Properties

Label 112.10.f.b.111.4
Level $112$
Weight $10$
Character 112.111
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(111,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.111"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 111.4
Character \(\chi\) \(=\) 112.111
Dual form 112.10.f.b.111.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-170.771 q^{3} +701.626i q^{5} +(911.052 + 6286.78i) q^{7} +9479.76 q^{9} +68199.0i q^{11} +639.722i q^{13} -119817. i q^{15} +293169. i q^{17} +957083. q^{19} +(-155581. - 1.07360e6i) q^{21} +344952. i q^{23} +1.46085e6 q^{25} +1.74242e6 q^{27} -4.41859e6 q^{29} +8.60318e6 q^{31} -1.16464e7i q^{33} +(-4.41097e6 + 639217. i) q^{35} +6.37031e6 q^{37} -109246. i q^{39} +3.94558e6i q^{41} +3.24456e7i q^{43} +6.65124e6i q^{45} -2.56748e6 q^{47} +(-3.86936e7 + 1.14552e7i) q^{49} -5.00647e7i q^{51} -796252. q^{53} -4.78502e7 q^{55} -1.63442e8 q^{57} -1.06324e8 q^{59} +1.27001e8i q^{61} +(8.63655e6 + 5.95972e7i) q^{63} -448846. q^{65} +1.97960e8i q^{67} -5.89079e7i q^{69} +1.30446e8i q^{71} -2.96623e8i q^{73} -2.49470e8 q^{75} +(-4.28752e8 + 6.21328e7i) q^{77} +1.96821e8i q^{79} -4.84145e8 q^{81} +4.73757e8 q^{83} -2.05695e8 q^{85} +7.54568e8 q^{87} -8.79838e8i q^{89} +(-4.02179e6 + 582820. i) q^{91} -1.46917e9 q^{93} +6.71514e8i q^{95} +6.60272e7i q^{97} +6.46510e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 155768 q^{9} + 220672 q^{21} - 9187656 q^{25} + 14881104 q^{29} + 2829456 q^{37} - 214802472 q^{49} + 327087120 q^{53} + 238245440 q^{57} - 495797952 q^{65} + 347010000 q^{77} + 1816013720 q^{81}+ \cdots + 288442240 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −170.771 −1.21722 −0.608609 0.793470i \(-0.708272\pi\)
−0.608609 + 0.793470i \(0.708272\pi\)
\(4\) 0 0
\(5\) 701.626i 0.502043i 0.967982 + 0.251021i \(0.0807664\pi\)
−0.967982 + 0.251021i \(0.919234\pi\)
\(6\) 0 0
\(7\) 911.052 + 6286.78i 0.143417 + 0.989662i
\(8\) 0 0
\(9\) 9479.76 0.481622
\(10\) 0 0
\(11\) 68199.0i 1.40447i 0.711947 + 0.702233i \(0.247813\pi\)
−0.711947 + 0.702233i \(0.752187\pi\)
\(12\) 0 0
\(13\) 639.722i 0.00621222i 0.999995 + 0.00310611i \(0.000988706\pi\)
−0.999995 + 0.00310611i \(0.999011\pi\)
\(14\) 0 0
\(15\) 119817.i 0.611096i
\(16\) 0 0
\(17\) 293169.i 0.851329i 0.904881 + 0.425665i \(0.139960\pi\)
−0.904881 + 0.425665i \(0.860040\pi\)
\(18\) 0 0
\(19\) 957083. 1.68484 0.842420 0.538822i \(-0.181130\pi\)
0.842420 + 0.538822i \(0.181130\pi\)
\(20\) 0 0
\(21\) −155581. 1.07360e6i −0.174570 1.20464i
\(22\) 0 0
\(23\) 344952.i 0.257030i 0.991708 + 0.128515i \(0.0410211\pi\)
−0.991708 + 0.128515i \(0.958979\pi\)
\(24\) 0 0
\(25\) 1.46085e6 0.747953
\(26\) 0 0
\(27\) 1.74242e6 0.630980
\(28\) 0 0
\(29\) −4.41859e6 −1.16009 −0.580047 0.814583i \(-0.696966\pi\)
−0.580047 + 0.814583i \(0.696966\pi\)
\(30\) 0 0
\(31\) 8.60318e6 1.67314 0.836568 0.547863i \(-0.184559\pi\)
0.836568 + 0.547863i \(0.184559\pi\)
\(32\) 0 0
\(33\) 1.16464e7i 1.70954i
\(34\) 0 0
\(35\) −4.41097e6 + 639217.i −0.496853 + 0.0720016i
\(36\) 0 0
\(37\) 6.37031e6 0.558796 0.279398 0.960175i \(-0.409865\pi\)
0.279398 + 0.960175i \(0.409865\pi\)
\(38\) 0 0
\(39\) 109246.i 0.00756163i
\(40\) 0 0
\(41\) 3.94558e6i 0.218064i 0.994038 + 0.109032i \(0.0347750\pi\)
−0.994038 + 0.109032i \(0.965225\pi\)
\(42\) 0 0
\(43\) 3.24456e7i 1.44726i 0.690187 + 0.723631i \(0.257528\pi\)
−0.690187 + 0.723631i \(0.742472\pi\)
