Properties

Label 1120.2.bi.a.463.14
Level $1120$
Weight $2$
Character 1120.463
Analytic conductor $8.943$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(463,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bi (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.14
Character \(\chi\) \(=\) 1120.463
Dual form 1120.2.bi.a.687.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.570077 - 0.570077i) q^{3} +(0.776798 - 2.09680i) q^{5} +(0.707107 + 0.707107i) q^{7} -2.35002i q^{9} +1.03673 q^{11} +(1.92581 - 1.92581i) q^{13} +(-1.63818 + 0.752505i) q^{15} +(0.113640 - 0.113640i) q^{17} +0.879182i q^{19} -0.806211i q^{21} +(0.250756 - 0.250756i) q^{23} +(-3.79317 - 3.25759i) q^{25} +(-3.04993 + 3.04993i) q^{27} +2.57802 q^{29} -5.78413i q^{31} +(-0.591015 - 0.591015i) q^{33} +(2.03194 - 0.933385i) q^{35} +(6.90394 + 6.90394i) q^{37} -2.19573 q^{39} -7.82998 q^{41} +(-7.89276 - 7.89276i) q^{43} +(-4.92754 - 1.82549i) q^{45} +(-0.137030 - 0.137030i) q^{47} +1.00000i q^{49} -0.129567 q^{51} +(6.52731 - 6.52731i) q^{53} +(0.805328 - 2.17381i) q^{55} +(0.501202 - 0.501202i) q^{57} -11.9683i q^{59} +1.41110i q^{61} +(1.66172 - 1.66172i) q^{63} +(-2.54209 - 5.53402i) q^{65} +(-6.46395 + 6.46395i) q^{67} -0.285901 q^{69} +3.26611i q^{71} +(3.50178 + 3.50178i) q^{73} +(0.305324 + 4.01948i) q^{75} +(0.733077 + 0.733077i) q^{77} -1.49268 q^{79} -3.57268 q^{81} +(-4.86134 - 4.86134i) q^{83} +(-0.150005 - 0.326555i) q^{85} +(-1.46967 - 1.46967i) q^{87} -12.9763i q^{89} +2.72351 q^{91} +(-3.29740 + 3.29740i) q^{93} +(1.84347 + 0.682947i) q^{95} +(-7.01973 + 7.01973i) q^{97} -2.43633i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 8 q^{17} - 8 q^{25} + 64 q^{43} + 32 q^{51} - 8 q^{65} - 40 q^{73} - 112 q^{75} - 72 q^{81} - 80 q^{83} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.570077 0.570077i −0.329134 0.329134i 0.523123 0.852257i \(-0.324767\pi\)
−0.852257 + 0.523123i \(0.824767\pi\)
\(4\) 0 0
\(5\) 0.776798 2.09680i 0.347395 0.937719i
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 0 0
\(9\) 2.35002i 0.783341i
\(10\) 0 0
\(11\) 1.03673 0.312585 0.156292 0.987711i \(-0.450046\pi\)
0.156292 + 0.987711i \(0.450046\pi\)
\(12\) 0 0
\(13\) 1.92581 1.92581i 0.534125 0.534125i −0.387672 0.921797i \(-0.626721\pi\)
0.921797 + 0.387672i \(0.126721\pi\)
\(14\) 0 0
\(15\) −1.63818 + 0.752505i −0.422975 + 0.194296i
\(16\) 0 0
\(17\) 0.113640 0.113640i 0.0275617 0.0275617i −0.693192 0.720753i \(-0.743796\pi\)
0.720753 + 0.693192i \(0.243796\pi\)
\(18\) 0 0
\(19\) 0.879182i 0.201698i 0.994902 + 0.100849i \(0.0321559\pi\)
−0.994902 + 0.100849i \(0.967844\pi\)
\(20\) 0 0
\(21\) 0.806211i 0.175930i
\(22\) 0 0
\(23\) 0.250756 0.250756i 0.0522862 0.0522862i −0.680480 0.732766i \(-0.738229\pi\)
0.732766 + 0.680480i \(0.238229\pi\)
\(24\) 0 0
\(25\) −3.79317 3.25759i −0.758634 0.651517i
\(26\) 0 0
\(27\) −3.04993 + 3.04993i −0.586959 + 0.586959i
\(28\) 0 0
\(29\) 2.57802 0.478726 0.239363 0.970930i \(-0.423061\pi\)
0.239363 + 0.970930i \(0.423061\pi\)
\(30\) 0 0
\(31\) 5.78413i 1.03886i −0.854513 0.519430i \(-0.826144\pi\)
0.854513 0.519430i \(-0.173856\pi\)
\(32\) 0 0
\(33\) −0.591015 0.591015i −0.102882 0.102882i
\(34\) 0 0
\(35\) 2.03194 0.933385i 0.343461 0.157771i
\(36\) 0 0
\(37\) 6.90394 + 6.90394i 1.13500 + 1.13500i 0.989334 + 0.145668i \(0.0465331\pi\)
0.145668 + 0.989334i \(0.453467\pi\)
\(38\) 0 0
\(39\) −2.19573 −0.351598
\(40\) 0 0
\(41\) −7.82998 −1.22284 −0.611419 0.791307i \(-0.709401\pi\)
−0.611419 + 0.791307i \(0.709401\pi\)
\(42\) 0 0
\(43\) −7.89276 7.89276i −1.20363 1.20363i −0.973053 0.230581i \(-0.925937\pi\)
−0.230581 0.973053i \(-0.574063\pi\)
\(44\) 0 0
\(45\) −4.92754 1.82549i −0.734554 0.272129i
\(46\) 0 0
\(47\) −0.137030 0.137030i −0.0199879 0.0199879i 0.697042 0.717030i \(-0.254499\pi\)
−0.717030 + 0.697042i \(0.754499\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −0.129567 −0.0181430
\(52\) 0 0
\(53\) 6.52731 6.52731i 0.896595 0.896595i −0.0985386 0.995133i \(-0.531417\pi\)
0.995133 + 0.0985386i \(0.0314168\pi\)
\(54\) 0 0
\(55\) 0.805328 2.17381i 0.108590 0.293117i
\(56\) 0 0
\(57\) 0.501202 0.501202i 0.0663858 0.0663858i
\(58\) 0 0
\(59\) 11.9683i 1.55814i −0.626937 0.779070i \(-0.715692\pi\)
0.626937 0.779070i \(-0.284308\pi\)
\(60\) 0 0
\(61\) 1.41110i 0.180673i 0.995911 + 0.0903363i \(0.0287942\pi\)
−0.995911 + 0.0903363i \(0.971206\pi\)
\(62\) 0 0
\(63\) 1.66172 1.66172i 0.209357 0.209357i
\(64\) 0 0
\(65\) −2.54209 5.53402i −0.315307 0.686411i
\(66\) 0 0
\(67\) −6.46395 + 6.46395i −0.789697 + 0.789697i −0.981444 0.191747i \(-0.938585\pi\)
0.191747 + 0.981444i \(0.438585\pi\)
\(68\) 0 0
\(69\) −0.285901 −0.0344184
\(70\) 0 0
\(71\) 3.26611i 0.387616i 0.981039 + 0.193808i \(0.0620839\pi\)
−0.981039 + 0.193808i \(0.937916\pi\)
\(72\) 0 0
\(73\) 3.50178 + 3.50178i 0.409853 + 0.409853i 0.881687 0.471834i \(-0.156408\pi\)
−0.471834 + 0.881687i \(0.656408\pi\)
\(74\) 0 0
\(75\) 0.305324 + 4.01948i 0.0352558 + 0.464129i
\(76\) 0 0
\(77\) 0.733077 + 0.733077i 0.0835418 + 0.0835418i
\(78\) 0 0
