Properties

Label 112.16.a.k.1.4
Level $112$
Weight $16$
Character 112.1
Self dual yes
Analytic conductor $159.817$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,16,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 16, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3864] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(159.816725712\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 911559x^{4} - 33878904x^{3} + 200237882347x^{2} + 5867703981762x - 7046699346580509 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{35}\cdot 3^{6}\cdot 5\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(191.407\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-658.011 q^{3} -99937.3 q^{5} +823543. q^{7} -1.39159e7 q^{9} +9.86856e7 q^{11} +4.31785e7 q^{13} +6.57598e7 q^{15} -1.63426e9 q^{17} -4.86662e9 q^{19} -5.41900e8 q^{21} +1.52363e10 q^{23} -2.05301e10 q^{25} +1.85986e10 q^{27} +1.67918e11 q^{29} +8.99932e9 q^{31} -6.49362e10 q^{33} -8.23027e10 q^{35} +3.19420e10 q^{37} -2.84119e10 q^{39} -3.04379e11 q^{41} -2.06517e12 q^{43} +1.39072e12 q^{45} +5.53348e12 q^{47} +6.78223e11 q^{49} +1.07536e12 q^{51} -1.68236e12 q^{53} -9.86237e12 q^{55} +3.20229e12 q^{57} +3.20814e13 q^{59} +3.22573e13 q^{61} -1.14604e13 q^{63} -4.31515e12 q^{65} -3.98067e13 q^{67} -1.00256e13 q^{69} -9.64832e13 q^{71} -1.31961e14 q^{73} +1.35090e13 q^{75} +8.12718e13 q^{77} -2.27805e14 q^{79} +1.87440e14 q^{81} +2.11079e14 q^{83} +1.63324e14 q^{85} -1.10492e14 q^{87} +3.32250e14 q^{89} +3.55594e13 q^{91} -5.92165e12 q^{93} +4.86357e14 q^{95} +6.67928e14 q^{97} -1.37330e15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3864 q^{3} + 168532 q^{5} + 4941258 q^{7} + 27735822 q^{9} - 58040072 q^{11} - 15956444 q^{13} + 705059136 q^{15} - 2879979060 q^{17} - 3435500376 q^{19} - 3182170152 q^{21} - 34508782592 q^{23} + 29232294906 q^{25}+ \cdots - 44\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −658.011 −0.173709 −0.0868547 0.996221i \(-0.527682\pi\)
−0.0868547 + 0.996221i \(0.527682\pi\)
\(4\) 0 0
\(5\) −99937.3 −0.572075 −0.286037 0.958218i \(-0.592338\pi\)
−0.286037 + 0.958218i \(0.592338\pi\)
\(6\) 0 0
\(7\) 823543. 0.377964
\(8\) 0 0
\(9\) −1.39159e7 −0.969825
\(10\) 0 0
\(11\) 9.86856e7 1.52689 0.763446 0.645871i \(-0.223506\pi\)
0.763446 + 0.645871i \(0.223506\pi\)
\(12\) 0 0
\(13\) 4.31785e7 0.190850 0.0954251 0.995437i \(-0.469579\pi\)
0.0954251 + 0.995437i \(0.469579\pi\)
\(14\) 0 0
\(15\) 6.57598e7 0.0993748
\(16\) 0 0
\(17\) −1.63426e9 −0.965949 −0.482975 0.875634i \(-0.660444\pi\)
−0.482975 + 0.875634i \(0.660444\pi\)
\(18\) 0 0
\(19\) −4.86662e9 −1.24904 −0.624518 0.781010i \(-0.714705\pi\)
−0.624518 + 0.781010i \(0.714705\pi\)
\(20\) 0 0
\(21\) −5.41900e8 −0.0656560
\(22\) 0 0
\(23\) 1.52363e10 0.933082 0.466541 0.884500i \(-0.345500\pi\)
0.466541 + 0.884500i \(0.345500\pi\)
\(24\) 0 0
\(25\) −2.05301e10 −0.672731
\(26\) 0 0
\(27\) 1.85986e10 0.342177
\(28\) 0 0
\(29\) 1.67918e11 1.80764 0.903822 0.427908i \(-0.140749\pi\)
0.903822 + 0.427908i \(0.140749\pi\)
\(30\) 0 0
\(31\) 8.99932e9 0.0587485 0.0293743 0.999568i \(-0.490649\pi\)
0.0293743 + 0.999568i \(0.490649\pi\)
\(32\) 0 0
\(33\) −6.49362e10 −0.265236
\(34\) 0 0
\(35\) −8.23027e10 −0.216224
\(36\) 0 0
\(37\) 3.19420e10 0.0553158 0.0276579 0.999617i \(-0.491195\pi\)
0.0276579 + 0.999617i \(0.491195\pi\)
\(38\) 0 0
\(39\) −2.84119e10 −0.0331525
\(40\) 0 0
\(41\) −3.04379e11 −0.244082 −0.122041 0.992525i \(-0.538944\pi\)
−0.122041 + 0.992525i \(0.538944\pi\)
\(42\) 0 0
\(43\) −2.06517e12 −1.15862 −0.579311 0.815107i \(-0.696678\pi\)
−0.579311 + 0.815107i \(0.696678\pi\)
\(44\) 0 0
\(45\) 1.39072e12 0.554812
\(46\) 0 0
\(47\) 5.53348e12 1.59318 0.796590 0.604520i \(-0.206635\pi\)
0.796590 + 0.604520i \(0.206635\pi\)
\(48\) 0 0
\(49\) 6.78223e11 0.142857
\(50\) 0 0
\(51\) 1.07536e12 0.167795
\(52\) 0 0
\(53\) −1.68236e12 −0.196721 −0.0983603 0.995151i \(-0.531360\pi\)
−0.0983603 + 0.995151i \(0.531360\pi\)
\(54\) 0 0
\(55\) −9.86237e12 −0.873496
\(56\) 0 0
\(57\) 3.20229e12 0.216970
\(58\) 0 0
\(59\) 3.20814e13 1.67828 0.839138 0.543918i \(-0.183060\pi\)
0.839138 + 0.543918i \(0.183060\pi\)
\(60\) 0 0
\(61\) 3.22573e13 1.31418 0.657089 0.753813i \(-0.271788\pi\)
0.657089 + 0.753813i \(0.271788\pi\)
\(62\) 0 0
\(63\) −1.14604e13 −0.366559
\(64\) 0 0
\(65\) −4.31515e12 −0.109181
\(66\) 0 0
