Properties

Label 112.16.a.k.1.3
Level $112$
Weight $16$
Character 112.1
Self dual yes
Analytic conductor $159.817$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,16,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 16, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3864] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(159.816725712\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 911559x^{4} - 33878904x^{3} + 200237882347x^{2} + 5867703981762x - 7046699346580509 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{35}\cdot 3^{6}\cdot 5\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(503.385\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1220.73 q^{3} +302431. q^{5} +823543. q^{7} -1.28587e7 q^{9} +4.25717e7 q^{11} -6.17422e7 q^{13} -3.69187e8 q^{15} +2.23749e9 q^{17} -2.64619e9 q^{19} -1.00533e9 q^{21} -2.05625e10 q^{23} +6.09467e10 q^{25} +3.32133e10 q^{27} -1.60930e11 q^{29} -2.41214e11 q^{31} -5.19687e10 q^{33} +2.49065e11 q^{35} -5.81407e11 q^{37} +7.53708e10 q^{39} +1.74800e11 q^{41} -2.72649e12 q^{43} -3.88887e12 q^{45} -5.02446e12 q^{47} +6.78223e11 q^{49} -2.73138e12 q^{51} +1.34108e13 q^{53} +1.28750e13 q^{55} +3.23029e12 q^{57} +1.29682e13 q^{59} -7.88668e12 q^{61} -1.05897e13 q^{63} -1.86727e13 q^{65} +7.41775e13 q^{67} +2.51013e13 q^{69} -2.45011e13 q^{71} +1.14509e14 q^{73} -7.43997e13 q^{75} +3.50596e13 q^{77} -1.61131e14 q^{79} +1.43964e14 q^{81} -8.81127e13 q^{83} +6.76686e14 q^{85} +1.96453e14 q^{87} -2.33877e14 q^{89} -5.08474e13 q^{91} +2.94458e14 q^{93} -8.00289e14 q^{95} -1.22725e15 q^{97} -5.47418e14 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3864 q^{3} + 168532 q^{5} + 4941258 q^{7} + 27735822 q^{9} - 58040072 q^{11} - 15956444 q^{13} + 705059136 q^{15} - 2879979060 q^{17} - 3435500376 q^{19} - 3182170152 q^{21} - 34508782592 q^{23} + 29232294906 q^{25}+ \cdots - 44\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1220.73 −0.322264 −0.161132 0.986933i \(-0.551514\pi\)
−0.161132 + 0.986933i \(0.551514\pi\)
\(4\) 0 0
\(5\) 302431. 1.73121 0.865607 0.500724i \(-0.166933\pi\)
0.865607 + 0.500724i \(0.166933\pi\)
\(6\) 0 0
\(7\) 823543. 0.377964
\(8\) 0 0
\(9\) −1.28587e7 −0.896146
\(10\) 0 0
\(11\) 4.25717e7 0.658682 0.329341 0.944211i \(-0.393173\pi\)
0.329341 + 0.944211i \(0.393173\pi\)
\(12\) 0 0
\(13\) −6.17422e7 −0.272902 −0.136451 0.990647i \(-0.543570\pi\)
−0.136451 + 0.990647i \(0.543570\pi\)
\(14\) 0 0
\(15\) −3.69187e8 −0.557907
\(16\) 0 0
\(17\) 2.23749e9 1.32250 0.661248 0.750167i \(-0.270027\pi\)
0.661248 + 0.750167i \(0.270027\pi\)
\(18\) 0 0
\(19\) −2.64619e9 −0.679155 −0.339578 0.940578i \(-0.610284\pi\)
−0.339578 + 0.940578i \(0.610284\pi\)
\(20\) 0 0
\(21\) −1.00533e9 −0.121804
\(22\) 0 0
\(23\) −2.05625e10 −1.25927 −0.629633 0.776893i \(-0.716795\pi\)
−0.629633 + 0.776893i \(0.716795\pi\)
\(24\) 0 0
\(25\) 6.09467e10 1.99710
\(26\) 0 0
\(27\) 3.32133e10 0.611059
\(28\) 0 0
\(29\) −1.60930e11 −1.73242 −0.866209 0.499682i \(-0.833450\pi\)
−0.866209 + 0.499682i \(0.833450\pi\)
\(30\) 0 0
\(31\) −2.41214e11 −1.57467 −0.787335 0.616525i \(-0.788540\pi\)
−0.787335 + 0.616525i \(0.788540\pi\)
\(32\) 0 0
\(33\) −5.19687e10 −0.212269
\(34\) 0 0
\(35\) 2.49065e11 0.654337
\(36\) 0 0
\(37\) −5.81407e11 −1.00686 −0.503428 0.864037i \(-0.667928\pi\)
−0.503428 + 0.864037i \(0.667928\pi\)
\(38\) 0 0
\(39\) 7.53708e10 0.0879465
\(40\) 0 0
\(41\) 1.74800e11 0.140172 0.0700862 0.997541i \(-0.477673\pi\)
0.0700862 + 0.997541i \(0.477673\pi\)
\(42\) 0 0
\(43\) −2.72649e12 −1.52964 −0.764822 0.644242i \(-0.777173\pi\)
−0.764822 + 0.644242i \(0.777173\pi\)
\(44\) 0 0
\(45\) −3.88887e12 −1.55142
\(46\) 0 0
\(47\) −5.02446e12 −1.44662 −0.723311 0.690522i \(-0.757381\pi\)
−0.723311 + 0.690522i \(0.757381\pi\)
\(48\) 0 0
\(49\) 6.78223e11 0.142857
\(50\) 0 0
\(51\) −2.73138e12 −0.426193
\(52\) 0 0
\(53\) 1.34108e13 1.56814 0.784070 0.620672i \(-0.213140\pi\)
0.784070 + 0.620672i \(0.213140\pi\)
\(54\) 0 0
\(55\) 1.28750e13 1.14032
\(56\) 0 0
\(57\) 3.23029e12 0.218867
\(58\) 0 0
\(59\) 1.29682e13 0.678406 0.339203 0.940713i \(-0.389843\pi\)
0.339203 + 0.940713i \(0.389843\pi\)
\(60\) 0 0
\(61\) −7.88668e12 −0.321307 −0.160654 0.987011i \(-0.551360\pi\)
−0.160654 + 0.987011i \(0.551360\pi\)
\(62\) 0 0
\(63\) −1.05897e13 −0.338711
\(64\) 0 0
\(65\) −1.86727e13 −0.472452
\(66\) 0 0