\(79\) −1.49268 −0.167939 −0.0839696 0.996468i \(-0.526760\pi\)
−0.0839696 + 0.996468i \(0.526760\pi\)
\(80\) 0 0
\(81\) −3.57268 −0.396964
\(82\) 0 0
\(83\) −4.86134 4.86134i −0.533601 0.533601i 0.388041 0.921642i \(-0.373152\pi\)
−0.921642 + 0.388041i \(0.873152\pi\)
\(84\) 0 0
\(85\) −0.150005 0.326555i −0.0162703 0.0354199i
\(86\) 0 0
\(87\) −1.46967 1.46967i −0.157565 0.157565i
\(88\) 0 0
\(89\) 12.9763i 1.37549i −0.725953 0.687745i \(-0.758601\pi\)
0.725953 0.687745i \(-0.241399\pi\)
\(90\) 0 0
\(91\) 2.72351 0.285502
\(92\) 0 0
\(93\) −3.29740 + 3.29740i −0.341925 + 0.341925i
\(94\) 0 0
\(95\) 1.84347 + 0.682947i 0.189136 + 0.0700688i
\(96\) 0 0
\(97\) −7.01973 + 7.01973i −0.712746 + 0.712746i −0.967109 0.254363i \(-0.918134\pi\)
0.254363 + 0.967109i \(0.418134\pi\)
\(98\) 0 0
\(99\) 2.43633i 0.244861i
\(100\) 0 0
\(101\) 14.5485i 1.44763i −0.689995 0.723815i \(-0.742387\pi\)
0.689995 0.723815i \(-0.257613\pi\)
\(102\) 0 0
\(103\) 11.0931 11.0931i 1.09304 1.09304i 0.0978327 0.995203i \(-0.468809\pi\)
0.995203 0.0978327i \(-0.0311910\pi\)
\(104\) 0 0
\(105\) −1.69047 0.626263i −0.164973 0.0611170i
\(106\) 0 0
\(107\) −3.95864 + 3.95864i −0.382696 + 0.382696i −0.872073 0.489376i \(-0.837224\pi\)
0.489376 + 0.872073i \(0.337224\pi\)
\(108\) 0 0
\(109\) −5.29817 −0.507472 −0.253736 0.967273i \(-0.581659\pi\)
−0.253736 + 0.967273i \(0.581659\pi\)
\(110\) 0 0
\(111\) 7.87157i 0.747136i
\(112\) 0 0
\(113\) 14.1628 + 14.1628i 1.33232 + 1.33232i 0.903288 + 0.429035i \(0.141146\pi\)
0.429035 + 0.903288i \(0.358854\pi\)
\(114\) 0 0
\(115\) −0.330999 0.720573i −0.0308658 0.0671938i
\(116\) 0 0
\(117\) −4.52571 4.52571i −0.418402 0.418402i
\(118\) 0 0
\(119\) 0.160711 0.0147323
\(120\) 0 0
\(121\) −9.92520 −0.902291
\(122\) 0 0
\(123\) 4.46369 + 4.46369i 0.402478 + 0.402478i
\(124\) 0 0
\(125\) −9.77704 + 5.42305i −0.874485 + 0.485052i
\(126\) 0 0
\(127\) 11.4090 + 11.4090i 1.01238 + 1.01238i 0.999922 + 0.0124598i \(0.00396619\pi\)
0.0124598 + 0.999922i \(0.496034\pi\)
\(128\) 0 0
\(129\) 8.99897i 0.792315i
\(130\) 0 0
\(131\) 20.4978 1.79090 0.895452 0.445157i \(-0.146852\pi\)
0.895452 + 0.445157i \(0.146852\pi\)
\(132\) 0 0
\(133\) −0.621675 + 0.621675i −0.0539061 + 0.0539061i
\(134\) 0 0
\(135\) 4.02592 + 8.76428i 0.346496 + 0.754309i
\(136\) 0 0
\(137\) 9.02504 9.02504i 0.771061 0.771061i −0.207231 0.978292i \(-0.566445\pi\)
0.978292 + 0.207231i \(0.0664451\pi\)
\(138\) 0 0
\(139\) 2.81121i 0.238444i 0.992868 + 0.119222i \(0.0380400\pi\)
−0.992868 + 0.119222i \(0.961960\pi\)
\(140\) 0 0
\(141\) 0.156235i 0.0131574i
\(142\) 0 0
\(143\) 1.99654 1.99654i 0.166959 0.166959i
\(144\) 0 0
\(145\) 2.00260 5.40560i 0.166307 0.448910i
\(146\) 0 0
\(147\) 0.570077 0.570077i 0.0470192 0.0470192i
\(148\) 0 0
\(149\) −8.93623 −0.732084 −0.366042 0.930598i \(-0.619287\pi\)
−0.366042 + 0.930598i \(0.619287\pi\)
\(150\) 0 0
\(151\) 13.8418i 1.12643i −0.826310 0.563216i \(-0.809564\pi\)
0.826310 0.563216i \(-0.190436\pi\)
\(152\) 0 0
\(153\) −0.267056 0.267056i −0.0215902 0.0215902i
\(154\) 0 0
\(155\) −12.1282 4.49310i −0.974160 0.360895i
\(156\) 0 0
\(157\) −2.85341 2.85341i −0.227727 0.227727i 0.584015 0.811743i \(-0.301481\pi\)
−0.811743 + 0.584015i \(0.801481\pi\)
\(158\) 0 0
\(159\) −7.44214 −0.590200
\(160\) 0 0
\(161\) 0.354623 0.0279482
\(162\) 0 0
\(163\) 5.65449 + 5.65449i 0.442894 + 0.442894i 0.892983 0.450090i \(-0.148608\pi\)
−0.450090 + 0.892983i \(0.648608\pi\)
\(164\) 0 0
\(165\) −1.69834 + 0.780143i −0.132216 + 0.0607340i
\(166\) 0 0
\(167\) 16.7864 + 16.7864i 1.29897 + 1.29897i 0.929073 + 0.369897i \(0.120607\pi\)
0.369897 + 0.929073i \(0.379393\pi\)
\(168\) 0 0
\(169\) 5.58248i 0.429422i
\(170\) 0 0
\(171\) 2.06610 0.157998
\(172\) 0 0
\(173\) 2.55716 2.55716i 0.194417 0.194417i −0.603184 0.797602i \(-0.706102\pi\)
0.797602 + 0.603184i \(0.206102\pi\)
\(174\) 0 0
\(175\) −0.378715 4.98564i −0.0286282 0.376879i
\(176\) 0 0
\(177\) −6.82286 + 6.82286i −0.512838 + 0.512838i
\(178\) 0 0
\(179\) 3.99312i 0.298460i −0.988803 0.149230i \(-0.952321\pi\)
0.988803 0.149230i \(-0.0476795\pi\)
\(180\) 0 0
\(181\) 18.5560i 1.37926i 0.724163 + 0.689628i \(0.242226\pi\)
−0.724163 + 0.689628i \(0.757774\pi\)
\(182\) 0 0
\(183\) 0.804436 0.804436i 0.0594656 0.0594656i
\(184\) 0 0
\(185\) 19.8392 9.11324i 1.45861 0.670019i
\(186\) 0 0
\(187\) 0.117813 0.117813i 0.00861536 0.00861536i
\(188\) 0 0
\(189\) −4.31325 −0.313743
\(190\) 0 0
\(191\) 24.3117i 1.75913i 0.475776 + 0.879566i \(0.342167\pi\)
−0.475776 + 0.879566i \(0.657833\pi\)
\(192\) 0 0
\(193\) 14.2660 + 14.2660i 1.02689 + 1.02689i 0.999628 + 0.0272630i \(0.00867916\pi\)
0.0272630 + 0.999628i \(0.491321\pi\)
\(194\) 0 0
\(195\) −1.70564 + 4.60401i −0.122143 + 0.329700i
\(196\) 0 0
\(197\) 11.0213 + 11.0213i 0.785235 + 0.785235i 0.980709 0.195474i \(-0.0626244\pi\)
−0.195474 + 0.980709i \(0.562624\pi\)
\(198\) 0 0
\(199\) −14.2598 −1.01085 −0.505425 0.862870i \(-0.668664\pi\)
−0.505425 + 0.862870i \(0.668664\pi\)
\(200\) 0 0
\(201\) 7.36991 0.519833
\(202\) 0 0
\(203\) 1.82293 + 1.82293i 0.127945 + 0.127945i
\(204\) 0 0