\(67\) −3.98067e13 −0.802409 −0.401204 0.915989i \(-0.631408\pi\)
−0.401204 + 0.915989i \(0.631408\pi\)
\(68\) 0 0
\(69\) −1.00256e13 −0.162085
\(70\) 0 0
\(71\) −9.64832e13 −1.25897 −0.629483 0.777014i \(-0.716733\pi\)
−0.629483 + 0.777014i \(0.716733\pi\)
\(72\) 0 0
\(73\) −1.31961e14 −1.39805 −0.699026 0.715096i \(-0.746383\pi\)
−0.699026 + 0.715096i \(0.746383\pi\)
\(74\) 0 0
\(75\) 1.35090e13 0.116860
\(76\) 0 0
\(77\) 8.12718e13 0.577111
\(78\) 0 0
\(79\) −2.27805e14 −1.33463 −0.667314 0.744777i \(-0.732556\pi\)
−0.667314 + 0.744777i \(0.732556\pi\)
\(80\) 0 0
\(81\) 1.87440e14 0.910386
\(82\) 0 0
\(83\) 2.11079e14 0.853806 0.426903 0.904297i \(-0.359605\pi\)
0.426903 + 0.904297i \(0.359605\pi\)
\(84\) 0 0
\(85\) 1.63324e14 0.552595
\(86\) 0 0
\(87\) −1.10492e14 −0.314005
\(88\) 0 0
\(89\) 3.32250e14 0.796231 0.398116 0.917335i \(-0.369664\pi\)
0.398116 + 0.917335i \(0.369664\pi\)
\(90\) 0 0
\(91\) 3.55594e13 0.0721346
\(92\) 0 0
\(93\) −5.92165e12 −0.0102052
\(94\) 0 0
\(95\) 4.86357e14 0.714542
\(96\) 0 0
\(97\) 6.67928e14 0.839347 0.419673 0.907675i \(-0.362145\pi\)
0.419673 + 0.907675i \(0.362145\pi\)
\(98\) 0 0
\(99\) −1.37330e15 −1.48082
\(100\) 0 0
\(101\) 1.67749e15 1.55686 0.778431 0.627730i \(-0.216016\pi\)
0.778431 + 0.627730i \(0.216016\pi\)
\(102\) 0 0
\(103\) −1.43932e15 −1.15313 −0.576565 0.817052i \(-0.695607\pi\)
−0.576565 + 0.817052i \(0.695607\pi\)
\(104\) 0 0
\(105\) 5.41560e13 0.0375601
\(106\) 0 0
\(107\) −1.45184e15 −0.874060 −0.437030 0.899447i \(-0.643970\pi\)
−0.437030 + 0.899447i \(0.643970\pi\)
\(108\) 0 0
\(109\) 4.71347e14 0.246969 0.123484 0.992347i \(-0.460593\pi\)
0.123484 + 0.992347i \(0.460593\pi\)
\(110\) 0 0
\(111\) −2.10182e13 −0.00960888
\(112\) 0 0
\(113\) −4.46072e15 −1.78368 −0.891840 0.452351i \(-0.850585\pi\)
−0.891840 + 0.452351i \(0.850585\pi\)
\(114\) 0 0
\(115\) −1.52267e15 −0.533792
\(116\) 0 0
\(117\) −6.00869e14 −0.185091
\(118\) 0 0
\(119\) −1.34588e15 −0.365095
\(120\) 0 0
\(121\) 5.56159e15 1.33140
\(122\) 0 0
\(123\) 2.00285e14 0.0423994
\(124\) 0 0
\(125\) 5.10157e15 0.956927
\(126\) 0 0
\(127\) 1.42075e15 0.236586 0.118293 0.992979i \(-0.462258\pi\)
0.118293 + 0.992979i \(0.462258\pi\)
\(128\) 0 0
\(129\) 1.35890e15 0.201263
\(130\) 0 0
\(131\) −1.35956e16 −1.79417 −0.897085 0.441858i \(-0.854320\pi\)
−0.897085 + 0.441858i \(0.854320\pi\)
\(132\) 0 0
\(133\) −4.00787e15 −0.472091
\(134\) 0 0
\(135\) −1.85869e15 −0.195751
\(136\) 0 0
\(137\) 9.72389e15 0.917140 0.458570 0.888658i \(-0.348362\pi\)
0.458570 + 0.888658i \(0.348362\pi\)
\(138\) 0 0
\(139\) −5.39955e15 −0.456821 −0.228411 0.973565i \(-0.573353\pi\)
−0.228411 + 0.973565i \(0.573353\pi\)
\(140\) 0 0
\(141\) −3.64109e15 −0.276750
\(142\) 0 0
\(143\) 4.26110e15 0.291408
\(144\) 0 0
\(145\) −1.67813e16 −1.03411
\(146\) 0 0
\(147\) −4.46278e14 −0.0248156
\(148\) 0 0
\(149\) −3.10552e16 −1.56041 −0.780203 0.625527i \(-0.784884\pi\)
−0.780203 + 0.625527i \(0.784884\pi\)
\(150\) 0 0
\(151\) 1.27333e15 0.0578912 0.0289456 0.999581i \(-0.490785\pi\)
0.0289456 + 0.999581i \(0.490785\pi\)
\(152\) 0 0
\(153\) 2.27423e16 0.936802
\(154\) 0 0
\(155\) −8.99368e14 −0.0336085
\(156\) 0 0
\(157\) −3.02208e16 −1.02579 −0.512895 0.858451i \(-0.671427\pi\)
−0.512895 + 0.858451i \(0.671427\pi\)
\(158\) 0 0
\(159\) 1.10701e15 0.0341722
\(160\) 0 0
\(161\) 1.25477e16 0.352672
\(162\) 0 0
\(163\) −3.57287e15 −0.0915399 −0.0457699 0.998952i \(-0.514574\pi\)
−0.0457699 + 0.998952i \(0.514574\pi\)
\(164\) 0 0
\(165\) 6.48955e15 0.151735
\(166\) 0 0
\(167\) 6.81421e15 0.145560 0.0727799 0.997348i \(-0.476813\pi\)
0.0727799 + 0.997348i \(0.476813\pi\)
\(168\) 0 0
\(169\) −4.93215e16 −0.963576
\(170\) 0 0
\(171\) 6.77235e16 1.21135
\(172\) 0 0
\(173\) −5.80219e16 −0.951143 −0.475572 0.879677i \(-0.657759\pi\)
−0.475572 + 0.879677i \(0.657759\pi\)
\(174\) 0 0
\(175\) −1.69074e16 −0.254268
\(176\) 0 0
\(177\) −2.11099e16 −0.291533
\(178\) 0 0
\(179\) 8.67397e16 1.10108 0.550542 0.834808i \(-0.314421\pi\)
0.550542 + 0.834808i \(0.314421\pi\)
\(180\) 0 0
\(181\) −9.88334e16 −1.15429 −0.577144 0.816642i \(-0.695833\pi\)
−0.577144 + 0.816642i \(0.695833\pi\)
\(182\) 0 0
\(183\) −2.12256e16 −0.228285
\(184\) 0 0
\(185\) −3.19220e15 −0.0316448
\(186\) 0 0
\(187\) −1.61278e17 −1.47490
\(188\) 0 0
\(189\) 1.53167e16 0.129331
\(190\) 0 0
\(191\) −1.03183e17 −0.805118 −0.402559 0.915394i \(-0.631879\pi\)