\(67\) 7.41775e13 1.49524 0.747621 0.664126i \(-0.231196\pi\)
0.747621 + 0.664126i \(0.231196\pi\)
\(68\) 0 0
\(69\) 2.51013e13 0.405815
\(70\) 0 0
\(71\) −2.45011e13 −0.319704 −0.159852 0.987141i \(-0.551102\pi\)
−0.159852 + 0.987141i \(0.551102\pi\)
\(72\) 0 0
\(73\) 1.14509e14 1.21316 0.606581 0.795022i \(-0.292541\pi\)
0.606581 + 0.795022i \(0.292541\pi\)
\(74\) 0 0
\(75\) −7.43997e13 −0.643593
\(76\) 0 0
\(77\) 3.50596e13 0.248958
\(78\) 0 0
\(79\) −1.61131e14 −0.944006 −0.472003 0.881597i \(-0.656469\pi\)
−0.472003 + 0.881597i \(0.656469\pi\)
\(80\) 0 0
\(81\) 1.43964e14 0.699224
\(82\) 0 0
\(83\) −8.81127e13 −0.356412 −0.178206 0.983993i \(-0.557029\pi\)
−0.178206 + 0.983993i \(0.557029\pi\)
\(84\) 0 0
\(85\) 6.76686e14 2.28953
\(86\) 0 0
\(87\) 1.96453e14 0.558295
\(88\) 0 0
\(89\) −2.33877e14 −0.560484 −0.280242 0.959929i \(-0.590415\pi\)
−0.280242 + 0.959929i \(0.590415\pi\)
\(90\) 0 0
\(91\) −5.08474e13 −0.103147
\(92\) 0 0
\(93\) 2.94458e14 0.507459
\(94\) 0 0
\(95\) −8.00289e14 −1.17576
\(96\) 0 0
\(97\) −1.22725e15 −1.54222 −0.771109 0.636704i \(-0.780297\pi\)
−0.771109 + 0.636704i \(0.780297\pi\)
\(98\) 0 0
\(99\) −5.47418e14 −0.590276
\(100\) 0 0
\(101\) 5.72318e14 0.531162 0.265581 0.964089i \(-0.414436\pi\)
0.265581 + 0.964089i \(0.414436\pi\)
\(102\) 0 0
\(103\) −9.76230e14 −0.782119 −0.391060 0.920365i \(-0.627891\pi\)
−0.391060 + 0.920365i \(0.627891\pi\)
\(104\) 0 0
\(105\) −3.04042e14 −0.210869
\(106\) 0 0
\(107\) −1.69443e15 −1.02011 −0.510054 0.860143i \(-0.670374\pi\)
−0.510054 + 0.860143i \(0.670374\pi\)
\(108\) 0 0
\(109\) 1.31536e14 0.0689204 0.0344602 0.999406i \(-0.489029\pi\)
0.0344602 + 0.999406i \(0.489029\pi\)
\(110\) 0 0
\(111\) 7.09743e14 0.324473
\(112\) 0 0
\(113\) 2.32450e15 0.929483 0.464741 0.885447i \(-0.346147\pi\)
0.464741 + 0.885447i \(0.346147\pi\)
\(114\) 0 0
\(115\) −6.21873e15 −2.18006
\(116\) 0 0
\(117\) 7.93926e14 0.244560
\(118\) 0 0
\(119\) 1.84267e15 0.499857
\(120\) 0 0
\(121\) −2.36490e15 −0.566138
\(122\) 0 0
\(123\) −2.13384e14 −0.0451724
\(124\) 0 0
\(125\) 9.20270e15 1.72620
\(126\) 0 0
\(127\) −9.45385e15 −1.57428 −0.787138 0.616777i \(-0.788438\pi\)
−0.787138 + 0.616777i \(0.788438\pi\)
\(128\) 0 0
\(129\) 3.32831e15 0.492949
\(130\) 0 0
\(131\) 2.03796e15 0.268944 0.134472 0.990917i \(-0.457066\pi\)
0.134472 + 0.990917i \(0.457066\pi\)
\(132\) 0 0
\(133\) −2.17925e15 −0.256696
\(134\) 0 0
\(135\) 1.00447e16 1.05787
\(136\) 0 0
\(137\) 1.54543e16 1.45763 0.728813 0.684713i \(-0.240072\pi\)
0.728813 + 0.684713i \(0.240072\pi\)
\(138\) 0 0
\(139\) 1.22505e16 1.03644 0.518220 0.855247i \(-0.326595\pi\)
0.518220 + 0.855247i \(0.326595\pi\)
\(140\) 0 0
\(141\) 6.13352e15 0.466194
\(142\) 0 0
\(143\) −2.62847e15 −0.179756
\(144\) 0 0
\(145\) −4.86702e16 −2.99919
\(146\) 0 0
\(147\) −8.27930e14 −0.0460377
\(148\) 0 0
\(149\) −6.25245e15 −0.314162 −0.157081 0.987586i \(-0.550208\pi\)
−0.157081 + 0.987586i \(0.550208\pi\)
\(150\) 0 0
\(151\) −1.00448e16 −0.456683 −0.228342 0.973581i \(-0.573330\pi\)
−0.228342 + 0.973581i \(0.573330\pi\)
\(152\) 0 0
\(153\) −2.87713e16 −1.18515
\(154\) 0 0
\(155\) −7.29505e16 −2.72609
\(156\) 0 0
\(157\) 3.06264e16 1.03956 0.519778 0.854301i \(-0.326015\pi\)
0.519778 + 0.854301i \(0.326015\pi\)
\(158\) 0 0
\(159\) −1.63710e16 −0.505355
\(160\) 0 0
\(161\) −1.69341e16 −0.475957
\(162\) 0 0
\(163\) 3.64022e16 0.932654 0.466327 0.884612i \(-0.345577\pi\)
0.466327 + 0.884612i \(0.345577\pi\)
\(164\) 0 0
\(165\) −1.57169e16 −0.367484
\(166\) 0 0
\(167\) 1.74007e16 0.371701 0.185851 0.982578i \(-0.440496\pi\)
0.185851 + 0.982578i \(0.440496\pi\)
\(168\) 0 0
\(169\) −4.73738e16 −0.925524
\(170\) 0 0
\(171\) 3.40266e16 0.608622
\(172\) 0 0
\(173\) −3.73169e16 −0.611730 −0.305865 0.952075i \(-0.598946\pi\)
−0.305865 + 0.952075i \(0.598946\pi\)
\(174\) 0 0
\(175\) 5.01922e16 0.754833
\(176\) 0 0
\(177\) −1.58307e16 −0.218626
\(178\) 0 0
\(179\) −5.48513e16 −0.696288 −0.348144 0.937441i \(-0.613188\pi\)
−0.348144 + 0.937441i \(0.613188\pi\)
\(180\) 0 0
\(181\) −1.34105e17 −1.56623 −0.783115 0.621876i \(-0.786371\pi\)
−0.783115 + 0.621876i \(0.786371\pi\)
\(182\) 0 0
\(183\) 9.62754e15 0.103546
\(184\) 0 0
\(185\) −1.75835e17 −1.74308
\(186\) 0 0
\(187\) 9.52539e16 0.871105
\(188\) 0 0
\(189\) 2.73525e16 0.230959
\(190\) 0 0
\(191\) 2.31192e16 0.180394 0.0901972 0.995924i \(-0.471250\pi\)
