0.639137\pi\)
0.905978 + 0.423325i \(0.139137\pi\)
\(734\) 0 0
\(735\) 0.364995 + 0.355840i 0.0134630 + 0.0131254i
\(736\) 0 0
\(737\) −24.7912 + 24.7912i −0.913196 + 0.913196i
\(738\) 0 0
\(739\) 13.0130i 0.478692i −0.970934 0.239346i \(-0.923067\pi\)
0.970934 0.239346i \(-0.0769330\pi\)
\(740\) 0 0
\(741\) 7.59876i 0.279147i
\(742\) 0 0
\(743\) 3.95133 3.95133i 0.144960 0.144960i −0.630902 0.775862i \(-0.717315\pi\)
0.775862 + 0.630902i \(0.217315\pi\)
\(744\) 0 0
\(745\) 0.140298 + 11.0466i 0.00514011 + 0.404717i
\(746\) 0 0
\(747\) −30.1553 + 30.1553i −1.10332 + 1.10332i
\(748\) 0 0
\(749\) 13.4379 0.491010
\(750\) 0 0
\(751\) 10.6694i 0.389333i −0.980869 0.194666i \(-0.937638\pi\)
0.980869 0.194666i \(-0.0623625\pi\)
\(752\) 0 0
\(753\) 5.06017 + 5.06017i 0.184403 + 0.184403i
\(754\) 0 0
\(755\) −18.2439 + 0.231707i −0.663965 + 0.00843268i
\(756\) 0 0
\(757\) −19.7518 19.7518i −0.717890 0.717890i 0.250283 0.968173i \(-0.419476\pi\)
−0.968173 + 0.250283i \(0.919476\pi\)
\(758\) 0 0
\(759\) 0.900157 0.0326736
\(760\) 0 0
\(761\) 5.08452 0.184314 0.0921568 0.995745i \(-0.470624\pi\)
0.0921568 + 0.995745i \(0.470624\pi\)
\(762\) 0 0
\(763\) 11.9531 + 11.9531i 0.432730 + 0.432730i
\(764\) 0 0
\(765\) 5.16176 5.29456i 0.186624 0.191425i
\(766\) 0 0
\(767\) −7.96983 7.96983i −0.287774 0.287774i
\(768\) 0 0
\(769\) 41.2578i 1.48780i −0.668293 0.743898i \(-0.732975\pi\)
0.668293 0.743898i \(-0.267025\pi\)
\(770\) 0 0
\(771\) −0.717380 −0.0258358
\(772\) 0 0
\(773\) −5.76976 + 5.76976i −0.207524 + 0.207524i −0.803214 0.595690i \(-0.796879\pi\)
0.595690 + 0.803214i \(0.296879\pi\)
\(774\) 0 0
\(775\) −0.763660 30.0593i −0.0274315 1.07976i
\(776\) 0 0
\(777\) −0.865335 + 0.865335i −0.0310437 + 0.0310437i
\(778\) 0 0
\(779\) 8.91439i 0.319391i
\(780\) 0 0
\(781\) 29.7305i 1.06384i
\(782\) 0 0
\(783\) −8.00487 + 8.00487i −0.286071 + 0.286071i
\(784\) 0 0
\(785\) 1.97319 2.02396i 0.0704261 0.0722381i
\(786\) 0 0
\(787\) −35.7523 + 35.7523i −1.27443 + 1.27443i −0.330692 + 0.943739i \(0.607282\pi\)
−0.943739 + 0.330692i \(0.892718\pi\)
\(788\) 0 0
\(789\) 1.92922 0.0686820
\(790\) 0 0
\(791\) 15.2122i 0.540883i
\(792\) 0 0
\(793\) 21.3946 + 21.3946i 0.759744 + 0.759744i
\(794\) 0 0
\(795\) 0.0295195 + 2.32428i 0.00104695 + 0.0824336i
\(796\) 0 0
\(797\) −5.97318 5.97318i −0.211581 0.211581i 0.593358 0.804939i \(-0.297802\pi\)
−0.804939 + 0.593358i \(0.797802\pi\)
\(798\) 0 0
\(799\) 5.44306 0.192562
\(800\) 0 0
\(801\) −0.909848 −0.0321479
\(802\) 0 0
\(803\) 53.1206 + 53.1206i 1.87458 + 1.87458i
\(804\) 0 0
\(805\) 0.0227264 + 1.78941i 0.000801002 + 0.0630686i