−0.402559 + 0.915394i \(0.631879\pi\)
\(192\) 0 0
\(193\) −1.24304e17 −0.897028 −0.448514 0.893776i \(-0.648046\pi\)
−0.448514 + 0.893776i \(0.648046\pi\)
\(194\) 0 0
\(195\) 2.83941e15 0.0189657
\(196\) 0 0
\(197\) −2.72332e17 −1.68501 −0.842503 0.538692i \(-0.818919\pi\)
−0.842503 + 0.538692i \(0.818919\pi\)
\(198\) 0 0
\(199\) −2.83005e16 −0.162329 −0.0811645 0.996701i \(-0.525864\pi\)
−0.0811645 + 0.996701i \(0.525864\pi\)
\(200\) 0 0
\(201\) 2.61933e16 0.139386
\(202\) 0 0
\(203\) 1.38288e17 0.683225
\(204\) 0 0
\(205\) 3.04188e16 0.139633
\(206\) 0 0
\(207\) −2.12027e17 −0.904926
\(208\) 0 0
\(209\) −4.80265e17 −1.90715
\(210\) 0 0
\(211\) −2.28855e17 −0.846140 −0.423070 0.906097i \(-0.639048\pi\)
−0.423070 + 0.906097i \(0.639048\pi\)
\(212\) 0 0
\(213\) 6.34870e16 0.218694
\(214\) 0 0
\(215\) 2.06387e17 0.662818
\(216\) 0 0
\(217\) 7.41133e15 0.0222049
\(218\) 0 0
\(219\) 8.68316e16 0.242855
\(220\) 0 0
\(221\) −7.05649e16 −0.184352
\(222\) 0 0
\(223\) −3.95117e17 −0.964804 −0.482402 0.875950i \(-0.660236\pi\)
−0.482402 + 0.875950i \(0.660236\pi\)
\(224\) 0 0
\(225\) 2.85696e17 0.652431
\(226\) 0 0
\(227\) −6.90242e17 −1.47505 −0.737527 0.675318i \(-0.764006\pi\)
−0.737527 + 0.675318i \(0.764006\pi\)
\(228\) 0 0
\(229\) −1.38159e17 −0.276448 −0.138224 0.990401i \(-0.544139\pi\)
−0.138224 + 0.990401i \(0.544139\pi\)
\(230\) 0 0
\(231\) −5.34777e16 −0.100250
\(232\) 0 0
\(233\) 2.65015e17 0.465694 0.232847 0.972513i \(-0.425196\pi\)
0.232847 + 0.972513i \(0.425196\pi\)
\(234\) 0 0
\(235\) −5.53001e17 −0.911417
\(236\) 0 0
\(237\) 1.49898e17 0.231838
\(238\) 0 0
\(239\) 8.93121e16 0.129696 0.0648479 0.997895i \(-0.479344\pi\)
0.0648479 + 0.997895i \(0.479344\pi\)
\(240\) 0 0
\(241\) −8.52081e17 −1.16239 −0.581197 0.813763i \(-0.697415\pi\)
−0.581197 + 0.813763i \(0.697415\pi\)
\(242\) 0 0
\(243\) −3.90207e17 −0.500320
\(244\) 0 0
\(245\) −6.77798e16 −0.0817249
\(246\) 0 0
\(247\) −2.10133e17 −0.238379
\(248\) 0 0
\(249\) −1.38892e17 −0.148314
\(250\) 0 0
\(251\) −1.15606e18 −1.16260 −0.581298 0.813691i \(-0.697455\pi\)
−0.581298 + 0.813691i \(0.697455\pi\)
\(252\) 0 0
\(253\) 1.50360e18 1.42472
\(254\) 0 0
\(255\) −1.07469e17 −0.0959910
\(256\) 0 0
\(257\) 8.99709e17 0.757885 0.378943 0.925420i \(-0.376288\pi\)
0.378943 + 0.925420i \(0.376288\pi\)
\(258\) 0 0
\(259\) 2.63056e16 0.0209074
\(260\) 0 0
\(261\) −2.33674e18 −1.75310
\(262\) 0 0
\(263\) −1.45766e18 −1.03273 −0.516365 0.856369i \(-0.672715\pi\)
−0.516365 + 0.856369i \(0.672715\pi\)
\(264\) 0 0
\(265\) 1.68130e17 0.112539
\(266\) 0 0
\(267\) −2.18624e17 −0.138313
\(268\) 0 0
\(269\) 1.08149e18 0.646965 0.323482 0.946234i \(-0.395146\pi\)
0.323482 + 0.946234i \(0.395146\pi\)
\(270\) 0 0
\(271\) 1.53664e18 0.869567 0.434784 0.900535i \(-0.356825\pi\)
0.434784 + 0.900535i \(0.356825\pi\)
\(272\) 0 0
\(273\) −2.33984e16 −0.0125305
\(274\) 0 0
\(275\) −2.02603e18 −1.02719
\(276\) 0 0
\(277\) 2.47176e18 1.18689 0.593443 0.804876i \(-0.297768\pi\)
0.593443 + 0.804876i \(0.297768\pi\)
\(278\) 0 0
\(279\) −1.25234e17 −0.0569758
\(280\) 0 0
\(281\) −2.43763e18 −1.05116 −0.525582 0.850743i \(-0.676152\pi\)
−0.525582 + 0.850743i \(0.676152\pi\)
\(282\) 0 0
\(283\) 2.21017e18 0.903707 0.451854 0.892092i \(-0.350763\pi\)
0.451854 + 0.892092i \(0.350763\pi\)
\(284\) 0 0
\(285\) −3.20028e17 −0.124123
\(286\) 0 0
\(287\) −2.50669e17 −0.0922544
\(288\) 0 0
\(289\) −1.91616e17 −0.0669420
\(290\) 0 0
\(291\) −4.39504e17 −0.145803
\(292\) 0 0
\(293\) −2.18203e18 −0.687627 −0.343814 0.939038i \(-0.611719\pi\)
−0.343814 + 0.939038i \(0.611719\pi\)
\(294\) 0 0
\(295\) −3.20613e18 −0.960099
\(296\) 0 0
\(297\) 1.83541e18 0.522468
\(298\) 0 0
\(299\) 6.57879e17 0.178079
\(300\) 0 0
\(301\) −1.70075e18 −0.437918
\(302\) 0 0
\(303\) −1.10381e18 −0.270442
\(304\) 0 0
\(305\) −3.22371e18 −0.751807
\(306\) 0 0
\(307\) 7.40061e18 1.64335 0.821674 0.569958i \(-0.193040\pi\)
0.821674 + 0.569958i \(0.193040\pi\)
\(308\) 0 0
\(309\) 9.47087e17 0.200309
\(310\) 0 0
\(311\) 4.91891e17 0.0991211 0.0495605 0.998771i \(-0.484218\pi\)
0.0495605 + 0.998771i \(0.484218\pi\)
\(312\) 0 0
\(313\) 4.90623e18 0.942249 0.471125 0.882067i \(-0.343848\pi\)
0.471125 + 0.882067i \(0.343848\pi\)
\(314\) 0 0
\(315\) 1.14532e18 0.209699
\(316\) 0 0
\(317\) −3.08075e18 −0.537913 −0.268957 0.963152i \(-0.586679\pi\)
−0.268957 + 0.963152i \(0.586679\pi\)
\(318\) 0 0