0.0901972 + 0.995924i \(0.471250\pi\)
\(192\) 0 0
\(193\) −5.81946e16 −0.419955 −0.209978 0.977706i \(-0.567339\pi\)
−0.209978 + 0.977706i \(0.567339\pi\)
\(194\) 0 0
\(195\) 2.27944e16 0.152254
\(196\) 0 0
\(197\) 2.37279e17 1.46812 0.734062 0.679083i \(-0.237622\pi\)
0.734062 + 0.679083i \(0.237622\pi\)
\(198\) 0 0
\(199\) −2.47253e17 −1.41822 −0.709109 0.705099i \(-0.750903\pi\)
−0.709109 + 0.705099i \(0.750903\pi\)
\(200\) 0 0
\(201\) −9.05510e16 −0.481862
\(202\) 0 0
\(203\) −1.32533e17 −0.654792
\(204\) 0 0
\(205\) 5.28648e16 0.242668
\(206\) 0 0
\(207\) 2.64407e17 1.12849
\(208\) 0 0
\(209\) −1.12653e17 −0.447347
\(210\) 0 0
\(211\) 1.16852e17 0.432033 0.216016 0.976390i \(-0.430694\pi\)
0.216016 + 0.976390i \(0.430694\pi\)
\(212\) 0 0
\(213\) 2.99094e16 0.103029
\(214\) 0 0
\(215\) −8.24574e17 −2.64814
\(216\) 0 0
\(217\) −1.98650e17 −0.595170
\(218\) 0 0
\(219\) −1.39785e17 −0.390958
\(220\) 0 0
\(221\) −1.38148e17 −0.360913
\(222\) 0 0
\(223\) −1.41126e17 −0.344605 −0.172302 0.985044i \(-0.555121\pi\)
−0.172302 + 0.985044i \(0.555121\pi\)
\(224\) 0 0
\(225\) −7.83696e17 −1.78969
\(226\) 0 0
\(227\) 3.52597e16 0.0753502 0.0376751 0.999290i \(-0.488005\pi\)
0.0376751 + 0.999290i \(0.488005\pi\)
\(228\) 0 0
\(229\) −4.56467e17 −0.913363 −0.456681 0.889630i \(-0.650962\pi\)
−0.456681 + 0.889630i \(0.650962\pi\)
\(230\) 0 0
\(231\) −4.27985e16 −0.0802303
\(232\) 0 0
\(233\) 4.84605e17 0.851566 0.425783 0.904825i \(-0.359999\pi\)
0.425783 + 0.904825i \(0.359999\pi\)
\(234\) 0 0
\(235\) −1.51955e18 −2.50441
\(236\) 0 0
\(237\) 1.96697e17 0.304219
\(238\) 0 0
\(239\) 5.93213e17 0.861442 0.430721 0.902485i \(-0.358259\pi\)
0.430721 + 0.902485i \(0.358259\pi\)
\(240\) 0 0
\(241\) −1.15303e18 −1.57294 −0.786469 0.617630i \(-0.788093\pi\)
−0.786469 + 0.617630i \(0.788093\pi\)
\(242\) 0 0
\(243\) −6.52316e17 −0.836394
\(244\) 0 0
\(245\) 2.05115e17 0.247316
\(246\) 0 0
\(247\) 1.63382e17 0.185343
\(248\) 0 0
\(249\) 1.07562e17 0.114859
\(250\) 0 0
\(251\) −1.34578e18 −1.35339 −0.676694 0.736264i \(-0.736588\pi\)
−0.676694 + 0.736264i \(0.736588\pi\)
\(252\) 0 0
\(253\) −8.75381e17 −0.829456
\(254\) 0 0
\(255\) −8.26053e17 −0.737831
\(256\) 0 0
\(257\) 1.61953e18 1.36424 0.682120 0.731240i \(-0.261058\pi\)
0.682120 + 0.731240i \(0.261058\pi\)
\(258\) 0 0
\(259\) −4.78814e17 −0.380556
\(260\) 0 0
\(261\) 2.06936e18 1.55250
\(262\) 0 0
\(263\) −1.34009e18 −0.949435 −0.474718 0.880138i \(-0.657450\pi\)
−0.474718 + 0.880138i \(0.657450\pi\)
\(264\) 0 0
\(265\) 4.05583e18 2.71479
\(266\) 0 0
\(267\) 2.85502e17 0.180624
\(268\) 0 0
\(269\) −3.03300e18 −1.81439 −0.907194 0.420713i \(-0.861780\pi\)
−0.907194 + 0.420713i \(0.861780\pi\)
\(270\) 0 0
\(271\) −1.00397e18 −0.568134 −0.284067 0.958804i \(-0.591684\pi\)
−0.284067 + 0.958804i \(0.591684\pi\)
\(272\) 0 0
\(273\) 6.20711e16 0.0332407
\(274\) 0 0
\(275\) 2.59461e18 1.31546
\(276\) 0 0
\(277\) −2.40652e18 −1.15556 −0.577778 0.816194i \(-0.696080\pi\)
−0.577778 + 0.816194i \(0.696080\pi\)
\(278\) 0 0
\(279\) 3.10170e18 1.41114
\(280\) 0 0
\(281\) 1.20055e18 0.517704 0.258852 0.965917i \(-0.416656\pi\)
0.258852 + 0.965917i \(0.416656\pi\)
\(282\) 0 0
\(283\) −1.89415e18 −0.774492 −0.387246 0.921976i \(-0.626574\pi\)
−0.387246 + 0.921976i \(0.626574\pi\)
\(284\) 0 0
\(285\) 9.76939e17 0.378906
\(286\) 0 0
\(287\) 1.43955e17 0.0529802
\(288\) 0 0
\(289\) 2.14395e18 0.748998
\(290\) 0 0
\(291\) 1.49815e18 0.497001
\(292\) 0 0
\(293\) −4.14463e18 −1.30611 −0.653053 0.757312i \(-0.726512\pi\)
−0.653053 + 0.757312i \(0.726512\pi\)
\(294\) 0 0
\(295\) 3.92198e18 1.17447
\(296\) 0 0
\(297\) 1.41395e18 0.402494
\(298\) 0 0
\(299\) 1.26958e18 0.343656
\(300\) 0 0
\(301\) −2.24538e18 −0.578151
\(302\) 0 0
\(303\) −6.98647e17 −0.171174
\(304\) 0 0
\(305\) −2.38517e18 −0.556252
\(306\) 0 0
\(307\) 1.65491e18 0.367483 0.183742 0.982975i \(-0.441179\pi\)
0.183742 + 0.982975i \(0.441179\pi\)
\(308\) 0 0
\(309\) 1.19172e18 0.252049
\(310\) 0 0
\(311\) 1.24756e18 0.251395 0.125698 0.992069i \(-0.459883\pi\)
0.125698 + 0.992069i \(0.459883\pi\)
\(312\) 0 0
\(313\) −5.26739e18 −1.01161 −0.505804 0.862648i \(-0.668804\pi\)
−0.505804 + 0.862648i \(0.668804\pi\)
\(314\) 0 0
\(315\) −3.20265e18 −0.586382
\(316\) 0 0
\(317\) −7.85722e17 −0.137191 −0.0685953 0.997645i \(-0.521852\pi\)
−0.0685953 + 0.997645i \(0.521852\pi\)
\(318\) 0 0