\(205\) −6.08231 + 16.4179i −0.424807 + 1.14668i
\(206\) 0 0
\(207\) −0.589282 0.589282i −0.0409580 0.0409580i
\(208\) 0 0
\(209\) 0.911471i 0.0630478i
\(210\) 0 0
\(211\) −1.36755 −0.0941461 −0.0470730 0.998891i \(-0.514989\pi\)
−0.0470730 + 0.998891i \(0.514989\pi\)
\(212\) 0 0
\(213\) 1.86194 1.86194i 0.127578 0.127578i
\(214\) 0 0
\(215\) −22.6806 + 10.4185i −1.54681 + 0.710535i
\(216\) 0 0
\(217\) 4.09000 4.09000i 0.277647 0.277647i
\(218\) 0 0
\(219\) 3.99258i 0.269793i
\(220\) 0 0
\(221\) 0.437698i 0.0294427i
\(222\) 0 0
\(223\) −9.76435 + 9.76435i −0.653869 + 0.653869i −0.953922 0.300053i \(-0.902996\pi\)
0.300053 + 0.953922i \(0.402996\pi\)
\(224\) 0 0
\(225\) −7.65540 + 8.91404i −0.510360 + 0.594269i
\(226\) 0 0
\(227\) −0.786454 + 0.786454i −0.0521988 + 0.0521988i −0.732724 0.680526i \(-0.761752\pi\)
0.680526 + 0.732724i \(0.261752\pi\)
\(228\) 0 0
\(229\) −3.06651 −0.202640 −0.101320 0.994854i \(-0.532307\pi\)
−0.101320 + 0.994854i \(0.532307\pi\)
\(230\) 0 0
\(231\) 0.835821i 0.0549930i
\(232\) 0 0
\(233\) −11.8889 11.8889i −0.778865 0.778865i 0.200773 0.979638i \(-0.435655\pi\)
−0.979638 + 0.200773i \(0.935655\pi\)
\(234\) 0 0
\(235\) −0.393769 + 0.180880i −0.0256867 + 0.0117993i
\(236\) 0 0
\(237\) 0.850941 + 0.850941i 0.0552745 + 0.0552745i
\(238\) 0 0
\(239\) −2.61651 −0.169248 −0.0846239 0.996413i \(-0.526969\pi\)
−0.0846239 + 0.996413i \(0.526969\pi\)
\(240\) 0 0
\(241\) 14.2806 0.919894 0.459947 0.887946i \(-0.347868\pi\)
0.459947 + 0.887946i \(0.347868\pi\)
\(242\) 0 0
\(243\) 11.1865 + 11.1865i 0.717614 + 0.717614i
\(244\) 0 0
\(245\) 2.09680 + 0.776798i 0.133960 + 0.0496278i
\(246\) 0 0
\(247\) 1.69314 + 1.69314i 0.107732 + 0.107732i
\(248\) 0 0
\(249\) 5.54268i 0.351253i
\(250\) 0 0
\(251\) 26.0535 1.64448 0.822241 0.569139i \(-0.192723\pi\)
0.822241 + 0.569139i \(0.192723\pi\)
\(252\) 0 0
\(253\) 0.259966 0.259966i 0.0163439 0.0163439i
\(254\) 0 0
\(255\) −0.100647 + 0.271676i −0.00630278 + 0.0170130i
\(256\) 0 0
\(257\) −10.5553 + 10.5553i −0.658420 + 0.658420i −0.955006 0.296586i \(-0.904152\pi\)
0.296586 + 0.955006i \(0.404152\pi\)
\(258\) 0 0
\(259\) 9.76365i 0.606684i
\(260\) 0 0
\(261\) 6.05840i 0.375006i
\(262\) 0 0
\(263\) −9.64346 + 9.64346i −0.594641 + 0.594641i −0.938882 0.344240i \(-0.888137\pi\)
0.344240 + 0.938882i \(0.388137\pi\)
\(264\) 0 0
\(265\) −8.61608 18.7569i −0.529282 1.15223i
\(266\) 0 0
\(267\) −7.39752 + 7.39752i −0.452721 + 0.452721i
\(268\) 0 0
\(269\) 17.5249 1.06851 0.534255 0.845323i \(-0.320592\pi\)
0.534255 + 0.845323i \(0.320592\pi\)
\(270\) 0 0
\(271\) 28.8960i 1.75530i −0.479298 0.877652i \(-0.659109\pi\)
0.479298 0.877652i \(-0.340891\pi\)
\(272\) 0 0
\(273\) −1.55261 1.55261i −0.0939684 0.0939684i
\(274\) 0 0
\(275\) −3.93248 3.37723i −0.237138 0.203654i
\(276\) 0 0
\(277\) 10.6872 + 10.6872i 0.642131 + 0.642131i 0.951079 0.308948i \(-0.0999769\pi\)
−0.308948 + 0.951079i \(0.599977\pi\)
\(278\) 0 0
\(279\) −13.5928 −0.813782
\(280\) 0 0
\(281\) 15.9862 0.953658 0.476829 0.878996i \(-0.341786\pi\)
0.476829 + 0.878996i \(0.341786\pi\)
\(282\) 0 0
\(283\) 18.8845 + 18.8845i 1.12257 + 1.12257i 0.991355 + 0.131211i \(0.0418864\pi\)
0.131211 + 0.991355i \(0.458114\pi\)
\(284\) 0 0
\(285\) −0.661589 1.44025i −0.0391891 0.0853133i
\(286\) 0 0
\(287\) −5.53663 5.53663i −0.326817 0.326817i
\(288\) 0 0
\(289\) 16.9742i 0.998481i
\(290\) 0 0
\(291\) 8.00358 0.469178
\(292\) 0 0
\(293\) 1.53899 1.53899i 0.0899087 0.0899087i −0.660722 0.750631i \(-0.729750\pi\)
0.750631 + 0.660722i \(0.229750\pi\)
\(294\) 0 0
\(295\) −25.0952 9.29695i −1.46110 0.541290i
\(296\) 0 0
\(297\) −3.16194 + 3.16194i −0.183475 + 0.183475i
\(298\) 0 0
\(299\) 0.965819i 0.0558547i
\(300\) 0 0
\(301\) 11.1620i 0.643370i
\(302\) 0 0
\(303\) −8.29377 + 8.29377i −0.476465 + 0.476465i
\(304\) 0 0
\(305\) 2.95880 + 1.09614i 0.169420 + 0.0627647i
\(306\) 0 0
\(307\) −5.13452 + 5.13452i −0.293042 + 0.293042i −0.838281 0.545238i \(-0.816439\pi\)
0.545238 + 0.838281i \(0.316439\pi\)
\(308\) 0 0
\(309\) −12.6479 −0.719511
\(310\) 0 0
\(311\) 14.9705i 0.848901i −0.905451 0.424450i \(-0.860467\pi\)
0.905451 0.424450i \(-0.139533\pi\)
\(312\) 0 0
\(313\) −6.10822 6.10822i −0.345257 0.345257i 0.513082 0.858339i \(-0.328504\pi\)
−0.858339 + 0.513082i \(0.828504\pi\)
\(314\) 0 0
\(315\) −2.19348 4.77511i −0.123588 0.269047i
\(316\) 0 0
\(317\) 20.7252 + 20.7252i 1.16404 + 1.16404i 0.983582 + 0.180461i \(0.0577590\pi\)
0.180461 + 0.983582i \(0.442241\pi\)
\(318\) 0 0
\(319\) 2.67270 0.149643
\(320\) 0 0
\(321\) 4.51346 0.251917
\(322\) 0 0
\(323\) 0.0999099 + 0.0999099i 0.00555914 + 0.00555914i
\(324\) 0 0
\(325\) −13.5784 + 1.03144i −0.753197 + 0.0572137i
\(326\) 0 0
\(327\) 3.02037 + 3.02037i 0.167027 + 0.167027i
\(328\) 0 0
\(329\) 0.193790i 0.0106840i
\(330\) 0 0
\(331\) −27.4787 −1.51037 −0.755183 0.655514i \(-0.772452\pi\)
−0.755183 + 0.655514i \(0.772452\pi\)
\(332\) 0 0
\(333\) 16.2244 16.2244i 0.889093 0.889093i
\(334\) 0 0
\(335\) 8.53245 + 18.5748i 0.466178 + 1.01485i
\(336\) 0 0
\(337\) −6.84115 + 6.84115i −0.372661 + 0.372661i −0.868446 0.495785i \(-0.834881\pi\)