\(319\) 1.65711e19 2.76008
\(320\) 0 0
\(321\) 9.55328e17 0.151832
\(322\) 0 0
\(323\) 7.95332e18 1.20651
\(324\) 0 0
\(325\) −8.86460e17 −0.128391
\(326\) 0 0
\(327\) −3.10152e17 −0.0429008
\(328\) 0 0
\(329\) 4.55706e18 0.602165
\(330\) 0 0
\(331\) −7.86052e18 −0.992525 −0.496262 0.868173i \(-0.665295\pi\)
−0.496262 + 0.868173i \(0.665295\pi\)
\(332\) 0 0
\(333\) −4.44503e17 −0.0536467
\(334\) 0 0
\(335\) 3.97818e18 0.459038
\(336\) 0 0
\(337\) −1.25867e19 −1.38895 −0.694475 0.719517i \(-0.744363\pi\)
−0.694475 + 0.719517i \(0.744363\pi\)
\(338\) 0 0
\(339\) 2.93520e18 0.309842
\(340\) 0 0
\(341\) 8.88103e17 0.0897027
\(342\) 0 0
\(343\) 5.58546e17 0.0539949
\(344\) 0 0
\(345\) 1.00193e18 0.0927248
\(346\) 0 0
\(347\) −8.39065e18 −0.743575 −0.371787 0.928318i \(-0.621255\pi\)
−0.371787 + 0.928318i \(0.621255\pi\)
\(348\) 0 0
\(349\) 1.43290e19 1.21626 0.608130 0.793837i \(-0.291920\pi\)
0.608130 + 0.793837i \(0.291920\pi\)
\(350\) 0 0
\(351\) 8.03059e17 0.0653046
\(352\) 0 0
\(353\) −2.32305e18 −0.181029 −0.0905147 0.995895i \(-0.528851\pi\)
−0.0905147 + 0.995895i \(0.528851\pi\)
\(354\) 0 0
\(355\) 9.64227e18 0.720222
\(356\) 0 0
\(357\) 8.85606e17 0.0634204
\(358\) 0 0
\(359\) 1.83499e19 1.26016 0.630079 0.776531i \(-0.283023\pi\)
0.630079 + 0.776531i \(0.283023\pi\)
\(360\) 0 0
\(361\) 8.50284e18 0.560093
\(362\) 0 0
\(363\) −3.65959e18 −0.231277
\(364\) 0 0
\(365\) 1.31878e19 0.799790
\(366\) 0 0
\(367\) 1.43881e19 0.837545 0.418773 0.908091i \(-0.362460\pi\)
0.418773 + 0.908091i \(0.362460\pi\)
\(368\) 0 0
\(369\) 4.23572e18 0.236717
\(370\) 0 0
\(371\) −1.38550e18 −0.0743534
\(372\) 0 0
\(373\) 2.77294e18 0.142930 0.0714651 0.997443i \(-0.477233\pi\)
0.0714651 + 0.997443i \(0.477233\pi\)
\(374\) 0 0
\(375\) −3.35689e18 −0.166227
\(376\) 0 0
\(377\) 7.25046e18 0.344989
\(378\) 0 0
\(379\) −1.05312e19 −0.481595 −0.240797 0.970575i \(-0.577409\pi\)
−0.240797 + 0.970575i \(0.577409\pi\)
\(380\) 0 0
\(381\) −9.34869e17 −0.0410973
\(382\) 0 0
\(383\) −2.08518e19 −0.881358 −0.440679 0.897665i \(-0.645262\pi\)
−0.440679 + 0.897665i \(0.645262\pi\)
\(384\) 0 0
\(385\) −8.12209e18 −0.330151
\(386\) 0 0
\(387\) 2.87387e19 1.12366
\(388\) 0 0
\(389\) 1.02461e19 0.385422 0.192711 0.981256i \(-0.438272\pi\)
0.192711 + 0.981256i \(0.438272\pi\)
\(390\) 0 0
\(391\) −2.49000e19 −0.901309
\(392\) 0 0
\(393\) 8.94605e18 0.311664
\(394\) 0 0
\(395\) 2.27662e19 0.763507
\(396\) 0 0
\(397\) −4.28554e18 −0.138381 −0.0691905 0.997603i \(-0.522042\pi\)
−0.0691905 + 0.997603i \(0.522042\pi\)
\(398\) 0 0
\(399\) 2.63722e18 0.0820068
\(400\) 0 0
\(401\) 3.36371e19 1.00748 0.503739 0.863856i \(-0.331957\pi\)
0.503739 + 0.863856i \(0.331957\pi\)
\(402\) 0 0
\(403\) 3.88577e17 0.0112122
\(404\) 0 0
\(405\) −1.87323e19 −0.520808
\(406\) 0 0
\(407\) 3.15222e18 0.0844613
\(408\) 0 0
\(409\) 6.90850e19 1.78426 0.892132 0.451774i \(-0.149209\pi\)
0.892132 + 0.451774i \(0.149209\pi\)
\(410\) 0 0
\(411\) −6.39842e18 −0.159316
\(412\) 0 0
\(413\) 2.64204e19 0.634329
\(414\) 0 0
\(415\) −2.10947e19 −0.488441
\(416\) 0 0
\(417\) 3.55296e18 0.0793542
\(418\) 0 0
\(419\) −4.75891e19 −1.02542 −0.512711 0.858561i \(-0.671359\pi\)
−0.512711 + 0.858561i \(0.671359\pi\)
\(420\) 0 0
\(421\) 2.71257e19 0.563981 0.281991 0.959417i \(-0.409005\pi\)
0.281991 + 0.959417i \(0.409005\pi\)
\(422\) 0 0
\(423\) −7.70036e19 −1.54511
\(424\) 0 0
\(425\) 3.35515e19 0.649824
\(426\) 0 0
\(427\) 2.65653e19 0.496712
\(428\) 0 0
\(429\) −2.80385e18 −0.0506203
\(430\) 0 0
\(431\) 7.28235e19 1.26967 0.634837 0.772646i \(-0.281067\pi\)
0.634837 + 0.772646i \(0.281067\pi\)
\(432\) 0 0
\(433\) 3.52424e18 0.0593479 0.0296740 0.999560i \(-0.490553\pi\)
0.0296740 + 0.999560i \(0.490553\pi\)
\(434\) 0 0
\(435\) 1.10423e19 0.179634
\(436\) 0 0
\(437\) −7.41490e19 −1.16545
\(438\) 0 0
\(439\) 7.48213e18 0.113643 0.0568213 0.998384i \(-0.481903\pi\)
0.0568213 + 0.998384i \(0.481903\pi\)
\(440\) 0 0
\(441\) −9.43810e18 −0.138546
\(442\) 0 0
\(443\) −7.37472e18 −0.104645 −0.0523224 0.998630i \(-0.516662\pi\)
−0.0523224 + 0.998630i \(0.516662\pi\)
\(444\) 0 0
\(445\) −3.32041e19 −0.455504
\(446\) 0 0
\(447\) 2.04347e19 0.271057
\(448\) 0 0
\(449\) −1.28085e18 −0.0164305 −0.00821526 0.999966i \(-0.502615\pi\)
−0.00821526 + 0.999966i \(0.502615\pi\)
\(450\) 0 0
\(451\) −3.00378e19 −0.372687
\(452\) 0 0
\(453\) −8.37861e17 −0.0100562
\(454\) 0 0
