Properties

Label 112.16.a.l
Level $112$
Weight $16$
Character orbit 112.a
Self dual yes
Analytic conductor $159.817$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,16,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 16, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-952] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(159.816725712\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} - 18150291 x^{4} + 1485708004 x^{3} + 82508901381652 x^{2} + \cdots - 13\!\cdots\!48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{31}\cdot 3^{2}\cdot 5^{2}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 159) q^{3} + ( - \beta_{2} + 10 \beta_1 + 42801) q^{5} - 823543 q^{7} + (\beta_{3} - 3 \beta_{2} + \cdots + 9876683) q^{9} + (2 \beta_{5} + 3 \beta_{4} + \cdots - 23261240) q^{11} + (3 \beta_{5} - 16 \beta_{4} + \cdots + 51711411) q^{13}+ \cdots + ( - 15227802 \beta_{5} + \cdots - 215762551795248) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 952 q^{3} + 256788 q^{5} - 4941258 q^{7} + 59259950 q^{9} - 139572168 q^{11} + 310264836 q^{13} - 1439360288 q^{15} + 1371963180 q^{17} + 3446059176 q^{19} + 784012936 q^{21} + 7026527616 q^{23} + 46042322394 q^{25}+ \cdots - 12\!\cdots\!52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} - 18150291 x^{4} + 1485708004 x^{3} + 82508901381652 x^{2} + \cdots - 13\!\cdots\!48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 1641724279 \nu^{5} + 4451440996944 \nu^{4} + \cdots + 62\!\cdots\!98 ) / 95\!\cdots\!66 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1641724279 \nu^{5} + 4451440996944 \nu^{4} + \cdots - 76\!\cdots\!80 ) / 31\!\cdots\!22 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 4749130364 \nu^{5} - 19953760999536 \nu^{4} + \cdots - 52\!\cdots\!49 ) / 67\!\cdots\!19 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 216401459815 \nu^{5} - 46633036605840 \nu^{4} + \cdots + 91\!\cdots\!54 ) / 95\!\cdots\!66 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 3\beta_{2} - 239\beta _1 + 24200310 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 321\beta_{5} + 1750\beta_{4} - 363\beta_{3} + 114274\beta_{2} + 36191197\beta _1 - 5785528544 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 826377 \beta_{5} - 10838047 \beta_{4} + 39126143 \beta_{3} - 447378412 \beta_{2} + \cdots + 876843997280852 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 1433729403 \beta_{5} + 28617407946 \beta_{4} - 8422424597 \beta_{3} + 1836188281482 \beta_{2} + \cdots - 11\!\cdots\!96 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3008.13
2916.09
480.713
−364.445
−2743.00
−3295.48
0 −6174.26 0 −150875. 0 −823543. 0 2.37726e7 0
1.2 0 −5990.17 0 337573. 0 −823543. 0 2.15333e7 0
1.3 0 −1119.43 0 165118. 0 −823543. 0 −1.30958e7 0
1.4 0 570.890 0 −37697.4 0 −823543. 0 −1.40230e7 0
1.5 0 5328.00 0 −204876. 0 −823543. 0 1.40387e7 0
1.6 0 6432.97 0 147546. 0 −823543. 0 2.70342e7 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.16.a.l 6
4.b odd 2 1 56.16.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.16.a.c 6 4.b odd 2 1
112.16.a.l 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 952 T_{3}^{5} - 72223544 T_{3}^{4} - 57689714880 T_{3}^{3} + \cdots - 81\!\cdots\!28 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(112))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 81\!\cdots\!28 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 95\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T + 823543)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 81\!\cdots\!80 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 47\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 14\!\cdots\!20 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 69\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 54\!\cdots\!12 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 88\!\cdots\!88 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 58\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 15\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 47\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 31\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 15\!\cdots\!92 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 12\!\cdots\!52 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 28\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 40\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 54\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 35\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 32\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 60\!\cdots\!28 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 35\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 90\!\cdots\!32 \) Copy content Toggle raw display
show more
show less