\(319\) −6.85108e18 −1.14111
\(320\) 0 0
\(321\) 2.06845e18 0.328744
\(322\) 0 0
\(323\) −5.92083e18 −0.898180
\(324\) 0 0
\(325\) −3.76299e18 −0.545014
\(326\) 0 0
\(327\) −1.60571e17 −0.0222105
\(328\) 0 0
\(329\) −4.13786e18 −0.546772
\(330\) 0 0
\(331\) 1.18635e19 1.49796 0.748982 0.662591i \(-0.230543\pi\)
0.748982 + 0.662591i \(0.230543\pi\)
\(332\) 0 0
\(333\) 7.47615e18 0.902290
\(334\) 0 0
\(335\) 2.24336e19 2.58858
\(336\) 0 0
\(337\) 2.39450e18 0.264235 0.132117 0.991234i \(-0.457822\pi\)
0.132117 + 0.991234i \(0.457822\pi\)
\(338\) 0 0
\(339\) −2.83759e18 −0.299538
\(340\) 0 0
\(341\) −1.02689e19 −1.03721
\(342\) 0 0
\(343\) 5.58546e17 0.0539949
\(344\) 0 0
\(345\) 7.59141e18 0.702553
\(346\) 0 0
\(347\) 1.72965e19 1.53280 0.766402 0.642361i \(-0.222045\pi\)
0.766402 + 0.642361i \(0.222045\pi\)
\(348\) 0 0
\(349\) 3.45029e18 0.292863 0.146432 0.989221i \(-0.453221\pi\)
0.146432 + 0.989221i \(0.453221\pi\)
\(350\) 0 0
\(351\) −2.05066e18 −0.166759
\(352\) 0 0
\(353\) 4.60031e18 0.358490 0.179245 0.983805i \(-0.442635\pi\)
0.179245 + 0.983805i \(0.442635\pi\)
\(354\) 0 0
\(355\) −7.40990e18 −0.553477
\(356\) 0 0
\(357\) −2.24941e18 −0.161086
\(358\) 0 0
\(359\) 2.31291e19 1.58836 0.794182 0.607680i \(-0.207900\pi\)
0.794182 + 0.607680i \(0.207900\pi\)
\(360\) 0 0
\(361\) −8.17881e18 −0.538748
\(362\) 0 0
\(363\) 2.88691e18 0.182446
\(364\) 0 0
\(365\) 3.46311e19 2.10024
\(366\) 0 0
\(367\) −1.24556e17 −0.00725055 −0.00362527 0.999993i \(-0.501154\pi\)
−0.00362527 + 0.999993i \(0.501154\pi\)
\(368\) 0 0
\(369\) −2.24770e18 −0.125615
\(370\) 0 0
\(371\) 1.10444e19 0.592701
\(372\) 0 0
\(373\) 2.66080e19 1.37150 0.685750 0.727837i \(-0.259474\pi\)
0.685750 + 0.727837i \(0.259474\pi\)
\(374\) 0 0
\(375\) −1.12340e19 −0.556290
\(376\) 0 0
\(377\) 9.93619e18 0.472781
\(378\) 0 0
\(379\) −8.87782e18 −0.405987 −0.202994 0.979180i \(-0.565067\pi\)
−0.202994 + 0.979180i \(0.565067\pi\)
\(380\) 0 0
\(381\) 1.15406e19 0.507332
\(382\) 0 0
\(383\) 2.48372e19 1.04981 0.524905 0.851161i \(-0.324101\pi\)
0.524905 + 0.851161i \(0.324101\pi\)
\(384\) 0 0
\(385\) 1.06031e19 0.431000
\(386\) 0 0
\(387\) 3.50591e19 1.37078
\(388\) 0 0
\(389\) 2.53209e19 0.952484 0.476242 0.879314i \(-0.341999\pi\)
0.476242 + 0.879314i \(0.341999\pi\)
\(390\) 0 0
\(391\) −4.60084e19 −1.66537
\(392\) 0 0
\(393\) −2.48781e18 −0.0866708
\(394\) 0 0
\(395\) −4.87308e19 −1.63428
\(396\) 0 0
\(397\) −1.49391e19 −0.482386 −0.241193 0.970477i \(-0.577539\pi\)
−0.241193 + 0.970477i \(0.577539\pi\)
\(398\) 0 0
\(399\) 2.66028e18 0.0827240
\(400\) 0 0
\(401\) −1.41395e19 −0.423498 −0.211749 0.977324i \(-0.567916\pi\)
−0.211749 + 0.977324i \(0.567916\pi\)
\(402\) 0 0
\(403\) 1.48931e19 0.429731
\(404\) 0 0
\(405\) 4.35391e19 1.21051
\(406\) 0 0
\(407\) −2.47515e19 −0.663198
\(408\) 0 0
\(409\) −4.08338e19 −1.05462 −0.527309 0.849674i \(-0.676799\pi\)
−0.527309 + 0.849674i \(0.676799\pi\)
\(410\) 0 0
\(411\) −1.88656e19 −0.469740
\(412\) 0 0
\(413\) 1.06799e19 0.256413
\(414\) 0 0
\(415\) −2.66480e19 −0.617026
\(416\) 0 0
\(417\) −1.49546e19 −0.334007
\(418\) 0 0
\(419\) 5.34957e18 0.115269 0.0576347 0.998338i \(-0.481644\pi\)
0.0576347 + 0.998338i \(0.481644\pi\)
\(420\) 0 0
\(421\) −5.14341e19 −1.06939 −0.534695 0.845045i \(-0.679573\pi\)
−0.534695 + 0.845045i \(0.679573\pi\)
\(422\) 0 0
\(423\) 6.46081e19 1.29639
\(424\) 0 0
\(425\) 1.36368e20 2.64116
\(426\) 0 0
\(427\) −6.49502e18 −0.121443
\(428\) 0 0
\(429\) 3.20866e18 0.0579288
\(430\) 0 0
\(431\) −1.84398e19 −0.321497 −0.160748 0.986995i \(-0.551391\pi\)
−0.160748 + 0.986995i \(0.551391\pi\)
\(432\) 0 0
\(433\) −6.42340e19 −1.08170 −0.540849 0.841120i \(-0.681897\pi\)
−0.540849 + 0.841120i \(0.681897\pi\)
\(434\) 0 0
\(435\) 5.94134e19 0.966529
\(436\) 0 0
\(437\) 5.44123e19 0.855236
\(438\) 0 0
\(439\) −8.62412e19 −1.30988 −0.654939 0.755681i \(-0.727306\pi\)
−0.654939 + 0.755681i \(0.727306\pi\)
\(440\) 0 0
\(441\) −8.72108e18 −0.128021
\(442\) 0 0
\(443\) −1.33710e20 −1.89730 −0.948652 0.316321i \(-0.897552\pi\)
−0.948652 + 0.316321i \(0.897552\pi\)
\(444\) 0 0
\(445\) −7.07316e19 −0.970317
\(446\) 0 0
\(447\) 7.63257e18 0.101243
\(448\) 0 0
\(449\) −6.40137e19 −0.821155 −0.410578 0.911826i \(-0.634673\pi\)
−0.410578 + 0.911826i \(0.634673\pi\)
\(450\) 0 0
\(451\) 7.44153e18 0.0923290
\(452\) 0 0
\(453\) 1.22621e19 0.147172
\(454\) 0 0