\(455\) −3.55371e18 −0.0412664
\(456\) 0 0
\(457\) −3.08856e19 −0.347044 −0.173522 0.984830i \(-0.555515\pi\)
−0.173522 + 0.984830i \(0.555515\pi\)
\(458\) 0 0
\(459\) −3.03949e19 −0.330526
\(460\) 0 0
\(461\) −1.04406e20 −1.09893 −0.549465 0.835517i \(-0.685168\pi\)
−0.549465 + 0.835517i \(0.685168\pi\)
\(462\) 0 0
\(463\) −1.04112e20 −1.06083 −0.530414 0.847739i \(-0.677964\pi\)
−0.530414 + 0.847739i \(0.677964\pi\)
\(464\) 0 0
\(465\) 5.91794e17 0.00583812
\(466\) 0 0
\(467\) −8.69017e19 −0.830141 −0.415070 0.909789i \(-0.636243\pi\)
−0.415070 + 0.909789i \(0.636243\pi\)
\(468\) 0 0
\(469\) −3.27826e19 −0.303282
\(470\) 0 0
\(471\) 1.98856e19 0.178189
\(472\) 0 0
\(473\) −2.03802e20 −1.76909
\(474\) 0 0
\(475\) 9.99122e19 0.840265
\(476\) 0 0
\(477\) 2.34116e19 0.190785
\(478\) 0 0
\(479\) 9.78808e18 0.0773003 0.0386501 0.999253i \(-0.487694\pi\)
0.0386501 + 0.999253i \(0.487694\pi\)
\(480\) 0 0
\(481\) 1.37921e18 0.0105570
\(482\) 0 0
\(483\) −8.25653e18 −0.0612624
\(484\) 0 0
\(485\) −6.67509e19 −0.480169
\(486\) 0 0
\(487\) −1.85897e20 −1.29660 −0.648300 0.761385i \(-0.724520\pi\)
−0.648300 + 0.761385i \(0.724520\pi\)
\(488\) 0 0
\(489\) 2.35099e18 0.0159013
\(490\) 0 0
\(491\) −1.42683e20 −0.935969 −0.467985 0.883737i \(-0.655020\pi\)
−0.467985 + 0.883737i \(0.655020\pi\)
\(492\) 0 0
\(493\) −2.74422e20 −1.74609
\(494\) 0 0
\(495\) 1.37244e20 0.847139
\(496\) 0 0
\(497\) −7.94581e19 −0.475844
\(498\) 0 0
\(499\) 1.78610e20 1.03789 0.518946 0.854807i \(-0.326325\pi\)
0.518946 + 0.854807i \(0.326325\pi\)
\(500\) 0 0
\(501\) −4.48382e18 −0.0252851
\(502\) 0 0
\(503\) 2.79253e20 1.52840 0.764201 0.644978i \(-0.223133\pi\)
0.764201 + 0.644978i \(0.223133\pi\)
\(504\) 0 0
\(505\) −1.67644e20 −0.890641
\(506\) 0 0
\(507\) 3.24541e19 0.167382
\(508\) 0 0
\(509\) 4.60719e19 0.230703 0.115351 0.993325i \(-0.463201\pi\)
0.115351 + 0.993325i \(0.463201\pi\)
\(510\) 0 0
\(511\) −1.08675e20 −0.528414
\(512\) 0 0
\(513\) −9.05121e19 −0.427392
\(514\) 0 0
\(515\) 1.43842e20 0.659676
\(516\) 0 0
\(517\) 5.46075e20 2.43261
\(518\) 0 0
\(519\) 3.81790e19 0.165223
\(520\) 0 0
\(521\) −5.81618e18 −0.0244543 −0.0122271 0.999925i \(-0.503892\pi\)
−0.0122271 + 0.999925i \(0.503892\pi\)
\(522\) 0 0
\(523\) −1.20018e20 −0.490325 −0.245162 0.969482i \(-0.578841\pi\)
−0.245162 + 0.969482i \(0.578841\pi\)
\(524\) 0 0
\(525\) 1.11253e19 0.0441688
\(526\) 0 0
\(527\) −1.47072e19 −0.0567481
\(528\) 0 0
\(529\) −3.44916e19 −0.129359
\(530\) 0 0
\(531\) −4.46443e20 −1.62763
\(532\) 0 0
\(533\) −1.31426e19 −0.0465831
\(534\) 0 0
\(535\) 1.45093e20 0.500027
\(536\) 0 0
\(537\) −5.70757e19 −0.191269
\(538\) 0 0
\(539\) 6.69308e19 0.218128
\(540\) 0 0
\(541\) −4.42359e20 −1.40215 −0.701077 0.713086i \(-0.747297\pi\)
−0.701077 + 0.713086i \(0.747297\pi\)
\(542\) 0 0
\(543\) 6.50334e19 0.200511
\(544\) 0 0
\(545\) −4.71052e19 −0.141285
\(546\) 0 0
\(547\) 8.75594e19 0.255504 0.127752 0.991806i \(-0.459224\pi\)
0.127752 + 0.991806i \(0.459224\pi\)
\(548\) 0 0
\(549\) −4.48890e20 −1.27452
\(550\) 0 0
\(551\) −8.17194e20 −2.25781
\(552\) 0 0
\(553\) −1.87607e20 −0.504442
\(554\) 0 0
\(555\) 2.10050e18 0.00549700
\(556\) 0 0
\(557\) −2.34418e20 −0.597140 −0.298570 0.954388i \(-0.596510\pi\)
−0.298570 + 0.954388i \(0.596510\pi\)
\(558\) 0 0
\(559\) −8.91708e19 −0.221123
\(560\) 0 0
\(561\) 1.06123e20 0.256204
\(562\) 0 0
\(563\) −3.21929e20 −0.756740 −0.378370 0.925654i \(-0.623515\pi\)
−0.378370 + 0.925654i \(0.623515\pi\)
\(564\) 0 0
\(565\) 4.45793e20 1.02040
\(566\) 0 0
\(567\) 1.54365e20 0.344093
\(568\) 0 0
\(569\) 6.34954e20 1.37848 0.689240 0.724534i \(-0.257945\pi\)
0.689240 + 0.724534i \(0.257945\pi\)
\(570\) 0 0
\(571\) 1.17643e20 0.248768 0.124384 0.992234i \(-0.460305\pi\)
0.124384 + 0.992234i \(0.460305\pi\)
\(572\) 0 0
\(573\) 6.78958e19 0.139857
\(574\) 0 0
\(575\) −3.12802e20 −0.627713
\(576\) 0 0
\(577\) 1.00658e21 1.96803 0.984013 0.178095i \(-0.0569935\pi\)
0.984013 + 0.178095i \(0.0569935\pi\)
\(578\) 0 0
\(579\) 8.17935e19 0.155822
\(580\) 0 0
\(581\) 1.73833e20 0.322708
\(582\) 0 0
\(583\) −1.66025e20 −0.300371
\(584\) 0 0
\(585\) 6.00493e19 0.105886
\(586\) 0 0
\(587\) 6.19103e19 0.106409 0.0532043 0.998584i \(-0.483057\pi\)
0.0532043 + 0.998584i \(0.483057\pi\)
\(588\) 0 0
\(589\) −4.37962e19 −0.0733791
\(590\) 0 0
\(591\) 1.79197e20 0.292701
\(592\) 0 0