0.495785 + 0.868446i \(0.334881\pi\)
\(338\) 0 0
\(339\) 16.1478i 0.877026i
\(340\) 0 0
\(341\) 5.99657i 0.324732i
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) −0.222087 + 0.599478i −0.0119568 + 0.0322748i
\(346\) 0 0
\(347\) 15.7089 15.7089i 0.843299 0.843299i −0.145987 0.989286i \(-0.546636\pi\)
0.989286 + 0.145987i \(0.0466359\pi\)
\(348\) 0 0
\(349\) 18.3356 0.981482 0.490741 0.871305i \(-0.336726\pi\)
0.490741 + 0.871305i \(0.336726\pi\)
\(350\) 0 0
\(351\) 11.7472i 0.627018i
\(352\) 0 0
\(353\) 10.2442 + 10.2442i 0.545241 + 0.545241i 0.925061 0.379820i \(-0.124014\pi\)
−0.379820 + 0.925061i \(0.624014\pi\)
\(354\) 0 0
\(355\) 6.84839 + 2.53711i 0.363475 + 0.134656i
\(356\) 0 0
\(357\) −0.0916176 0.0916176i −0.00484892 0.00484892i
\(358\) 0 0
\(359\) 22.3306 1.17856 0.589281 0.807928i \(-0.299411\pi\)
0.589281 + 0.807928i \(0.299411\pi\)
\(360\) 0 0
\(361\) 18.2270 0.959318
\(362\) 0 0
\(363\) 5.65813 + 5.65813i 0.296975 + 0.296975i
\(364\) 0 0
\(365\) 10.0627 4.62237i 0.526707 0.241946i
\(366\) 0 0
\(367\) −10.3200 10.3200i −0.538698 0.538698i 0.384448 0.923147i \(-0.374392\pi\)
−0.923147 + 0.384448i \(0.874392\pi\)
\(368\) 0 0
\(369\) 18.4006i 0.957899i
\(370\) 0 0
\(371\) 9.23101 0.479250
\(372\) 0 0
\(373\) −9.90602 + 9.90602i −0.512914 + 0.512914i −0.915418 0.402504i \(-0.868140\pi\)
0.402504 + 0.915418i \(0.368140\pi\)
\(374\) 0 0
\(375\) 8.66523 + 2.48212i 0.447470 + 0.128176i
\(376\) 0 0
\(377\) 4.96478 4.96478i 0.255699 0.255699i
\(378\) 0 0
\(379\) 1.88129i 0.0966353i 0.998832 + 0.0483177i \(0.0153860\pi\)
−0.998832 + 0.0483177i \(0.984614\pi\)
\(380\) 0 0
\(381\) 13.0080i 0.666420i
\(382\) 0 0
\(383\) 17.7981 17.7981i 0.909441 0.909441i −0.0867863 0.996227i \(-0.527660\pi\)
0.996227 + 0.0867863i \(0.0276597\pi\)
\(384\) 0 0
\(385\) 2.10657 0.967665i 0.107361 0.0493168i
\(386\) 0 0
\(387\) −18.5482 + 18.5482i −0.942856 + 0.942856i
\(388\) 0 0
\(389\) −24.3093 −1.23253 −0.616266 0.787538i \(-0.711355\pi\)
−0.616266 + 0.787538i \(0.711355\pi\)
\(390\) 0 0
\(391\) 0.0569917i 0.00288219i
\(392\) 0 0
\(393\) −11.6854 11.6854i −0.589448 0.589448i
\(394\) 0 0
\(395\) −1.15951 + 3.12985i −0.0583412 + 0.157480i
\(396\) 0 0
\(397\) −14.9323 14.9323i −0.749433 0.749433i 0.224940 0.974373i \(-0.427781\pi\)
−0.974373 + 0.224940i \(0.927781\pi\)
\(398\) 0 0
\(399\) 0.708806 0.0354847
\(400\) 0 0
\(401\) −9.18457 −0.458655 −0.229328 0.973349i \(-0.573653\pi\)
−0.229328 + 0.973349i \(0.573653\pi\)
\(402\) 0 0
\(403\) −11.1392 11.1392i −0.554881 0.554881i
\(404\) 0 0
\(405\) −2.77525 + 7.49121i −0.137903 + 0.372241i
\(406\) 0 0
\(407\) 7.15751 + 7.15751i 0.354784 + 0.354784i
\(408\) 0 0
\(409\) 37.3508i 1.84688i −0.383747 0.923438i \(-0.625366\pi\)
0.383747 0.923438i \(-0.374634\pi\)
\(410\) 0 0
\(411\) −10.2899 −0.507566
\(412\) 0 0
\(413\) 8.46287 8.46287i 0.416431 0.416431i
\(414\) 0 0
\(415\) −13.9695 + 6.41699i −0.685738 + 0.314998i
\(416\) 0 0
\(417\) 1.60261 1.60261i 0.0784800 0.0784800i
\(418\) 0 0
\(419\) 7.05353i 0.344588i 0.985046 + 0.172294i \(0.0551179\pi\)
−0.985046 + 0.172294i \(0.944882\pi\)
\(420\) 0 0
\(421\) 10.0803i 0.491284i −0.969361 0.245642i \(-0.921001\pi\)
0.969361 0.245642i \(-0.0789988\pi\)
\(422\) 0 0
\(423\) −0.322023 + 0.322023i −0.0156573 + 0.0156573i
\(424\) 0 0
\(425\) −0.801245 + 0.0608636i −0.0388661 + 0.00295232i
\(426\) 0 0
\(427\) −0.997797 + 0.997797i −0.0482868 + 0.0482868i
\(428\) 0 0
\(429\) −2.27637 −0.109904
\(430\) 0 0
\(431\) 1.32938i 0.0640342i −0.999487 0.0320171i \(-0.989807\pi\)
0.999487 0.0320171i \(-0.0101931\pi\)
\(432\) 0 0
\(433\) −6.98227 6.98227i −0.335546 0.335546i 0.519142 0.854688i \(-0.326252\pi\)
−0.854688 + 0.519142i \(0.826252\pi\)
\(434\) 0 0
\(435\) −4.22325 + 1.93997i −0.202489 + 0.0930145i
\(436\) 0 0
\(437\) 0.220460 + 0.220460i 0.0105460 + 0.0105460i
\(438\) 0 0
\(439\) 15.8594 0.756926 0.378463 0.925616i \(-0.376453\pi\)
0.378463 + 0.925616i \(0.376453\pi\)
\(440\) 0 0
\(441\) 2.35002 0.111906
\(442\) 0 0
\(443\) −3.88362 3.88362i −0.184517 0.184517i 0.608804 0.793321i \(-0.291650\pi\)
−0.793321 + 0.608804i \(0.791650\pi\)
\(444\) 0 0
\(445\) −27.2088 10.0800i −1.28982 0.477838i
\(446\) 0 0
\(447\) 5.09434 + 5.09434i 0.240954 + 0.240954i
\(448\) 0 0
\(449\) 14.8106i 0.698956i −0.936945 0.349478i \(-0.886359\pi\)
0.936945 0.349478i \(-0.113641\pi\)
\(450\) 0 0
\(451\) −8.11755 −0.382241
\(452\) 0 0
\(453\) −7.89092 + 7.89092i −0.370748 + 0.370748i
\(454\) 0 0
\(455\) 2.11562 5.71067i 0.0991817 0.267720i
\(456\) 0 0
\(457\) −20.5237 + 20.5237i −0.960059 + 0.960059i −0.999232 0.0391734i \(-0.987528\pi\)
0.0391734 + 0.999232i \(0.487528\pi\)
\(458\) 0 0
\(459\) 0.693186i 0.0323551i
\(460\) 0 0
\(461\) 24.7037i 1.15057i 0.817954 + 0.575284i \(0.195108\pi\)
−0.817954 + 0.575284i \(0.804892\pi\)
\(462\) 0 0
\(463\) −0.518667 + 0.518667i −0.0241045 + 0.0241045i −0.719056 0.694952i \(-0.755426\pi\)
0.694952 + 0.719056i \(0.255426\pi\)
\(464\) 0 0
\(465\) 4.35259 + 9.47542i 0.201847 + 0.439412i
\(466\) 0 0