\(806\) 0 0
\(807\) 0.0951363 + 0.0951363i 0.00334896 + 0.00334896i
\(808\) 0 0
\(809\) 36.5735i 1.28586i 0.765927 + 0.642928i \(0.222281\pi\)
−0.765927 + 0.642928i \(0.777719\pi\)
\(810\) 0 0
\(811\) 0.603322 0.0211855 0.0105928 0.999944i \(-0.496628\pi\)
0.0105928 + 0.999944i \(0.496628\pi\)
\(812\) 0 0
\(813\) 2.58843 2.58843i 0.0907803 0.0907803i
\(814\) 0 0
\(815\) 31.6842 32.4993i 1.10985 1.13840i
\(816\) 0 0
\(817\) 19.8536 19.8536i 0.694588 0.694588i
\(818\) 0 0
\(819\) 16.8982i 0.590471i
\(820\) 0 0
\(821\) 33.2259i 1.15959i −0.814762 0.579796i \(-0.803132\pi\)
0.814762 0.579796i \(-0.196868\pi\)
\(822\) 0 0
\(823\) 9.06126 9.06126i 0.315856 0.315856i −0.531317 0.847173i \(-0.678303\pi\)
0.847173 + 0.531317i \(0.178303\pi\)
\(824\) 0 0
\(825\) 4.07632 + 3.87433i 0.141919 + 0.134887i
\(826\) 0 0
\(827\) 21.4284 21.4284i 0.745140 0.745140i −0.228422 0.973562i \(-0.573357\pi\)
0.973562 + 0.228422i \(0.0733567\pi\)
\(828\) 0 0
\(829\) −24.1876 −0.840071 −0.420036 0.907508i \(-0.637982\pi\)
−0.420036 + 0.907508i \(0.637982\pi\)
\(830\) 0 0
\(831\) 3.23107i 0.112085i
\(832\) 0 0
\(833\) −0.793172 0.793172i −0.0274818 0.0274818i
\(834\) 0 0
\(835\) −8.87463 + 9.10296i −0.307119 + 0.315021i
\(836\) 0 0
\(837\) 5.76605 + 5.76605i 0.199304 + 0.199304i
\(838\) 0 0
\(839\) 34.0386 1.17514 0.587571 0.809172i \(-0.300084\pi\)
0.587571 + 0.809172i \(0.300084\pi\)
\(840\) 0 0
\(841\) 40.7028 1.40355
\(842\) 0 0
\(843\) 0.570711 + 0.570711i 0.0196563 + 0.0196563i
\(844\) 0 0
\(845\) −44.3960 + 0.563852i −1.52727 + 0.0193971i
\(846\) 0 0
\(847\) 9.43489 + 9.43489i 0.324187 + 0.324187i
\(848\) 0 0
\(849\) 0.382859i 0.0131397i
\(850\) 0 0
\(851\) −4.29625 −0.147273
\(852\) 0 0
\(853\) −36.0811 + 36.0811i −1.23539 + 1.23539i −0.273530 + 0.961863i \(0.588191\pi\)
−0.961863 + 0.273530i \(0.911809\pi\)
\(854\) 0 0
\(855\) 0.486818 + 38.3306i 0.0166488 + 1.31088i
\(856\) 0 0
\(857\) 20.0497 20.0497i 0.684885 0.684885i −0.276212 0.961097i \(-0.589079\pi\)
0.961097 + 0.276212i \(0.0890792\pi\)
\(858\) 0 0
\(859\) 11.0584i 0.377306i 0.982044 + 0.188653i \(0.0604122\pi\)
−0.982044 + 0.188653i \(0.939588\pi\)
\(860\) 0 0
\(861\) 0.349461i 0.0119096i
\(862\) 0 0
\(863\) −24.9568 + 24.9568i −0.849539 + 0.849539i −0.990076 0.140536i \(-0.955117\pi\)
0.140536 + 0.990076i \(0.455117\pi\)
\(864\) 0 0
\(865\) −25.4367 24.7987i −0.864875 0.843182i
\(866\) 0 0
\(867\) −2.53752 + 2.53752i −0.0861786 + 0.0861786i
\(868\) 0 0
\(869\) 42.4746 1.44085
\(870\) 0 0
\(871\) 40.7319i 1.38015i
\(872\) 0 0
\(873\) −8.96520 8.96520i −0.303426 0.303426i
\(874\) 0 0