\(593\) 9.11061e20 1.45090 0.725449 0.688275i \(-0.241632\pi\)
0.725449 + 0.688275i \(0.241632\pi\)
\(594\) 0 0
\(595\) 1.34504e20 0.208861
\(596\) 0 0
\(597\) 1.86220e19 0.0281981
\(598\) 0 0
\(599\) 2.14013e20 0.316038 0.158019 0.987436i \(-0.449489\pi\)
0.158019 + 0.987436i \(0.449489\pi\)
\(600\) 0 0
\(601\) −7.77871e20 −1.12034 −0.560169 0.828378i \(-0.689264\pi\)
−0.560169 + 0.828378i \(0.689264\pi\)
\(602\) 0 0
\(603\) 5.53948e20 0.778196
\(604\) 0 0
\(605\) −5.55811e20 −0.761661
\(606\) 0 0
\(607\) −9.49483e20 −1.26932 −0.634661 0.772790i \(-0.718860\pi\)
−0.634661 + 0.772790i \(0.718860\pi\)
\(608\) 0 0
\(609\) −9.09949e19 −0.118683
\(610\) 0 0
\(611\) 2.38928e20 0.304059
\(612\) 0 0
\(613\) 3.19547e20 0.396808 0.198404 0.980120i \(-0.436424\pi\)
0.198404 + 0.980120i \(0.436424\pi\)
\(614\) 0 0
\(615\) −2.00159e19 −0.0242556
\(616\) 0 0
\(617\) 1.22701e21 1.45113 0.725567 0.688151i \(-0.241577\pi\)
0.725567 + 0.688151i \(0.241577\pi\)
\(618\) 0 0
\(619\) 4.36651e20 0.504028 0.252014 0.967724i \(-0.418907\pi\)
0.252014 + 0.967724i \(0.418907\pi\)
\(620\) 0 0
\(621\) 2.83373e20 0.319279
\(622\) 0 0
\(623\) 2.73622e20 0.300947
\(624\) 0 0
\(625\) 1.16692e20 0.125297
\(626\) 0 0
\(627\) 3.16019e20 0.331289
\(628\) 0 0
\(629\) −5.22016e19 −0.0534323
\(630\) 0 0
\(631\) −1.29832e21 −1.29766 −0.648832 0.760931i \(-0.724742\pi\)
−0.648832 + 0.760931i \(0.724742\pi\)
\(632\) 0 0
\(633\) 1.50589e20 0.146983
\(634\) 0 0
\(635\) −1.41986e20 −0.135345
\(636\) 0 0
\(637\) 2.92847e19 0.0272643
\(638\) 0 0
\(639\) 1.34265e21 1.22098
\(640\) 0 0
\(641\) −1.51044e21 −1.34174 −0.670871 0.741574i \(-0.734079\pi\)
−0.670871 + 0.741574i \(0.734079\pi\)
\(642\) 0 0
\(643\) −2.17453e21 −1.88705 −0.943525 0.331302i \(-0.892512\pi\)
−0.943525 + 0.331302i \(0.892512\pi\)
\(644\) 0 0
\(645\) −1.35805e20 −0.115138
\(646\) 0 0
\(647\) 2.18233e21 1.80775 0.903877 0.427793i \(-0.140709\pi\)
0.903877 + 0.427793i \(0.140709\pi\)
\(648\) 0 0
\(649\) 3.16597e21 2.56255
\(650\) 0 0
\(651\) −4.87673e18 −0.00385719
\(652\) 0 0
\(653\) −6.63399e20 −0.512774 −0.256387 0.966574i \(-0.582532\pi\)
−0.256387 + 0.966574i \(0.582532\pi\)
\(654\) 0 0
\(655\) 1.35871e21 1.02640
\(656\) 0 0
\(657\) 1.83636e21 1.35587
\(658\) 0 0
\(659\) −8.84738e20 −0.638520 −0.319260 0.947667i \(-0.603434\pi\)
−0.319260 + 0.947667i \(0.603434\pi\)
\(660\) 0 0
\(661\) −1.29855e21 −0.916108 −0.458054 0.888924i \(-0.651453\pi\)
−0.458054 + 0.888924i \(0.651453\pi\)
\(662\) 0 0
\(663\) 4.64325e19 0.0320236
\(664\) 0 0
\(665\) 4.00536e20 0.270072
\(666\) 0 0
\(667\) 2.55845e21 1.68668
\(668\) 0 0
\(669\) 2.59991e20 0.167596
\(670\) 0 0
\(671\) 3.18333e21 2.00661
\(672\) 0 0
\(673\) −2.90087e19 −0.0178820 −0.00894100 0.999960i \(-0.502846\pi\)
−0.00894100 + 0.999960i \(0.502846\pi\)
\(674\) 0 0
\(675\) −3.81831e20 −0.230193
\(676\) 0 0
\(677\) −2.22541e21 −1.31218 −0.656092 0.754681i \(-0.727792\pi\)
−0.656092 + 0.754681i \(0.727792\pi\)
\(678\) 0 0
\(679\) 5.50067e20 0.317243
\(680\) 0 0
\(681\) 4.54187e20 0.256231
\(682\) 0 0
\(683\) 5.76905e20 0.318382 0.159191 0.987248i \(-0.449111\pi\)
0.159191 + 0.987248i \(0.449111\pi\)
\(684\) 0 0
\(685\) −9.71779e20 −0.524673
\(686\) 0 0
\(687\) 9.09101e19 0.0480216
\(688\) 0 0
\(689\) −7.26418e19 −0.0375442
\(690\) 0 0
\(691\) −1.72056e20 −0.0870132 −0.0435066 0.999053i \(-0.513853\pi\)
−0.0435066 + 0.999053i \(0.513853\pi\)
\(692\) 0 0
\(693\) −1.13097e21 −0.559697
\(694\) 0 0
\(695\) 5.39616e20 0.261336
\(696\) 0 0
\(697\) 4.97435e20 0.235771
\(698\) 0 0
\(699\) −1.74382e20 −0.0808954
\(700\) 0 0
\(701\) 3.56715e21 1.61970 0.809852 0.586634i \(-0.199547\pi\)
0.809852 + 0.586634i \(0.199547\pi\)
\(702\) 0 0
\(703\) −1.55450e20 −0.0690915
\(704\) 0 0
\(705\) 3.63881e20 0.158322
\(706\) 0 0
\(707\) 1.38149e21 0.588439
\(708\) 0 0
\(709\) −4.36779e21 −1.82144 −0.910720 0.413025i \(-0.864472\pi\)
−0.910720 + 0.413025i \(0.864472\pi\)
\(710\) 0 0
\(711\) 3.17012e21 1.29436
\(712\) 0 0
\(713\) 1.37116e20 0.0548172
\(714\) 0 0
\(715\) −4.25843e20 −0.166707
\(716\) 0 0
\(717\) −5.87683e19 −0.0225294
\(718\) 0 0
\(719\) −3.07858e21 −1.15580 −0.577902 0.816106i \(-0.696128\pi\)
−0.577902 + 0.816106i \(0.696128\pi\)
\(720\) 0 0
\(721\) −1.18534e21 −0.435842
\(722\) 0 0
\(723\) 5.60679e20 0.201919
\(724\) 0 0
\(725\) −3.44738e21 −1.21606
\(726\) 0 0
\(727\) −3.55890e21 −1.22972 −0.614862 0.788635i \(-0.710788\pi\)