\(455\) −1.53778e19 −0.178570
\(456\) 0 0
\(457\) 8.37052e18 0.0940548 0.0470274 0.998894i \(-0.485025\pi\)
0.0470274 + 0.998894i \(0.485025\pi\)
\(458\) 0 0
\(459\) 7.43144e19 0.808124
\(460\) 0 0
\(461\) 6.38758e19 0.672325 0.336163 0.941804i \(-0.390871\pi\)
0.336163 + 0.941804i \(0.390871\pi\)
\(462\) 0 0
\(463\) −8.02771e19 −0.817964 −0.408982 0.912542i \(-0.634116\pi\)
−0.408982 + 0.912542i \(0.634116\pi\)
\(464\) 0 0
\(465\) 8.90531e19 0.878521
\(466\) 0 0
\(467\) 1.29790e20 1.23984 0.619918 0.784667i \(-0.287166\pi\)
0.619918 + 0.784667i \(0.287166\pi\)
\(468\) 0 0
\(469\) 6.10884e19 0.565148
\(470\) 0 0
\(471\) −3.73866e19 −0.335011
\(472\) 0 0
\(473\) −1.16071e20 −1.00755
\(474\) 0 0
\(475\) −1.61277e20 −1.35634
\(476\) 0 0
\(477\) −1.72445e20 −1.40528
\(478\) 0 0
\(479\) 1.91078e20 1.50902 0.754510 0.656288i \(-0.227874\pi\)
0.754510 + 0.656288i \(0.227874\pi\)
\(480\) 0 0
\(481\) 3.58974e19 0.274773
\(482\) 0 0
\(483\) 2.06720e19 0.153384
\(484\) 0 0
\(485\) −3.71158e20 −2.66991
\(486\) 0 0
\(487\) 2.18542e20 1.52429 0.762146 0.647405i \(-0.224146\pi\)
0.762146 + 0.647405i \(0.224146\pi\)
\(488\) 0 0
\(489\) −4.44374e19 −0.300561
\(490\) 0 0
\(491\) −3.62782e19 −0.237977 −0.118988 0.992896i \(-0.537965\pi\)
−0.118988 + 0.992896i \(0.537965\pi\)
\(492\) 0 0
\(493\) −3.60080e20 −2.29112
\(494\) 0 0
\(495\) −1.65556e20 −1.02189
\(496\) 0 0
\(497\) −2.01777e19 −0.120837
\(498\) 0 0
\(499\) 1.48147e20 0.860870 0.430435 0.902622i \(-0.358360\pi\)
0.430435 + 0.902622i \(0.358360\pi\)
\(500\) 0 0
\(501\) −2.12417e19 −0.119786
\(502\) 0 0
\(503\) 2.03777e19 0.111531 0.0557655 0.998444i \(-0.482240\pi\)
0.0557655 + 0.998444i \(0.482240\pi\)
\(504\) 0 0
\(505\) 1.73086e20 0.919555
\(506\) 0 0
\(507\) 5.78308e19 0.298263
\(508\) 0 0
\(509\) 1.16832e20 0.585030 0.292515 0.956261i \(-0.405508\pi\)
0.292515 + 0.956261i \(0.405508\pi\)
\(510\) 0 0
\(511\) 9.43032e19 0.458532
\(512\) 0 0
\(513\) −8.78886e19 −0.415004
\(514\) 0 0
\(515\) −2.95242e20 −1.35402
\(516\) 0 0
\(517\) −2.13900e20 −0.952865
\(518\) 0 0
\(519\) 4.55540e19 0.197138
\(520\) 0 0
\(521\) 2.18946e19 0.0920564 0.0460282 0.998940i \(-0.485344\pi\)
0.0460282 + 0.998940i \(0.485344\pi\)
\(522\) 0 0
\(523\) 1.87375e18 0.00765508 0.00382754 0.999993i \(-0.498782\pi\)
0.00382754 + 0.999993i \(0.498782\pi\)
\(524\) 0 0
\(525\) −6.12713e19 −0.243255
\(526\) 0 0
\(527\) −5.39714e20 −2.08250
\(528\) 0 0
\(529\) 1.56181e20 0.585749
\(530\) 0 0
\(531\) −1.66754e20 −0.607951
\(532\) 0 0
\(533\) −1.07925e19 −0.0382534
\(534\) 0 0
\(535\) −5.12448e20 −1.76602
\(536\) 0 0
\(537\) 6.69588e19 0.224389
\(538\) 0 0
\(539\) 2.88731e19 0.0940975
\(540\) 0 0
\(541\) −3.61601e20 −1.14617 −0.573087 0.819495i \(-0.694254\pi\)
−0.573087 + 0.819495i \(0.694254\pi\)
\(542\) 0 0
\(543\) 1.63707e20 0.504739
\(544\) 0 0
\(545\) 3.97807e19 0.119316
\(546\) 0 0
\(547\) −3.18732e20 −0.930082 −0.465041 0.885289i \(-0.653960\pi\)
−0.465041 + 0.885289i \(0.653960\pi\)
\(548\) 0 0
\(549\) 1.01413e20 0.287938
\(550\) 0 0
\(551\) 4.25852e20 1.17658
\(552\) 0 0
\(553\) −1.32698e20 −0.356801
\(554\) 0 0
\(555\) 2.14648e20 0.561733
\(556\) 0 0
\(557\) −1.20750e20 −0.307590 −0.153795 0.988103i \(-0.549149\pi\)
−0.153795 + 0.988103i \(0.549149\pi\)
\(558\) 0 0
\(559\) 1.68339e20 0.417443
\(560\) 0 0
\(561\) −1.16280e20 −0.280726
\(562\) 0 0
\(563\) 6.57121e20 1.54466 0.772329 0.635223i \(-0.219092\pi\)
0.772329 + 0.635223i \(0.219092\pi\)
\(564\) 0 0
\(565\) 7.03000e20 1.60913
\(566\) 0 0
\(567\) 1.18561e20 0.264282
\(568\) 0 0
\(569\) −4.00408e20 −0.869283 −0.434641 0.900604i \(-0.643125\pi\)
−0.434641 + 0.900604i \(0.643125\pi\)
\(570\) 0 0
\(571\) −3.47283e20 −0.734367 −0.367183 0.930149i \(-0.619678\pi\)
−0.367183 + 0.930149i \(0.619678\pi\)
\(572\) 0 0
\(573\) −2.82224e19 −0.0581346
\(574\) 0 0
\(575\) −1.25322e21 −2.51488
\(576\) 0 0
\(577\) 7.89925e20 1.54443 0.772213 0.635363i \(-0.219150\pi\)
0.772213 + 0.635363i \(0.219150\pi\)
\(578\) 0 0
\(579\) 7.10401e19 0.135336
\(580\) 0 0
\(581\) −7.25646e19 −0.134711
\(582\) 0 0
\(583\) 5.70920e20 1.03291
\(584\) 0 0
\(585\) 2.40108e20 0.423386
\(586\) 0 0
\(587\) 5.92951e20 1.01914 0.509569 0.860430i \(-0.329805\pi\)
0.509569 + 0.860430i \(0.329805\pi\)
\(588\) 0 0
\(589\) 6.38298e20 1.06945
\(590\) 0 0
\(591\) −2.89654e20 −0.473123
\(592\) 0 0
\(593\) 6.80453e20 1.08365 0.541823 0.840492i \(-0.317734\pi\)