\(875\) −7.59883 + 8.20109i −0.256887 + 0.277247i
\(876\) 0 0
\(877\) −23.6400 23.6400i −0.798265 0.798265i 0.184557 0.982822i \(-0.440915\pi\)
−0.982822 + 0.184557i \(0.940915\pi\)
\(878\) 0 0
\(879\) 3.45947 0.116685
\(880\) 0 0
\(881\) −2.61767 −0.0881914 −0.0440957 0.999027i \(-0.514041\pi\)
−0.0440957 + 0.999027i \(0.514041\pi\)
\(882\) 0 0
\(883\) 14.2779 + 14.2779i 0.480488 + 0.480488i 0.905288 0.424799i \(-0.139655\pi\)
−0.424799 + 0.905288i \(0.639655\pi\)
\(884\) 0 0
\(885\) 0.717700 + 0.699698i 0.0241252 + 0.0235201i
\(886\) 0 0
\(887\) −36.9666 36.9666i −1.24122 1.24122i −0.959496 0.281723i \(-0.909094\pi\)
−0.281723 0.959496i \(-0.590906\pi\)
\(888\) 0 0
\(889\) 10.5302i 0.353171i
\(890\) 0 0
\(891\) 42.1104 1.41075
\(892\) 0 0
\(893\) −19.9531 + 19.9531i −0.667705 + 0.667705i
\(894\) 0 0
\(895\) 20.2793 0.257557i 0.677863 0.00860919i
\(896\) 0 0
\(897\) 0.739477 0.739477i 0.0246904 0.0246904i
\(898\) 0 0
\(899\) 50.2082i 1.67454i
\(900\) 0 0
\(901\) 5.11504i 0.170407i
\(902\) 0 0
\(903\) −0.778297 + 0.778297i −0.0259001 + 0.0259001i
\(904\) 0 0
\(905\) −35.4848 + 0.450675i −1.17956 + 0.0149809i
\(906\) 0 0
\(907\) 7.40975 7.40975i 0.246037 0.246037i −0.573305 0.819342i \(-0.694339\pi\)
0.819342 + 0.573305i \(0.194339\pi\)
\(908\) 0 0
\(909\) −11.5277 −0.382351
\(910\) 0 0
\(911\) 12.4164i 0.411374i −0.978618 0.205687i \(-0.934057\pi\)
0.978618 0.205687i \(-0.0659428\pi\)
\(912\) 0 0
\(913\) 50.4682 + 50.4682i 1.67025 + 1.67025i
\(914\) 0 0
\(915\) −1.92663 1.87830i −0.0636923 0.0620948i
\(916\) 0 0
\(917\) −13.6341 13.6341i −0.450238 0.450238i
\(918\) 0 0
\(919\) 47.8744 1.57923 0.789616 0.613602i \(-0.210280\pi\)
0.789616 + 0.613602i \(0.210280\pi\)
\(920\) 0 0
\(921\) 1.99906 0.0658714
\(922\) 0 0
\(923\) 24.4235 + 24.4235i 0.803911 + 0.803911i
\(924\) 0 0
\(925\) −19.4553 18.4913i −0.639687 0.607990i
\(926\) 0 0
\(927\) 12.1928 + 12.1928i 0.400463 + 0.400463i
\(928\) 0 0
\(929\) 26.0603i 0.855009i 0.904013 + 0.427505i \(0.140607\pi\)
−0.904013 + 0.427505i \(0.859393\pi\)
\(930\) 0 0
\(931\) 5.81519 0.190585
\(932\) 0 0
\(933\) 3.70340 3.70340i 0.121244 0.121244i
\(934\) 0 0
\(935\) −8.86104 8.63879i −0.289787 0.282518i
\(936\) 0 0
\(937\) 19.5860 19.5860i 0.639848 0.639848i −0.310670 0.950518i \(-0.600553\pi\)
0.950518 + 0.310670i \(0.100553\pi\)
\(938\) 0 0
\(939\) 4.94497i 0.161373i
\(940\) 0 0
\(941\) 36.3757i 1.18581i 0.805271 + 0.592907i \(0.202020\pi\)
−0.805271 + 0.592907i \(0.797980\pi\)
\(942\) 0 0
\(943\) −0.867508 + 0.867508i −0.0282499 + 0.0282499i
\(944\) 0 0
\(945\) −0.0385048 3.03175i −0.00125256 0.0986230i
\(946\) 0 0