−0.614862 + 0.788635i \(0.710788\pi\)
\(728\) 0 0
\(729\) −2.43280e21 −0.823475
\(730\) 0 0
\(731\) 3.37502e21 1.11917
\(732\) 0 0
\(733\) 5.10316e21 1.65790 0.828952 0.559320i \(-0.188938\pi\)
0.828952 + 0.559320i \(0.188938\pi\)
\(734\) 0 0
\(735\) 4.45998e19 0.0141964
\(736\) 0 0
\(737\) −3.92835e21 −1.22519
\(738\) 0 0
\(739\) 2.92225e20 0.0893068 0.0446534 0.999003i \(-0.485782\pi\)
0.0446534 + 0.999003i \(0.485782\pi\)
\(740\) 0 0
\(741\) 1.38270e20 0.0414087
\(742\) 0 0
\(743\) −1.26885e21 −0.372386 −0.186193 0.982513i \(-0.559615\pi\)
−0.186193 + 0.982513i \(0.559615\pi\)
\(744\) 0 0
\(745\) 3.10357e21 0.892668
\(746\) 0 0
\(747\) −2.93736e21 −0.828043
\(748\) 0 0
\(749\) −1.19565e21 −0.330364
\(750\) 0 0
\(751\) −5.61709e21 −1.52129 −0.760644 0.649169i \(-0.775117\pi\)
−0.760644 + 0.649169i \(0.775117\pi\)
\(752\) 0 0
\(753\) 7.60702e20 0.201954
\(754\) 0 0
\(755\) −1.27253e20 −0.0331181
\(756\) 0 0
\(757\) 3.05459e20 0.0779353 0.0389677 0.999240i \(-0.487593\pi\)
0.0389677 + 0.999240i \(0.487593\pi\)
\(758\) 0 0
\(759\) −9.89384e20 −0.247487
\(760\) 0 0
\(761\) 5.46902e21 1.34130 0.670648 0.741776i \(-0.266016\pi\)
0.670648 + 0.741776i \(0.266016\pi\)
\(762\) 0 0
\(763\) 3.88175e20 0.0933455
\(764\) 0 0
\(765\) −2.27280e21 −0.535920
\(766\) 0 0
\(767\) 1.38523e21 0.320299
\(768\) 0 0
\(769\) 6.99768e21 1.58674 0.793371 0.608738i \(-0.208324\pi\)
0.793371 + 0.608738i \(0.208324\pi\)
\(770\) 0 0
\(771\) −5.92018e20 −0.131652
\(772\) 0 0
\(773\) 2.23177e21 0.486747 0.243374 0.969933i \(-0.421746\pi\)
0.243374 + 0.969933i \(0.421746\pi\)
\(774\) 0 0
\(775\) −1.84757e20 −0.0395219
\(776\) 0 0
\(777\) −1.73094e19 −0.00363182
\(778\) 0 0
\(779\) 1.48130e21 0.304867
\(780\) 0 0
\(781\) −9.52150e21 −1.92231
\(782\) 0 0
\(783\) 3.12304e21 0.618535
\(784\) 0 0
\(785\) 3.02018e21 0.586828
\(786\) 0 0
\(787\) 2.69301e21 0.513367 0.256683 0.966496i \(-0.417370\pi\)
0.256683 + 0.966496i \(0.417370\pi\)
\(788\) 0 0
\(789\) 9.59153e20 0.179395
\(790\) 0 0
\(791\) −3.67360e21 −0.674168
\(792\) 0 0
\(793\) 1.39282e21 0.250811
\(794\) 0 0
\(795\) −1.10632e20 −0.0195491
\(796\) 0 0
\(797\) −5.54873e21 −0.962179 −0.481090 0.876671i \(-0.659759\pi\)
−0.481090 + 0.876671i \(0.659759\pi\)
\(798\) 0 0
\(799\) −9.04315e21 −1.53893
\(800\) 0 0
\(801\) −4.62356e21 −0.772205
\(802\) 0 0
\(803\) −1.30226e22 −2.13468
\(804\) 0 0
\(805\) −1.25398e21 −0.201754
\(806\) 0 0
\(807\) −7.11632e20 −0.112384
\(808\) 0 0
\(809\) −3.74521e21 −0.580581 −0.290291 0.956939i \(-0.593752\pi\)
−0.290291 + 0.956939i \(0.593752\pi\)
\(810\) 0 0
\(811\) −1.05009e22 −1.59798 −0.798991 0.601343i \(-0.794632\pi\)
−0.798991 + 0.601343i \(0.794632\pi\)
\(812\) 0 0
\(813\) −1.01113e21 −0.151052
\(814\) 0 0
\(815\) 3.57063e20 0.0523676
\(816\) 0 0
\(817\) 1.00504e22 1.44716
\(818\) 0 0
\(819\) −4.94842e20 −0.0699579
\(820\) 0 0
\(821\) −6.42001e21 −0.891174 −0.445587 0.895239i \(-0.647005\pi\)
−0.445587 + 0.895239i \(0.647005\pi\)
\(822\) 0 0
\(823\) 1.57289e20 0.0214388 0.0107194 0.999943i \(-0.496588\pi\)
0.0107194 + 0.999943i \(0.496588\pi\)
\(824\) 0 0
\(825\) 1.33315e21 0.178432
\(826\) 0 0
\(827\) −1.86980e21 −0.245756 −0.122878 0.992422i \(-0.539212\pi\)
−0.122878 + 0.992422i \(0.539212\pi\)
\(828\) 0 0
\(829\) −9.87859e21 −1.27508 −0.637538 0.770419i \(-0.720047\pi\)
−0.637538 + 0.770419i \(0.720047\pi\)
\(830\) 0 0
\(831\) −1.62645e21 −0.206173
\(832\) 0 0
\(833\) −1.10839e21 −0.137993
\(834\) 0 0
\(835\) −6.80993e20 −0.0832711
\(836\) 0 0
\(837\) 1.67374e20 0.0201024
\(838\) 0 0
\(839\) −3.27415e21 −0.386264 −0.193132 0.981173i \(-0.561865\pi\)
−0.193132 + 0.981173i \(0.561865\pi\)
\(840\) 0 0
\(841\) 1.95674e22 2.26758
\(842\) 0 0
\(843\) 1.60399e21 0.182597
\(844\) 0 0
\(845\) 4.92906e21 0.551237
\(846\) 0 0
\(847\) 4.58021e21 0.503223
\(848\) 0 0
\(849\) −1.45432e21 −0.156983
\(850\) 0 0
\(851\) 4.86677e20 0.0516142
\(852\) 0 0
\(853\) −2.11428e21 −0.220316 −0.110158 0.993914i \(-0.535136\pi\)
−0.110158 + 0.993914i \(0.535136\pi\)
\(854\) 0 0
\(855\) −6.76810e21 −0.692981
\(856\) 0 0
\(857\) −1.36630e22 −1.37464 −0.687321 0.726354i \(-0.741213\pi\)
−0.687321 + 0.726354i \(0.741213\pi\)
\(858\) 0 0
\(859\) −7.80081e21 −0.771243 −0.385621 0.922657i \(-0.626013\pi\)
−0.385621 + 0.922657i \(0.626013\pi\)
\(860\) 0 0
\(861\) 1.64943e20 0.0160255
\(862\) 0 0
\(863\) 1.91233e22 1.82592 0.912959 0.408052i \(-0.133792\pi\)