0.541823 + 0.840492i \(0.317734\pi\)
\(594\) 0 0
\(595\) 5.57280e20 0.865359
\(596\) 0 0
\(597\) 3.01830e20 0.457040
\(598\) 0 0
\(599\) 8.61174e20 1.27171 0.635857 0.771807i \(-0.280647\pi\)
0.635857 + 0.771807i \(0.280647\pi\)
\(600\) 0 0
\(601\) 1.20125e21 1.73011 0.865055 0.501677i \(-0.167283\pi\)
0.865055 + 0.501677i \(0.167283\pi\)
\(602\) 0 0
\(603\) −9.53828e20 −1.33995
\(604\) 0 0
\(605\) −7.15217e20 −0.980105
\(606\) 0 0
\(607\) −1.15372e21 −1.54235 −0.771177 0.636621i \(-0.780331\pi\)
−0.771177 + 0.636621i \(0.780331\pi\)
\(608\) 0 0
\(609\) 1.61787e20 0.211016
\(610\) 0 0
\(611\) 3.10221e20 0.394787
\(612\) 0 0
\(613\) 4.46037e19 0.0553883 0.0276941 0.999616i \(-0.491184\pi\)
0.0276941 + 0.999616i \(0.491184\pi\)
\(614\) 0 0
\(615\) −6.45339e19 −0.0782032
\(616\) 0 0
\(617\) 5.14656e20 0.608665 0.304332 0.952566i \(-0.401567\pi\)
0.304332 + 0.952566i \(0.401567\pi\)
\(618\) 0 0
\(619\) −4.83739e20 −0.558382 −0.279191 0.960236i \(-0.590066\pi\)
−0.279191 + 0.960236i \(0.590066\pi\)
\(620\) 0 0
\(621\) −6.82948e20 −0.769485
\(622\) 0 0
\(623\) −1.92608e20 −0.211843
\(624\) 0 0
\(625\) 9.23233e20 0.991314
\(626\) 0 0
\(627\) 1.37519e20 0.144164
\(628\) 0 0
\(629\) −1.30089e21 −1.33156
\(630\) 0 0
\(631\) 1.32672e21 1.32605 0.663023 0.748599i \(-0.269273\pi\)
0.663023 + 0.748599i \(0.269273\pi\)
\(632\) 0 0
\(633\) −1.42645e20 −0.139228
\(634\) 0 0
\(635\) −2.85913e21 −2.72541
\(636\) 0 0
\(637\) −4.18750e19 −0.0389861
\(638\) 0 0
\(639\) 3.15053e20 0.286502
\(640\) 0 0
\(641\) −1.82165e21 −1.61819 −0.809095 0.587678i \(-0.800042\pi\)
−0.809095 + 0.587678i \(0.800042\pi\)
\(642\) 0 0
\(643\) −1.04749e21 −0.909007 −0.454504 0.890745i \(-0.650183\pi\)
−0.454504 + 0.890745i \(0.650183\pi\)
\(644\) 0 0
\(645\) 1.00658e21 0.853399
\(646\) 0 0
\(647\) 1.86271e21 1.54299 0.771493 0.636238i \(-0.219510\pi\)
0.771493 + 0.636238i \(0.219510\pi\)
\(648\) 0 0
\(649\) 5.52078e20 0.446854
\(650\) 0 0
\(651\) 2.42499e20 0.191802
\(652\) 0 0
\(653\) 1.23330e21 0.953276 0.476638 0.879100i \(-0.341855\pi\)
0.476638 + 0.879100i \(0.341855\pi\)
\(654\) 0 0
\(655\) 6.16342e20 0.465599
\(656\) 0 0
\(657\) −1.47244e21 −1.08717
\(658\) 0 0
\(659\) 2.12813e21 1.53588 0.767942 0.640519i \(-0.221281\pi\)
0.767942 + 0.640519i \(0.221281\pi\)
\(660\) 0 0
\(661\) −1.65672e21 −1.16879 −0.584396 0.811469i \(-0.698669\pi\)
−0.584396 + 0.811469i \(0.698669\pi\)
\(662\) 0 0
\(663\) 1.68642e20 0.116309
\(664\) 0 0
\(665\) −6.59072e20 −0.444397
\(666\) 0 0
\(667\) 3.30913e21 2.18157
\(668\) 0 0
\(669\) 1.72278e20 0.111054
\(670\) 0 0
\(671\) −3.35750e20 −0.211639
\(672\) 0 0
\(673\) 7.21487e19 0.0444750 0.0222375 0.999753i \(-0.492921\pi\)
0.0222375 + 0.999753i \(0.492921\pi\)
\(674\) 0 0
\(675\) 2.02424e21 1.22035
\(676\) 0 0
\(677\) 2.69291e21 1.58784 0.793919 0.608023i \(-0.208037\pi\)
0.793919 + 0.608023i \(0.208037\pi\)
\(678\) 0 0
\(679\) −1.01069e21 −0.582903
\(680\) 0 0
\(681\) −4.30427e19 −0.0242826
\(682\) 0 0
\(683\) 4.18367e20 0.230889 0.115444 0.993314i \(-0.463171\pi\)
0.115444 + 0.993314i \(0.463171\pi\)
\(684\) 0 0
\(685\) 4.67386e21 2.52346
\(686\) 0 0
\(687\) 5.57225e20 0.294344
\(688\) 0 0
\(689\) −8.28011e20 −0.427949
\(690\) 0 0
\(691\) −5.76803e20 −0.291704 −0.145852 0.989306i \(-0.546592\pi\)
−0.145852 + 0.989306i \(0.546592\pi\)
\(692\) 0 0
\(693\) −4.50822e20 −0.223103
\(694\) 0 0
\(695\) 3.70494e21 1.79430
\(696\) 0 0
\(697\) 3.91113e20 0.185377
\(698\) 0 0
\(699\) −5.91573e20 −0.274429
\(700\) 0 0
\(701\) −1.87893e21 −0.853148 −0.426574 0.904453i \(-0.640280\pi\)
−0.426574 + 0.904453i \(0.640280\pi\)
\(702\) 0 0
\(703\) 1.53851e21 0.683812
\(704\) 0 0
\(705\) 1.85497e21 0.807081
\(706\) 0 0
\(707\) 4.71328e20 0.200760
\(708\) 0 0
\(709\) −1.70478e21 −0.710920 −0.355460 0.934691i \(-0.615676\pi\)
−0.355460 + 0.934691i \(0.615676\pi\)
\(710\) 0 0
\(711\) 2.07193e21 0.845967
\(712\) 0 0
\(713\) 4.95996e21 1.98293
\(714\) 0 0
\(715\) −7.94931e20 −0.311196
\(716\) 0 0
\(717\) −7.24154e20 −0.277612
\(718\) 0 0
\(719\) −4.57543e21 −1.71777 −0.858885 0.512168i \(-0.828842\pi\)
−0.858885 + 0.512168i \(0.828842\pi\)
\(720\) 0 0
\(721\) −8.03967e20 −0.295613
\(722\) 0 0
\(723\) 1.40754e21 0.506901
\(724\) 0 0
\(725\) −9.80817e21 −3.45981
\(726\) 0 0
\(727\) 4.62999e21 1.59982 0.799912 0.600117i \(-0.204879\pi\)
0.799912 + 0.600117i \(0.204879\pi\)