\(947\) −26.4642 + 26.4642i −0.859970 + 0.859970i −0.991334 0.131364i \(-0.958064\pi\)
0.131364 + 0.991334i \(0.458064\pi\)
\(948\) 0 0
\(949\) 87.2769 2.83313
\(950\) 0 0
\(951\) 0.496852i 0.0161115i
\(952\) 0 0
\(953\) 10.8801 + 10.8801i 0.352441 + 0.352441i 0.861017 0.508576i \(-0.169828\pi\)
−0.508576 + 0.861017i \(0.669828\pi\)
\(954\) 0 0
\(955\) 33.6225 0.427022i 1.08800 0.0138181i
\(956\) 0 0
\(957\) 6.63999 + 6.63999i 0.214640 + 0.214640i
\(958\) 0 0
\(959\) 11.5657 0.373475
\(960\) 0 0
\(961\) −5.16583 −0.166640
\(962\) 0 0
\(963\) −28.0123 28.0123i −0.902684 0.902684i
\(964\) 0 0
\(965\) 11.4733 11.7685i 0.369340 0.378842i
\(966\) 0 0
\(967\) −24.6020 24.6020i −0.791148 0.791148i 0.190532 0.981681i \(-0.438979\pi\)
−0.981681 + 0.190532i \(0.938979\pi\)
\(968\) 0 0
\(969\) 1.48702i 0.0477700i
\(970\) 0 0
\(971\) −27.2265 −0.873739 −0.436869 0.899525i \(-0.643913\pi\)
−0.436869 + 0.899525i \(0.643913\pi\)
\(972\) 0 0
\(973\) −6.52969 + 6.52969i −0.209332 + 0.209332i
\(974\) 0 0
\(975\) 6.53144 0.165932i 0.209173 0.00531407i
\(976\) 0 0
\(977\) −33.1217 + 33.1217i −1.05966 + 1.05966i −0.0615547 + 0.998104i \(0.519606\pi\)
−0.998104 + 0.0615547i \(0.980394\pi\)
\(978\) 0 0
\(979\) 1.52273i 0.0486667i
\(980\) 0 0
\(981\) 49.8341i 1.59108i
\(982\) 0 0
\(983\) −18.9409 + 18.9409i −0.604120 + 0.604120i −0.941403 0.337283i \(-0.890492\pi\)
0.337283 + 0.941403i \(0.390492\pi\)
\(984\) 0 0
\(985\) 10.1851 10.4471i 0.324524 0.332874i
\(986\) 0 0
\(987\) 0.782199 0.782199i 0.0248977 0.0248977i
\(988\) 0 0
\(989\) −3.86412 −0.122872
\(990\) 0 0
\(991\) 47.4907i 1.50859i −0.656535 0.754296i \(-0.727979\pi\)
0.656535 0.754296i \(-0.272021\pi\)
\(992\) 0 0
\(993\) −3.73519 3.73519i −0.118533 0.118533i
\(994\) 0 0
\(995\) 0.132432 + 10.4273i 0.00419837 + 0.330567i
\(996\) 0 0
\(997\) 23.6086 + 23.6086i 0.747690 + 0.747690i 0.974045 0.226355i \(-0.0726808\pi\)
−0.226355 + 0.974045i \(0.572681\pi\)
\(998\) 0 0
\(999\) 7.27901 0.230298
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.bi.a.463.20 72
4.3 odd 2 280.2.w.a.43.33 yes 72
5.2 odd 4 inner 1120.2.bi.a.687.19 72
8.3 odd 2 inner 1120.2.bi.a.463.19 72
8.5 even 2 280.2.w.a.43.16 72
20.7 even 4 280.2.w.a.267.16 yes 72
40.27 even 4 inner 1120.2.bi.a.687.20 72
40.37 odd 4 280.2.w.a.267.33 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.w.a.43.16 72 8.5 even 2
280.2.w.a.43.33 yes 72 4.3 odd 2
280.2.w.a.267.16 yes 72 20.7 even 4
280.2.w.a.267.33 yes 72 40.37 odd 4
1120.2.bi.a.463.19 72 8.3 odd 2 inner
1120.2.bi.a.463.20 72 1.1 even 1 trivial
1120.2.bi.a.687.19 72 5.2 odd 4 inner
1120.2.bi.a.687.20 72 40.27 even 4 inner