0.912959 + 0.408052i \(0.133792\pi\)
\(864\) 0 0
\(865\) 5.79855e21 0.544125
\(866\) 0 0
\(867\) 1.26086e20 0.0116285
\(868\) 0 0
\(869\) −2.24811e22 −2.03783
\(870\) 0 0
\(871\) −1.71880e21 −0.153140
\(872\) 0 0
\(873\) −9.29483e21 −0.814020
\(874\) 0 0
\(875\) 4.20136e21 0.361684
\(876\) 0 0
\(877\) 1.29282e22 1.09406 0.547031 0.837112i \(-0.315758\pi\)
0.547031 + 0.837112i \(0.315758\pi\)
\(878\) 0 0
\(879\) 1.43580e21 0.119447
\(880\) 0 0
\(881\) 1.00464e22 0.821656 0.410828 0.911713i \(-0.365240\pi\)
0.410828 + 0.911713i \(0.365240\pi\)
\(882\) 0 0
\(883\) 1.20567e22 0.969449 0.484724 0.874667i \(-0.338920\pi\)
0.484724 + 0.874667i \(0.338920\pi\)
\(884\) 0 0
\(885\) 2.10967e21 0.166778
\(886\) 0 0
\(887\) −1.21274e22 −0.942626 −0.471313 0.881966i \(-0.656220\pi\)
−0.471313 + 0.881966i \(0.656220\pi\)
\(888\) 0 0
\(889\) 1.17005e21 0.0894213
\(890\) 0 0
\(891\) 1.84977e22 1.39006
\(892\) 0 0
\(893\) −2.69293e22 −1.98994
\(894\) 0 0
\(895\) −8.66853e21 −0.629902
\(896\) 0 0
\(897\) −4.32892e20 −0.0309340
\(898\) 0 0
\(899\) 1.51115e21 0.106196
\(900\) 0 0
\(901\) 2.74941e21 0.190022
\(902\) 0 0
\(903\) 1.11911e21 0.0760704
\(904\) 0 0
\(905\) 9.87714e21 0.660339
\(906\) 0 0
\(907\) −1.76757e21 −0.116231 −0.0581156 0.998310i \(-0.518509\pi\)
−0.0581156 + 0.998310i \(0.518509\pi\)
\(908\) 0 0
\(909\) −2.33439e22 −1.50988
\(910\) 0 0
\(911\) 1.09790e22 0.698516 0.349258 0.937027i \(-0.386434\pi\)
0.349258 + 0.937027i \(0.386434\pi\)
\(912\) 0 0
\(913\) 2.08305e22 1.30367
\(914\) 0 0
\(915\) 2.12123e21 0.130596
\(916\) 0 0
\(917\) −1.11966e22 −0.678133
\(918\) 0 0
\(919\) 1.07271e22 0.639167 0.319584 0.947558i \(-0.396457\pi\)
0.319584 + 0.947558i \(0.396457\pi\)
\(920\) 0 0
\(921\) −4.86968e21 −0.285465
\(922\) 0 0
\(923\) −4.16600e21 −0.240274
\(924\) 0 0
\(925\) −6.55773e20 −0.0372126
\(926\) 0 0
\(927\) 2.00295e22 1.11833
\(928\) 0 0
\(929\) 1.10724e22 0.608309 0.304154 0.952623i \(-0.401626\pi\)
0.304154 + 0.952623i \(0.401626\pi\)
\(930\) 0 0
\(931\) −3.30065e21 −0.178434
\(932\) 0 0
\(933\) −3.23670e20 −0.0172183
\(934\) 0 0
\(935\) 1.61177e22 0.843753
\(936\) 0 0
\(937\) −5.64109e21 −0.290614 −0.145307 0.989387i \(-0.546417\pi\)
−0.145307 + 0.989387i \(0.546417\pi\)
\(938\) 0 0
\(939\) −3.22835e21 −0.163678
\(940\) 0 0
\(941\) 2.46275e22 1.22885 0.614423 0.788976i \(-0.289389\pi\)
0.614423 + 0.788976i \(0.289389\pi\)
\(942\) 0 0
\(943\) −4.63760e21 −0.227748
\(944\) 0 0
\(945\) −1.53071e21 −0.0739869
\(946\) 0 0
\(947\) 4.79803e21 0.228264 0.114132 0.993466i \(-0.463591\pi\)
0.114132 + 0.993466i \(0.463591\pi\)
\(948\) 0 0
\(949\) −5.69787e21 −0.266819
\(950\) 0 0
\(951\) 2.02717e21 0.0934406
\(952\) 0 0
\(953\) 1.92534e22 0.873595 0.436797 0.899560i \(-0.356113\pi\)
0.436797 + 0.899560i \(0.356113\pi\)
\(954\) 0 0
\(955\) 1.03119e22 0.460588
\(956\) 0 0
\(957\) −1.09040e22 −0.479452
\(958\) 0 0
\(959\) 8.00804e21 0.346646
\(960\) 0 0
\(961\) −2.33843e22 −0.996549
\(962\) 0 0
\(963\) 2.02037e22 0.847685
\(964\) 0 0
\(965\) 1.24226e22 0.513167
\(966\) 0 0
\(967\) −3.76415e22 −1.53098 −0.765488 0.643450i \(-0.777503\pi\)
−0.765488 + 0.643450i \(0.777503\pi\)
\(968\) 0 0
\(969\) −5.23337e21 −0.209582
\(970\) 0 0
\(971\) 1.24131e22 0.489480 0.244740 0.969589i \(-0.421297\pi\)
0.244740 + 0.969589i \(0.421297\pi\)
\(972\) 0 0
\(973\) −4.44676e21 −0.172662
\(974\) 0 0
\(975\) 5.83300e20 0.0223027
\(976\) 0 0
\(977\) 4.32714e22 1.62927 0.814633 0.579977i \(-0.196939\pi\)
0.814633 + 0.579977i \(0.196939\pi\)
\(978\) 0 0
\(979\) 3.27882e22 1.21576
\(980\) 0 0
\(981\) −6.55924e21 −0.239517
\(982\) 0 0
\(983\) 1.77525e22 0.638424 0.319212 0.947683i \(-0.396582\pi\)
0.319212 + 0.947683i \(0.396582\pi\)
\(984\) 0 0
\(985\) 2.72161e22 0.963949
\(986\) 0 0
\(987\) −2.99860e21 −0.104602
\(988\) 0 0
\(989\) −3.14654e22 −1.08109
\(990\) 0 0
\(991\) −2.60434e22 −0.881342 −0.440671 0.897669i \(-0.645259\pi\)
−0.440671 + 0.897669i \(0.645259\pi\)
\(992\) 0 0
\(993\) 5.17231e21 0.172411
\(994\) 0 0
\(995\) 2.82828e21 0.0928643
\(996\) 0 0
\(997\) −6.86864e21 −0.222155 −0.111078 0.993812i \(-0.535430\pi\)
−0.111078 + 0.993812i \(0.535430\pi\)
\(998\) 0 0
\(999\) 5.94075e20 0.0189278
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.16.a.k.1.4 6
4.3 odd 2 56.16.a.d.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.16.a.d.1.3 6 4.3 odd 2
112.16.a.k.1.4 6 1.1 even 1 trivial