\(728\) 0 0
\(729\) −1.26942e21 −0.429685
\(730\) 0 0
\(731\) −6.10050e21 −2.02295
\(732\) 0 0
\(733\) −9.19943e20 −0.298869 −0.149435 0.988772i \(-0.547745\pi\)
−0.149435 + 0.988772i \(0.547745\pi\)
\(734\) 0 0
\(735\) −2.50391e20 −0.0797011
\(736\) 0 0
\(737\) 3.15786e21 0.984889
\(738\) 0 0
\(739\) 4.11365e21 1.25717 0.628585 0.777740i \(-0.283634\pi\)
0.628585 + 0.777740i \(0.283634\pi\)
\(740\) 0 0
\(741\) −1.99445e20 −0.0597293
\(742\) 0 0
\(743\) −1.25170e21 −0.367352 −0.183676 0.982987i \(-0.558800\pi\)
−0.183676 + 0.982987i \(0.558800\pi\)
\(744\) 0 0
\(745\) −1.89093e21 −0.543881
\(746\) 0 0
\(747\) 1.13302e21 0.319397
\(748\) 0 0
\(749\) −1.39544e21 −0.385564
\(750\) 0 0
\(751\) −3.42484e21 −0.927558 −0.463779 0.885951i \(-0.653507\pi\)
−0.463779 + 0.885951i \(0.653507\pi\)
\(752\) 0 0
\(753\) 1.64284e21 0.436148
\(754\) 0 0
\(755\) −3.03786e21 −0.790617
\(756\) 0 0
\(757\) 3.16879e21 0.808489 0.404244 0.914651i \(-0.367535\pi\)
0.404244 + 0.914651i \(0.367535\pi\)
\(758\) 0 0
\(759\) 1.06861e21 0.267303
\(760\) 0 0
\(761\) 5.62493e21 1.37953 0.689767 0.724032i \(-0.257713\pi\)
0.689767 + 0.724032i \(0.257713\pi\)
\(762\) 0 0
\(763\) 1.08326e20 0.0260494
\(764\) 0 0
\(765\) −8.70132e21 −2.05175
\(766\) 0 0
\(767\) −8.00685e20 −0.185138
\(768\) 0 0
\(769\) 4.66019e20 0.105671 0.0528355 0.998603i \(-0.483174\pi\)
0.0528355 + 0.998603i \(0.483174\pi\)
\(770\) 0 0
\(771\) −1.97702e21 −0.439645
\(772\) 0 0
\(773\) −5.17003e21 −1.12758 −0.563789 0.825919i \(-0.690657\pi\)
−0.563789 + 0.825919i \(0.690657\pi\)
\(774\) 0 0
\(775\) −1.47012e22 −3.14478
\(776\) 0 0
\(777\) 5.84504e20 0.122639
\(778\) 0 0
\(779\) −4.62554e20 −0.0951987
\(780\) 0 0
\(781\) −1.04306e21 −0.210584
\(782\) 0 0
\(783\) −5.34502e21 −1.05861
\(784\) 0 0
\(785\) 9.26235e21 1.79969
\(786\) 0 0
\(787\) −3.11711e21 −0.594213 −0.297107 0.954844i \(-0.596022\pi\)
−0.297107 + 0.954844i \(0.596022\pi\)
\(788\) 0 0
\(789\) 1.63589e21 0.305969
\(790\) 0 0
\(791\) 1.91433e21 0.351311
\(792\) 0 0
\(793\) 4.86942e20 0.0876855
\(794\) 0 0
\(795\) −4.95109e21 −0.874877
\(796\) 0 0
\(797\) −6.71528e21 −1.16447 −0.582233 0.813022i \(-0.697821\pi\)
−0.582233 + 0.813022i \(0.697821\pi\)
\(798\) 0 0
\(799\) −1.12422e22 −1.91315
\(800\) 0 0
\(801\) 3.00736e21 0.502275
\(802\) 0 0
\(803\) 4.87485e21 0.799088
\(804\) 0 0
\(805\) −5.12139e21 −0.823984
\(806\) 0 0
\(807\) 3.70248e21 0.584711
\(808\) 0 0
\(809\) 1.74357e20 0.0270287 0.0135143 0.999909i \(-0.495698\pi\)
0.0135143 + 0.999909i \(0.495698\pi\)
\(810\) 0 0
\(811\) −1.93632e21 −0.294660 −0.147330 0.989087i \(-0.547068\pi\)
−0.147330 + 0.989087i \(0.547068\pi\)
\(812\) 0 0
\(813\) 1.22558e21 0.183089
\(814\) 0 0
\(815\) 1.10091e22 1.61462
\(816\) 0 0
\(817\) 7.21480e21 1.03887
\(818\) 0 0
\(819\) 6.53832e20 0.0924351
\(820\) 0 0
\(821\) −7.16469e21 −0.994543 −0.497272 0.867595i \(-0.665665\pi\)
−0.497272 + 0.867595i \(0.665665\pi\)
\(822\) 0 0
\(823\) −1.29282e21 −0.176214 −0.0881071 0.996111i \(-0.528082\pi\)
−0.0881071 + 0.996111i \(0.528082\pi\)
\(824\) 0 0
\(825\) −3.16732e21 −0.423924
\(826\) 0 0
\(827\) −1.17850e22 −1.54896 −0.774478 0.632600i \(-0.781988\pi\)
−0.774478 + 0.632600i \(0.781988\pi\)
\(828\) 0 0
\(829\) 7.96306e21 1.02783 0.513915 0.857841i \(-0.328195\pi\)
0.513915 + 0.857841i \(0.328195\pi\)
\(830\) 0 0
\(831\) 2.93772e21 0.372393
\(832\) 0 0
\(833\) 1.51752e21 0.188928
\(834\) 0 0
\(835\) 5.26251e21 0.643494
\(836\) 0 0
\(837\) −8.01150e21 −0.962217
\(838\) 0 0
\(839\) −1.20963e21 −0.142705 −0.0713523 0.997451i \(-0.522731\pi\)
−0.0713523 + 0.997451i \(0.522731\pi\)
\(840\) 0 0
\(841\) 1.72694e22 2.00127
\(842\) 0 0
\(843\) −1.46555e21 −0.166837
\(844\) 0 0
\(845\) −1.43273e22 −1.60228
\(846\) 0 0
\(847\) −1.94759e21 −0.213980
\(848\) 0 0
\(849\) 2.31226e21 0.249591
\(850\) 0 0
\(851\) 1.19552e22 1.26790
\(852\) 0 0
\(853\) −1.02169e22 −1.06463 −0.532317 0.846545i \(-0.678678\pi\)
−0.532317 + 0.846545i \(0.678678\pi\)
\(854\) 0 0
\(855\) 1.02907e22 1.05366
\(856\) 0 0
\(857\) 9.00299e21 0.905797 0.452898 0.891562i \(-0.350390\pi\)
0.452898 + 0.891562i \(0.350390\pi\)
\(858\) 0 0
\(859\) −7.59468e21 −0.750863 −0.375431 0.926850i \(-0.622505\pi\)
−0.375431 + 0.926850i \(0.622505\pi\)
\(860\) 0 0
\(861\) −1.75731e20 −0.0170736
\(862\) 0 0
\(863\) −2.46635e21 −0.235491 −0.117745 0.993044i \(-0.537567\pi\)