\(467\) 9.62343 9.62343i 0.445319 0.445319i −0.448476 0.893795i \(-0.648033\pi\)
0.893795 + 0.448476i \(0.148033\pi\)
\(468\) 0 0
\(469\) −9.14141 −0.422111
\(470\) 0 0
\(471\) 3.25333i 0.149906i
\(472\) 0 0
\(473\) −8.18264 8.18264i −0.376238 0.376238i
\(474\) 0 0
\(475\) 2.86401 3.33489i 0.131410 0.153015i
\(476\) 0 0
\(477\) −15.3393 15.3393i −0.702339 0.702339i
\(478\) 0 0
\(479\) 38.0859 1.74019 0.870095 0.492884i \(-0.164057\pi\)
0.870095 + 0.492884i \(0.164057\pi\)
\(480\) 0 0
\(481\) 26.5914 1.21246
\(482\) 0 0
\(483\) −0.202162 0.202162i −0.00919870 0.00919870i
\(484\) 0 0
\(485\) 9.26608 + 20.1719i 0.420751 + 0.915959i
\(486\) 0 0
\(487\) −1.61929 1.61929i −0.0733772 0.0733772i 0.669466 0.742843i \(-0.266523\pi\)
−0.742843 + 0.669466i \(0.766523\pi\)
\(488\) 0 0
\(489\) 6.44699i 0.291543i
\(490\) 0 0
\(491\) −16.3486 −0.737801 −0.368901 0.929469i \(-0.620266\pi\)
−0.368901 + 0.929469i \(0.620266\pi\)
\(492\) 0 0
\(493\) 0.292965 0.292965i 0.0131945 0.0131945i
\(494\) 0 0
\(495\) −5.10851 1.89254i −0.229611 0.0850633i
\(496\) 0 0
\(497\) −2.30949 + 2.30949i −0.103595 + 0.103595i
\(498\) 0 0
\(499\) 1.85067i 0.0828472i 0.999142 + 0.0414236i \(0.0131893\pi\)
−0.999142 + 0.0414236i \(0.986811\pi\)
\(500\) 0 0
\(501\) 19.1391i 0.855071i
\(502\) 0 0
\(503\) 14.3079 14.3079i 0.637958 0.637958i −0.312094 0.950051i \(-0.601030\pi\)
0.950051 + 0.312094i \(0.101030\pi\)
\(504\) 0 0
\(505\) −30.5053 11.3012i −1.35747 0.502899i
\(506\) 0 0
\(507\) 3.18245 3.18245i 0.141337 0.141337i
\(508\) 0 0
\(509\) 4.32114 0.191531 0.0957657 0.995404i \(-0.469470\pi\)
0.0957657 + 0.995404i \(0.469470\pi\)
\(510\) 0 0
\(511\) 4.95227i 0.219076i
\(512\) 0 0
\(513\) −2.68144 2.68144i −0.118388 0.118388i
\(514\) 0 0
\(515\) −14.6430 31.8771i −0.645246 1.40467i
\(516\) 0 0
\(517\) −0.142063 0.142063i −0.00624791 0.00624791i
\(518\) 0 0
\(519\) −2.91556 −0.127979
\(520\) 0 0
\(521\) −24.5474 −1.07544 −0.537721 0.843123i \(-0.680715\pi\)
−0.537721 + 0.843123i \(0.680715\pi\)
\(522\) 0 0
\(523\) −18.1813 18.1813i −0.795013 0.795013i 0.187292 0.982304i \(-0.440029\pi\)
−0.982304 + 0.187292i \(0.940029\pi\)
\(524\) 0 0
\(525\) −2.62630 + 3.05810i −0.114621 + 0.133466i
\(526\) 0 0
\(527\) −0.657307 0.657307i −0.0286327 0.0286327i
\(528\) 0 0
\(529\) 22.8742i 0.994532i
\(530\) 0 0
\(531\) −28.1258 −1.22056
\(532\) 0 0
\(533\) −15.0791 + 15.0791i −0.653148 + 0.653148i
\(534\) 0 0
\(535\) 5.22543 + 11.3756i 0.225915 + 0.491808i
\(536\) 0 0
\(537\) −2.27639 + 2.27639i −0.0982334 + 0.0982334i
\(538\) 0 0
\(539\) 1.03673i 0.0446550i
\(540\) 0 0
\(541\) 7.97837i 0.343017i 0.985183 + 0.171508i \(0.0548641\pi\)
−0.985183 + 0.171508i \(0.945136\pi\)
\(542\) 0 0
\(543\) 10.5784 10.5784i 0.453961 0.453961i
\(544\) 0 0
\(545\) −4.11560 + 11.1092i −0.176293 + 0.475866i
\(546\) 0 0
\(547\) 23.2066 23.2066i 0.992243 0.992243i −0.00772747 0.999970i \(-0.502460\pi\)
0.999970 + 0.00772747i \(0.00245975\pi\)
\(548\) 0 0
\(549\) 3.31611 0.141528
\(550\) 0 0
\(551\) 2.26655i 0.0965581i
\(552\) 0 0
\(553\) −1.05548 1.05548i −0.0448836 0.0448836i
\(554\) 0 0
\(555\) −16.5051 6.11462i −0.700604 0.259551i
\(556\) 0 0
\(557\) 5.74633 + 5.74633i 0.243480 + 0.243480i 0.818288 0.574808i \(-0.194923\pi\)
−0.574808 + 0.818288i \(0.694923\pi\)
\(558\) 0 0
\(559\) −30.4000 −1.28578
\(560\) 0 0
\(561\) −0.134325 −0.00567122
\(562\) 0 0
\(563\) 12.4446 + 12.4446i 0.524476 + 0.524476i 0.918920 0.394444i \(-0.129063\pi\)
−0.394444 + 0.918920i \(0.629063\pi\)
\(564\) 0 0
\(565\) 40.6982 18.6950i 1.71219 0.786503i
\(566\) 0 0
\(567\) −2.52627 2.52627i −0.106093 0.106093i
\(568\) 0 0
\(569\) 37.5046i 1.57228i −0.618051 0.786138i \(-0.712078\pi\)
0.618051 0.786138i \(-0.287922\pi\)
\(570\) 0 0
\(571\) 25.2727 1.05763 0.528814 0.848738i \(-0.322637\pi\)
0.528814 + 0.848738i \(0.322637\pi\)
\(572\) 0 0
\(573\) 13.8595 13.8595i 0.578991 0.578991i
\(574\) 0 0
\(575\) −1.76802 + 0.134301i −0.0737315 + 0.00560074i
\(576\) 0 0
\(577\) −9.17897 + 9.17897i −0.382125 + 0.382125i −0.871867 0.489742i \(-0.837091\pi\)
0.489742 + 0.871867i \(0.337091\pi\)
\(578\) 0 0
\(579\) 16.2655i 0.675970i
\(580\) 0 0
\(581\) 6.87497i 0.285222i
\(582\) 0 0
\(583\) 6.76704 6.76704i 0.280262 0.280262i
\(584\) 0 0
\(585\) −13.0051 + 5.97396i −0.537694 + 0.246993i
\(586\) 0 0
\(587\) −2.45607 + 2.45607i −0.101373 + 0.101373i −0.755974 0.654601i \(-0.772837\pi\)
0.654601 + 0.755974i \(0.272837\pi\)
\(588\) 0 0
\(589\) 5.08530 0.209536
\(590\) 0 0
\(591\) 12.5660i 0.516896i
\(592\) 0 0
\(593\) 10.7822 + 10.7822i 0.442773 + 0.442773i 0.892943 0.450170i \(-0.148637\pi\)
−0.450170 + 0.892943i \(0.648637\pi\)
\(594\) 0 0
\(595\) 0.124840 0.336979i 0.00511793 0.0138148i
\(596\) 0 0
\(597\) 8.12919 + 8.12919i 0.332706 + 0.332706i
\(598\) 0 0
\(599\) −1.35589 −0.0554002 −0.0277001 0.999616i \(-0.508818\pi\)
−0.0277001 + 0.999616i \(0.508818\pi\)
\(600\) 0 0
\(601\) 3.40045 0.138707 0.0693536 0.997592i \(-0.477906\pi\)
0.0693536 + 0.997592i \(0.477906\pi\)
\(602\) 0 0
\(603\) 15.1904 + 15.1904i 0.618602 + 0.618602i
\(604\) 0 0
\(605\) −7.70987 + 20.8112i −0.313451 + 0.846095i