−0.117745 + 0.993044i \(0.537567\pi\)
\(864\) 0 0
\(865\) −1.12858e22 −1.05903
\(866\) 0 0
\(867\) −2.61719e21 −0.241375
\(868\) 0 0
\(869\) −6.85961e21 −0.621800
\(870\) 0 0
\(871\) −4.57989e21 −0.408055
\(872\) 0 0
\(873\) 1.57809e22 1.38205
\(874\) 0 0
\(875\) 7.57882e21 0.652441
\(876\) 0 0
\(877\) −8.87790e21 −0.751300 −0.375650 0.926762i \(-0.622580\pi\)
−0.375650 + 0.926762i \(0.622580\pi\)
\(878\) 0 0
\(879\) 5.05949e21 0.420911
\(880\) 0 0
\(881\) 5.81040e21 0.475211 0.237605 0.971362i \(-0.423637\pi\)
0.237605 + 0.971362i \(0.423637\pi\)
\(882\) 0 0
\(883\) −2.06901e22 −1.66363 −0.831817 0.555049i \(-0.812699\pi\)
−0.831817 + 0.555049i \(0.812699\pi\)
\(884\) 0 0
\(885\) −4.78769e21 −0.378488
\(886\) 0 0
\(887\) −1.30662e22 −1.01560 −0.507798 0.861476i \(-0.669540\pi\)
−0.507798 + 0.861476i \(0.669540\pi\)
\(888\) 0 0
\(889\) −7.78565e21 −0.595020
\(890\) 0 0
\(891\) 6.12879e21 0.460566
\(892\) 0 0
\(893\) 1.32957e22 0.982481
\(894\) 0 0
\(895\) −1.65887e22 −1.20542
\(896\) 0 0
\(897\) −1.54981e21 −0.110748
\(898\) 0 0
\(899\) 3.88186e22 2.72799
\(900\) 0 0
\(901\) 3.00065e22 2.07386
\(902\) 0 0
\(903\) 2.74101e21 0.186317
\(904\) 0 0
\(905\) −4.05575e22 −2.71148
\(906\) 0 0
\(907\) −1.17651e22 −0.773643 −0.386821 0.922155i \(-0.626427\pi\)
−0.386821 + 0.922155i \(0.626427\pi\)
\(908\) 0 0
\(909\) −7.35927e21 −0.475999
\(910\) 0 0
\(911\) 2.01178e22 1.27995 0.639976 0.768395i \(-0.278944\pi\)
0.639976 + 0.768395i \(0.278944\pi\)
\(912\) 0 0
\(913\) −3.75111e21 −0.234762
\(914\) 0 0
\(915\) 2.91166e21 0.179260
\(916\) 0 0
\(917\) 1.67835e21 0.101651
\(918\) 0 0
\(919\) −2.15948e22 −1.28672 −0.643358 0.765566i \(-0.722459\pi\)
−0.643358 + 0.765566i \(0.722459\pi\)
\(920\) 0 0
\(921\) −2.02021e21 −0.118426
\(922\) 0 0
\(923\) 1.51276e21 0.0872481
\(924\) 0 0
\(925\) −3.54349e22 −2.01079
\(926\) 0 0
\(927\) 1.25531e22 0.700893
\(928\) 0 0
\(929\) −2.32545e22 −1.27758 −0.638792 0.769379i \(-0.720566\pi\)
−0.638792 + 0.769379i \(0.720566\pi\)
\(930\) 0 0
\(931\) −1.79471e21 −0.0970222
\(932\) 0 0
\(933\) −1.52293e21 −0.0810156
\(934\) 0 0
\(935\) 2.88077e22 1.50807
\(936\) 0 0
\(937\) 1.62658e22 0.837972 0.418986 0.907993i \(-0.362386\pi\)
0.418986 + 0.907993i \(0.362386\pi\)
\(938\) 0 0
\(939\) 6.43007e21 0.326005
\(940\) 0 0
\(941\) 6.87043e21 0.342816 0.171408 0.985200i \(-0.445168\pi\)
0.171408 + 0.985200i \(0.445168\pi\)
\(942\) 0 0
\(943\) −3.59432e21 −0.176514
\(944\) 0 0
\(945\) 8.27225e21 0.399839
\(946\) 0 0
\(947\) 2.40772e21 0.114547 0.0572733 0.998359i \(-0.481759\pi\)
0.0572733 + 0.998359i \(0.481759\pi\)
\(948\) 0 0
\(949\) −7.07005e21 −0.331075
\(950\) 0 0
\(951\) 9.59157e20 0.0442116
\(952\) 0 0
\(953\) −9.71778e21 −0.440931 −0.220465 0.975395i \(-0.570758\pi\)
−0.220465 + 0.975395i \(0.570758\pi\)
\(954\) 0 0
\(955\) 6.99196e21 0.312301
\(956\) 0 0
\(957\) 8.36334e21 0.367739
\(958\) 0 0
\(959\) 1.27273e22 0.550931
\(960\) 0 0
\(961\) 3.47189e22 1.47959
\(962\) 0 0
\(963\) 2.17882e22 0.914165
\(964\) 0 0
\(965\) −1.75998e22 −0.727032
\(966\) 0 0
\(967\) 4.35136e22 1.76981 0.884904 0.465774i \(-0.154224\pi\)
0.884904 + 0.465774i \(0.154224\pi\)
\(968\) 0 0
\(969\) 7.22775e21 0.289451
\(970\) 0 0
\(971\) 8.57014e21 0.337943 0.168972 0.985621i \(-0.445955\pi\)
0.168972 + 0.985621i \(0.445955\pi\)
\(972\) 0 0
\(973\) 1.00888e22 0.391737
\(974\) 0 0
\(975\) 4.59360e21 0.175638
\(976\) 0 0
\(977\) 3.43574e22 1.29363 0.646817 0.762645i \(-0.276100\pi\)
0.646817 + 0.762645i \(0.276100\pi\)
\(978\) 0 0
\(979\) −9.95656e21 −0.369181
\(980\) 0 0
\(981\) −1.69139e21 −0.0617627
\(982\) 0 0
\(983\) 2.47556e22 0.890272 0.445136 0.895463i \(-0.353155\pi\)
0.445136 + 0.895463i \(0.353155\pi\)
\(984\) 0 0
\(985\) 7.17604e22 2.54164
\(986\) 0 0
\(987\) 5.05122e21 0.176205
\(988\) 0 0
\(989\) 5.60634e22 1.92623
\(990\) 0 0
\(991\) −2.14427e22 −0.725650 −0.362825 0.931857i \(-0.618188\pi\)
−0.362825 + 0.931857i \(0.618188\pi\)
\(992\) 0 0
\(993\) −1.44821e22 −0.482739
\(994\) 0 0
\(995\) −7.47768e22 −2.45524
\(996\) 0 0
\(997\) 1.22404e22 0.395897 0.197948 0.980212i \(-0.436572\pi\)
0.197948 + 0.980212i \(0.436572\pi\)
\(998\) 0 0
\(999\) −1.93104e22 −0.615249
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.16.a.k.1.3 6
4.3 odd 2 56.16.a.d.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.16.a.d.1.4 6 4.3 odd 2
112.16.a.k.1.3 6 1.1 even 1 trivial