\(606\) 0 0
\(607\) 11.0503 + 11.0503i 0.448517 + 0.448517i 0.894861 0.446345i \(-0.147274\pi\)
−0.446345 + 0.894861i \(0.647274\pi\)
\(608\) 0 0
\(609\) 2.07843i 0.0842221i
\(610\) 0 0
\(611\) −0.527788 −0.0213520
\(612\) 0 0
\(613\) −3.68918 + 3.68918i −0.149005 + 0.149005i −0.777673 0.628669i \(-0.783600\pi\)
0.628669 + 0.777673i \(0.283600\pi\)
\(614\) 0 0
\(615\) 12.8269 5.89210i 0.517230 0.237592i
\(616\) 0 0
\(617\) 23.1225 23.1225i 0.930877 0.930877i −0.0668841 0.997761i \(-0.521306\pi\)
0.997761 + 0.0668841i \(0.0213058\pi\)
\(618\) 0 0
\(619\) 4.21968i 0.169603i 0.996398 + 0.0848017i \(0.0270257\pi\)
−0.996398 + 0.0848017i \(0.972974\pi\)
\(620\) 0 0
\(621\) 1.52958i 0.0613797i
\(622\) 0 0
\(623\) 9.17566 9.17566i 0.367615 0.367615i
\(624\) 0 0
\(625\) 3.77627 + 24.7131i 0.151051 + 0.988526i
\(626\) 0 0
\(627\) 0.519609 0.519609i 0.0207512 0.0207512i
\(628\) 0 0
\(629\) 1.56912 0.0625651
\(630\) 0 0
\(631\) 16.8115i 0.669254i −0.942351 0.334627i \(-0.891390\pi\)
0.942351 0.334627i \(-0.108610\pi\)
\(632\) 0 0
\(633\) 0.779610 + 0.779610i 0.0309867 + 0.0309867i
\(634\) 0 0
\(635\) 32.7848 15.0599i 1.30103 0.597634i
\(636\) 0 0
\(637\) 1.92581 + 1.92581i 0.0763035 + 0.0763035i
\(638\) 0 0
\(639\) 7.67544 0.303636
\(640\) 0 0
\(641\) −6.74104 −0.266255 −0.133128 0.991099i \(-0.542502\pi\)
−0.133128 + 0.991099i \(0.542502\pi\)
\(642\) 0 0
\(643\) −31.6006 31.6006i −1.24620 1.24620i −0.957383 0.288821i \(-0.906737\pi\)
−0.288821 0.957383i \(-0.593263\pi\)
\(644\) 0 0
\(645\) 18.8691 + 6.99038i 0.742969 + 0.275246i
\(646\) 0 0
\(647\) −9.23712 9.23712i −0.363149 0.363149i 0.501822 0.864971i \(-0.332663\pi\)
−0.864971 + 0.501822i \(0.832663\pi\)
\(648\) 0 0
\(649\) 12.4079i 0.487051i
\(650\) 0 0
\(651\) −4.66323 −0.182767
\(652\) 0 0
\(653\) 7.82082 7.82082i 0.306052 0.306052i −0.537324 0.843376i \(-0.680565\pi\)
0.843376 + 0.537324i \(0.180565\pi\)
\(654\) 0 0
\(655\) 15.9227 42.9799i 0.622151 1.67937i
\(656\) 0 0
\(657\) 8.22927 8.22927i 0.321055 0.321055i
\(658\) 0 0
\(659\) 31.8697i 1.24147i 0.784022 + 0.620733i \(0.213165\pi\)
−0.784022 + 0.620733i \(0.786835\pi\)
\(660\) 0 0
\(661\) 42.1626i 1.63994i −0.572409 0.819968i \(-0.693991\pi\)
0.572409 0.819968i \(-0.306009\pi\)
\(662\) 0 0
\(663\) −0.249522 + 0.249522i −0.00969062 + 0.00969062i
\(664\) 0 0
\(665\) 0.820615 + 1.78645i 0.0318221 + 0.0692754i
\(666\) 0 0
\(667\) 0.646453 0.646453i 0.0250308 0.0250308i
\(668\) 0 0
\(669\) 11.1329 0.430422
\(670\) 0 0
\(671\) 1.46292i 0.0564756i
\(672\) 0 0
\(673\) −12.5299 12.5299i −0.482992 0.482992i 0.423094 0.906086i \(-0.360944\pi\)
−0.906086 + 0.423094i \(0.860944\pi\)
\(674\) 0 0
\(675\) 21.5043 1.63349i 0.827701 0.0628732i
\(676\) 0 0
\(677\) −21.6335 21.6335i −0.831442 0.831442i 0.156272 0.987714i \(-0.450052\pi\)
−0.987714 + 0.156272i \(0.950052\pi\)
\(678\) 0 0
\(679\) −9.92740 −0.380979
\(680\) 0 0
\(681\) 0.896679 0.0343608
\(682\) 0 0
\(683\) 5.87496 + 5.87496i 0.224799 + 0.224799i 0.810516 0.585717i \(-0.199187\pi\)
−0.585717 + 0.810516i \(0.699187\pi\)
\(684\) 0 0
\(685\) −11.9131 25.9344i −0.455176 0.990902i
\(686\) 0 0
\(687\) 1.74815 + 1.74815i 0.0666959 + 0.0666959i
\(688\) 0 0
\(689\) 25.1408i 0.957787i
\(690\) 0 0
\(691\) −51.0090 −1.94047 −0.970237 0.242157i \(-0.922145\pi\)
−0.970237 + 0.242157i \(0.922145\pi\)
\(692\) 0 0
\(693\) 1.72275 1.72275i 0.0654418 0.0654418i
\(694\) 0 0
\(695\) 5.89455 + 2.18374i 0.223593 + 0.0828341i
\(696\) 0 0
\(697\) −0.889796 + 0.889796i −0.0337034 + 0.0337034i
\(698\) 0 0
\(699\) 13.5551i 0.512703i
\(700\) 0 0
\(701\) 23.8889i 0.902272i 0.892455 + 0.451136i \(0.148981\pi\)
−0.892455 + 0.451136i \(0.851019\pi\)
\(702\) 0 0
\(703\) −6.06982 + 6.06982i −0.228928 + 0.228928i
\(704\) 0 0
\(705\) 0.327595 + 0.121363i 0.0123379 + 0.00457081i
\(706\) 0 0
\(707\) 10.2873 10.2873i 0.386895 0.386895i
\(708\) 0 0
\(709\) 11.7004 0.439418 0.219709 0.975565i \(-0.429489\pi\)
0.219709 + 0.975565i \(0.429489\pi\)
\(710\) 0 0
\(711\) 3.50782i 0.131554i
\(712\) 0 0
\(713\) −1.45041 1.45041i −0.0543181 0.0543181i
\(714\) 0 0
\(715\) −2.63545 5.73727i −0.0985602 0.214562i
\(716\) 0 0
\(717\) 1.49161 + 1.49161i 0.0557052 + 0.0557052i
\(718\) 0 0
\(719\) −16.3430 −0.609490 −0.304745 0.952434i \(-0.598571\pi\)
−0.304745 + 0.952434i \(0.598571\pi\)
\(720\) 0 0
\(721\) 15.6880 0.584252
\(722\) 0 0
\(723\) −8.14105 8.14105i −0.302769 0.302769i
\(724\) 0 0
\(725\) −9.77886 8.39811i −0.363178 0.311898i
\(726\) 0 0
\(727\) 1.84481 + 1.84481i 0.0684203 + 0.0684203i 0.740489 0.672069i \(-0.234594\pi\)
−0.672069 + 0.740489i \(0.734594\pi\)
\(728\) 0 0
\(729\) 2.03629i 0.0754182i
\(730\) 0 0
\(731\) −1.79386 −0.0663483
\(732\) 0 0
\(733\) −8.23868 + 8.23868i −0.304303 + 0.304303i −0.842695 0.538392i \(-0.819032\pi\)
0.538392 + 0.842695i \(0.319032\pi\)
\(734\) 0 0
\(735\) −0.752505 1.63818i −0.0277566 0.0604250i
\(736\) 0 0
\(737\) −6.70135 + 6.70135i −0.246848 + 0.246848i
\(738\) 0 0
\(739\) 28.2307i 1.03848i 0.854628 + 0.519241i \(0.173785\pi\)
−0.854628 + 0.519241i \(0.826215\pi\)
\(740\) 0 0
\(741\) 1.93044i 0.0709166i
\(742\) 0 0
\(743\) 28.1935 28.1935i 1.03432 1.03432i 0.0349291 0.999390i \(-0.488879\pi\)
0.999390 0.0349291i \(-0.0111205\pi\)
\(744\) 0 0
\(745\) −6.94164 + 18.7375i −0.254322 + 0.686489i
\(746\) 0 0
\(747\) −11.4243 + 11.4243i −0.417992 + 0.417992i
\(748\) 0 0
\(749\) −5.59836 −0.204560
\(750\) 0 0
\(751\) 44.7778i 1.63396i 0.576663 + 0.816982i \(0.304355\pi\)
−0.576663 + 0.816982i \(0.695645\pi\)
\(752\) 0 0
\(753\) −14.8525 14.8525i −0.541256 0.541256i
\(754\) 0 0
\(755\) −29.0236 10.7523i −1.05628 0.391317i
\(756\) 0 0
\(757\) 13.5044 + 13.5044i 0.490828 + 0.490828i 0.908567 0.417739i \(-0.137177\pi\)
−0.417739 + 0.908567i \(0.637177\pi\)
\(758\) 0 0
\(759\) −0.296401 −0.0107587
\(760\) 0 0
\(761\) 11.0243 0.399630 0.199815 0.979834i \(-0.435966\pi\)
0.199815 + 0.979834i \(0.435966\pi\)
\(762\) 0 0
\(763\) −3.74637 3.74637i −0.135628 0.135628i
\(764\) 0 0
\(765\) −0.767412 + 0.352515i −0.0277458 + 0.0127452i
\(766\) 0 0
\(767\) −23.0487 23.0487i −0.832241 0.832241i
\(768\) 0 0
\(769\) 37.9234i 1.36755i 0.729691 + 0.683777i \(0.239664\pi\)
−0.729691 + 0.683777i \(0.760336\pi\)
\(770\) 0 0
\(771\) 12.0347 0.433418
\(772\) 0 0
\(773\) 14.8575 14.8575i 0.534388 0.534388i −0.387487 0.921875i \(-0.626657\pi\)
0.921875 + 0.387487i \(0.126657\pi\)
\(774\) 0 0
\(775\) −18.8423 + 21.9402i −0.676836 + 0.788115i
\(776\) 0 0
\(777\) 5.56604 5.56604i 0.199680 0.199680i
\(778\) 0 0
\(779\) 6.88397i 0.246644i
\(780\) 0 0
\(781\) 3.38607i 0.121163i
\(782\) 0 0
\(783\) −7.86277 + 7.86277i −0.280992 + 0.280992i
\(784\) 0 0
\(785\) −8.19958 + 3.76652i −0.292655 + 0.134433i
\(786\) 0 0
\(787\) −29.8385 + 29.8385i −1.06363 + 1.06363i −0.0657956 + 0.997833i \(0.520959\pi\)
−0.997833 + 0.0657956i \(0.979041\pi\)
\(788\) 0 0
\(789\) 10.9950 0.391434
\(790\) 0 0
\(791\) 20.0292i 0.712156i
\(792\) 0 0
\(793\) 2.71751 + 2.71751i 0.0965017 + 0.0965017i
\(794\) 0 0
\(795\) −5.78104 + 15.6047i −0.205032 + 0.553442i
\(796\) 0 0
\(797\) −12.9205 12.9205i −0.457666 0.457666i 0.440222 0.897889i \(-0.354900\pi\)
−0.897889 + 0.440222i \(0.854900\pi\)
\(798\) 0 0
\(799\) −0.0311441 −0.00110180
\(800\) 0 0
\(801\) −30.4947 −1.07748
\(802\) 0 0
\(803\) 3.63039 + 3.63039i 0.128114 + 0.128114i
\(804\) 0 0
\(805\) 0.275470 0.743574i 0.00970904 0.0262075i
\(806\) 0 0
\(807\) −9.99054 9.99054i −0.351684 0.351684i
\(808\) 0 0
\(809\) 28.1463i 0.989570i −0.869015 0.494785i \(-0.835247\pi\)
0.869015 0.494785i \(-0.164753\pi\)
\(810\) 0 0
\(811\) −5.31804 −0.186742 −0.0933708 0.995631i \(-0.529764\pi\)
−0.0933708 + 0.995631i \(0.529764\pi\)
\(812\) 0 0
\(813\) −16.4729 + 16.4729i −0.577731 + 0.577731i
\(814\) 0 0
\(815\) 16.2487 7.46395i 0.569169 0.261451i
\(816\) 0 0
\(817\) 6.93917 6.93917i 0.242771 0.242771i
\(818\) 0 0
\(819\) 6.40032i 0.223645i
\(820\) 0 0
\(821\) 26.7232i 0.932645i −0.884615 0.466322i \(-0.845579\pi\)
0.884615 0.466322i \(-0.154421\pi\)
\(822\) 0 0
\(823\) −23.0489 + 23.0489i −0.803434 + 0.803434i −0.983631 0.180196i \(-0.942327\pi\)
0.180196 + 0.983631i \(0.442327\pi\)
\(824\) 0 0
\(825\) 0.316538 + 4.16710i 0.0110204 + 0.145080i
\(826\) 0 0
\(827\) 18.1319 18.1319i 0.630509 0.630509i −0.317687 0.948196i \(-0.602906\pi\)
0.948196 + 0.317687i \(0.102906\pi\)
\(828\) 0 0
\(829\) 14.5544 0.505495 0.252748 0.967532i \(-0.418666\pi\)
0.252748 + 0.967532i \(0.418666\pi\)
\(830\) 0 0
\(831\) 12.1851i 0.422695i
\(832\) 0 0
\(833\) 0.113640 + 0.113640i 0.00393738 + 0.00393738i
\(834\) 0 0
\(835\) 48.2374 22.1581i 1.66932 0.766814i
\(836\) 0 0
\(837\) 17.6412 + 17.6412i 0.609769 + 0.609769i
\(838\) 0 0
\(839\) −17.4147 −0.601223 −0.300611 0.953747i \(-0.597191\pi\)
−0.300611 + 0.953747i \(0.597191\pi\)
\(840\) 0 0
\(841\) −22.3538 −0.770822
\(842\) 0 0
\(843\) −9.11339 9.11339i −0.313882 0.313882i
\(844\) 0 0
\(845\) 11.7054 + 4.33646i 0.402677 + 0.149179i
\(846\) 0 0
\(847\) −7.01817 7.01817i −0.241147 0.241147i
\(848\) 0 0
\(849\) 21.5312i 0.738950i
\(850\) 0 0
\(851\) 3.46241 0.118690
\(852\) 0 0
\(853\) −11.3951 + 11.3951i −0.390162 + 0.390162i −0.874745 0.484583i \(-0.838971\pi\)
0.484583 + 0.874745i \(0.338971\pi\)
\(854\) 0 0
\(855\) 1.60494 4.33220i 0.0548878 0.148158i
\(856\) 0 0
\(857\) 1.78066 1.78066i 0.0608263 0.0608263i −0.676039 0.736866i \(-0.736305\pi\)
0.736866 + 0.676039i \(0.236305\pi\)
\(858\) 0 0
\(859\) 27.6536i 0.943528i 0.881725 + 0.471764i \(0.156382\pi\)
−0.881725 + 0.471764i \(0.843618\pi\)
\(860\) 0 0
\(861\) 6.31262i 0.215133i
\(862\) 0 0
\(863\) −31.5082 + 31.5082i −1.07255 + 1.07255i −0.0753980 + 0.997154i \(0.524023\pi\)
−0.997154 + 0.0753980i \(0.975977\pi\)
\(864\) 0 0
\(865\) −3.37546 7.34826i −0.114769 0.249848i
\(866\) 0 0
\(867\) 9.67659 9.67659i 0.328634 0.328634i
\(868\) 0 0
\(869\) −1.54750 −0.0524953
\(870\) 0 0
\(871\) 24.8967i 0.843594i
\(872\) 0 0
\(873\) 16.4965 + 16.4965i 0.558323 + 0.558323i
\(874\) 0 0
\(875\) −10.7481 3.07874i −0.363352 0.104080i
\(876\) 0 0
\(877\) −11.2425 11.2425i −0.379632 0.379632i 0.491337 0.870969i \(-0.336508\pi\)
−0.870969 + 0.491337i \(0.836508\pi\)
\(878\) 0 0
\(879\) −1.75469 −0.0591841
\(880\) 0 0
\(881\) −8.61502 −0.290247 −0.145124 0.989414i \(-0.546358\pi\)
−0.145124 + 0.989414i \(0.546358\pi\)
\(882\) 0 0
\(883\) 26.5622 + 26.5622i 0.893889 + 0.893889i 0.994887 0.100998i \(-0.0322035\pi\)
−0.100998 + 0.994887i \(0.532203\pi\)
\(884\) 0 0
\(885\) 9.00621 + 19.6062i 0.302741 + 0.659055i
\(886\) 0 0
\(887\) 7.73084 + 7.73084i 0.259576 + 0.259576i 0.824882 0.565306i \(-0.191242\pi\)
−0.565306 + 0.824882i \(0.691242\pi\)
\(888\) 0 0
\(889\) 16.1347i 0.541141i
\(890\) 0 0
\(891\) −3.70389 −0.124085
\(892\) 0 0
\(893\) 0.120474 0.120474i 0.00403151 0.00403151i
\(894\) 0 0
\(895\) −8.37279 3.10185i −0.279872 0.103683i
\(896\) 0 0
\(897\) −0.550592 + 0.550592i −0.0183837 + 0.0183837i
\(898\) 0 0
\(899\) 14.9116i 0.497330i
\(900\) 0 0
\(901\) 1.48352i 0.0494233i
\(902\) 0 0
\(903\) −6.36323 + 6.36323i −0.211755 + 0.211755i
\(904\) 0 0
\(905\) 38.9083 + 14.4143i 1.29336 + 0.479146i
\(906\) 0 0
\(907\) −16.6156 + 16.6156i −0.551713 + 0.551713i −0.926935 0.375222i \(-0.877567\pi\)
0.375222 + 0.926935i \(0.377567\pi\)
\(908\) 0 0
\(909\) −34.1893 −1.13399
\(910\) 0 0
\(911\) 6.01637i 0.199331i 0.995021 + 0.0996656i \(0.0317773\pi\)
−0.995021 + 0.0996656i \(0.968223\pi\)
\(912\) 0 0
\(913\) −5.03988 5.03988i −0.166796 0.166796i
\(914\) 0 0
\(915\) −1.06186 2.31163i −0.0351040 0.0764200i
\(916\) 0 0
\(917\) 14.4942 + 14.4942i 0.478639 + 0.478639i
\(918\) 0 0
\(919\) 28.9735 0.955748 0.477874 0.878428i \(-0.341407\pi\)
0.477874 + 0.878428i \(0.341407\pi\)
\(920\) 0 0
\(921\) 5.85415 0.192901
\(922\) 0 0
\(923\) 6.28992 + 6.28992i 0.207035 + 0.207035i
\(924\) 0 0
\(925\) −3.69764 48.6780i −0.121578 1.60052i
\(926\) 0 0
\(927\) −26.0690 26.0690i −0.856220 0.856220i
\(928\) 0 0
\(929\) 10.6090i 0.348071i −0.984739 0.174036i \(-0.944319\pi\)
0.984739 0.174036i \(-0.0556808\pi\)
\(930\) 0 0
\(931\) −0.879182 −0.0288140
\(932\) 0 0
\(933\) −8.53436 + 8.53436i −0.279402 + 0.279402i
\(934\) 0 0
\(935\) −0.155514 0.338549i −0.00508586 0.0110717i
\(936\) 0 0
\(937\) −13.4910 + 13.4910i −0.440733 + 0.440733i −0.892258 0.451525i \(-0.850880\pi\)
0.451525 + 0.892258i \(0.350880\pi\)
\(938\) 0 0
\(939\) 6.96432i 0.227272i
\(940\) 0 0
\(941\) 57.2435i 1.86608i 0.359766 + 0.933042i \(0.382856\pi\)
−0.359766 + 0.933042i \(0.617144\pi\)
\(942\) 0 0
\(943\) −1.96341 + 1.96341i −0.0639376 + 0.0639376i
\(944\) 0 0
\(945\) −3.35052 + 9.04404i −0.108993 + 0.294203i
\(946\) 0 0
\(947\) −2.00024 + 2.00024i −0.0649991 + 0.0649991i −0.738859 0.673860i \(-0.764635\pi\)
0.673860 + 0.738859i \(0.264635\pi\)
\(948\) 0 0
\(949\) 13.4876 0.437825
\(950\) 0 0
\(951\) 23.6299i 0.766253i
\(952\) 0 0
\(953\) 5.44413 + 5.44413i 0.176353 + 0.176353i 0.789764 0.613411i \(-0.210203\pi\)
−0.613411 + 0.789764i \(0.710203\pi\)
\(954\) 0 0
\(955\) 50.9768 + 18.8853i 1.64957 + 0.611113i
\(956\) 0 0
\(957\) −1.52365 1.52365i −0.0492525 0.0492525i
\(958\) 0 0
\(959\) 12.7633 0.412150
\(960\) 0 0
\(961\) −2.45619 −0.0792321
\(962\) 0 0
\(963\) 9.30290 + 9.30290i 0.299782 + 0.299782i
\(964\) 0 0
\(965\) 40.9949 18.8312i 1.31967 0.606199i
\(966\) 0 0
\(967\) 28.1955 + 28.1955i 0.906706 + 0.906706i 0.996005 0.0892989i \(-0.0284626\pi\)
−0.0892989 + 0.996005i \(0.528463\pi\)
\(968\) 0 0
\(969\) 0.113913i 0.00365941i
\(970\) 0 0
\(971\) −0.503002 −0.0161421 −0.00807106 0.999967i \(-0.502569\pi\)
−0.00807106 + 0.999967i \(0.502569\pi\)
\(972\) 0 0
\(973\) −1.98783 + 1.98783i −0.0637268 + 0.0637268i
\(974\) 0 0
\(975\) 8.32876 + 7.15277i 0.266734 + 0.229072i
\(976\) 0 0
\(977\) 21.8461 21.8461i 0.698918 0.698918i −0.265259 0.964177i \(-0.585457\pi\)
0.964177 + 0.265259i \(0.0854575\pi\)
\(978\) 0 0
\(979\) 13.4529i 0.429957i
\(980\) 0 0
\(981\) 12.4508i 0.397524i
\(982\) 0 0
\(983\) −31.4383 + 31.4383i −1.00273 + 1.00273i −0.00272895 + 0.999996i \(0.500869\pi\)
−0.999996 + 0.00272895i \(0.999131\pi\)
\(984\) 0 0
\(985\) 31.6708 14.5482i 1.00912 0.463544i
\(986\) 0 0
\(987\) −0.110475 + 0.110475i −0.00351646 + 0.00351646i
\(988\) 0 0
\(989\) −3.95831 −0.125867
\(990\) 0 0
\(991\) 51.0233i 1.62081i 0.585872 + 0.810404i \(0.300752\pi\)
−0.585872 + 0.810404i \(0.699248\pi\)
\(992\) 0 0
\(993\) 15.6650 + 15.6650i 0.497113 + 0.497113i
\(994\) 0 0
\(995\) −11.0770 + 29.9000i −0.351164 + 0.947894i
\(996\) 0 0
\(997\) −17.3574 17.3574i −0.549716 0.549716i 0.376643 0.926359i \(-0.377078\pi\)
−0.926359 + 0.376643i \(0.877078\pi\)
\(998\) 0 0
\(999\) −42.1131 −1.33240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.bi.a.463.14 72
4.3 odd 2 280.2.w.a.43.19 72
5.2 odd 4 inner 1120.2.bi.a.687.13 72
8.3 odd 2 inner 1120.2.bi.a.463.13 72
8.5 even 2 280.2.w.a.43.35 yes 72
20.7 even 4 280.2.w.a.267.35 yes 72
40.27 even 4 inner 1120.2.bi.a.687.14 72
40.37 odd 4 280.2.w.a.267.19 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.w.a.43.19 72 4.3 odd 2
280.2.w.a.43.35 yes 72 8.5 even 2
280.2.w.a.267.19 yes 72 40.37 odd 4
280.2.w.a.267.35 yes 72 20.7 even 4
1120.2.bi.a.463.13 72 8.3 odd 2 inner
1120.2.bi.a.463.14 72 1.1 even 1 trivial
1120.2.bi.a.687.13 72 5.2 odd 4 inner
1120.2.bi.a.687.14 72 40.27 even 4 inner