\(44\) 0 0
\(45\) 6.65124e6i 0.241795i
\(46\) 0 0
\(47\) −2.56748e6 −0.0767479 −0.0383739 0.999263i \(-0.512218\pi\)
−0.0383739 + 0.999263i \(0.512218\pi\)
\(48\) 0 0
\(49\) −3.86936e7 + 1.14552e7i −0.958863 + 0.283870i
\(50\) 0 0
\(51\) 5.00647e7i 1.03625i
\(52\) 0 0
\(53\) −796252. −0.0138615 −0.00693073 0.999976i \(-0.502206\pi\)
−0.00693073 + 0.999976i \(0.502206\pi\)
\(54\) 0 0
\(55\) −4.78502e7 −0.705102
\(56\) 0 0
\(57\) −1.63442e8 −2.05082
\(58\) 0 0
\(59\) −1.06324e8 −1.14235 −0.571173 0.820830i \(-0.693511\pi\)
−0.571173 + 0.820830i \(0.693511\pi\)
\(60\) 0 0
\(61\) 1.27001e8i 1.17442i 0.809434 + 0.587211i \(0.199774\pi\)
−0.809434 + 0.587211i \(0.800226\pi\)
\(62\) 0 0
\(63\) 8.63655e6 + 5.95972e7i 0.0690729 + 0.476643i
\(64\) 0 0
\(65\) −448846. −0.00311880
\(66\) 0 0
\(67\) 1.97960e8i 1.20016i 0.799938 + 0.600082i \(0.204866\pi\)
−0.799938 + 0.600082i \(0.795134\pi\)
\(68\) 0 0
\(69\) 5.89079e7i 0.312862i
\(70\) 0 0
\(71\) 1.30446e8i 0.609210i 0.952479 + 0.304605i \(0.0985244\pi\)
−0.952479 + 0.304605i \(0.901476\pi\)
\(72\) 0 0
\(73\) 2.96623e8i 1.22251i −0.791435 0.611253i \(-0.790666\pi\)
0.791435 0.611253i \(-0.209334\pi\)
\(74\) 0 0
\(75\) −2.49470e8 −0.910423
\(76\) 0 0
\(77\) −4.28752e8 + 6.21328e7i −1.38995 + 0.201425i
\(78\) 0 0
\(79\) 1.96821e8i 0.568525i 0.958746 + 0.284263i \(0.0917487\pi\)
−0.958746 + 0.284263i \(0.908251\pi\)
\(80\) 0 0
\(81\) −4.84145e8 −1.24966
\(82\) 0 0
\(83\) 4.73757e8 1.09573 0.547866 0.836566i \(-0.315440\pi\)
0.547866 + 0.836566i \(0.315440\pi\)
\(84\) 0 0
\(85\) −2.05695e8 −0.427403
\(86\) 0 0
\(87\) 7.54568e8 1.41209
\(88\) 0 0
\(89\) 8.79838e8i 1.48644i −0.669046 0.743221i \(-0.733297\pi\)
0.669046 0.743221i \(-0.266703\pi\)
\(90\) 0 0
\(91\) −4.02179e6 + 582820.i −0.00614800 + 0.000890940i
\(92\) 0 0
\(93\) −1.46917e9 −2.03657
\(94\) 0 0
\(95\) 6.71514e8i 0.845861i
\(96\) 0 0
\(97\) 6.60272e7i 0.0757268i 0.999283 + 0.0378634i \(0.0120552\pi\)
−0.999283 + 0.0378634i \(0.987945\pi\)
\(98\) 0 0
\(99\) 6.46510e8i 0.676421i
\(100\) 0 0
\(101\) 6.81994e8i 0.652130i 0.945347 + 0.326065i \(0.105723\pi\)
−0.945347 + 0.326065i \(0.894277\pi\)
\(102\) 0 0
\(103\) −1.65757e7 −0.0145112 −0.00725561 0.999974i \(-0.502310\pi\)
−0.00725561 + 0.999974i \(0.502310\pi\)
\(104\) 0 0
\(105\) 7.53266e8 1.09160e8i 0.604778 0.0876418i
\(106\) 0 0
\(107\) 1.33033e9i 0.981145i 0.871400 + 0.490573i \(0.163212\pi\)
−0.871400 + 0.490573i \(0.836788\pi\)
\(108\) 0 0
\(109\) −1.56148e9 −1.05954 −0.529769 0.848142i \(-0.677721\pi\)
−0.529769 + 0.848142i \(0.677721\pi\)
\(110\) 0 0
\(111\) −1.08787e9 −0.680177
\(112\) 0 0
\(113\) −5.52232e8 −0.318617 −0.159308 0.987229i \(-0.550926\pi\)
−0.159308 + 0.987229i \(0.550926\pi\)
\(114\) 0 0
\(115\) −2.42028e8 −0.129040
\(116\) 0 0
\(117\) 6.06441e6i 0.00299194i
\(118\) 0 0
\(119\) −1.84309e9 + 2.67092e8i −0.842528 + 0.122095i
\(120\) 0 0
\(121\) −2.29316e9 −0.972524
\(122\) 0 0
\(123\) 6.73791e8i 0.265431i
\(124\) 0 0
\(125\) 2.39533e9i 0.877547i
\(126\) 0 0
\(127\) 2.51743e9i 0.858699i −0.903138 0.429350i \(-0.858743\pi\)
0.903138 0.429350i \(-0.141257\pi\)
\(128\) 0 0
\(129\) 5.54076e9i 1.76163i
\(130\) 0 0
\(131\) −6.03017e9 −1.78899 −0.894496 0.447075i \(-0.852466\pi\)
−0.894496 + 0.447075i \(0.852466\pi\)
\(132\) 0 0
\(133\) 8.71952e8 + 6.01697e9i 0.241635 + 1.66742i
\(134\) 0 0
\(135\) 1.22253e9i 0.316779i
\(136\) 0 0
\(137\) 1.86703e9 0.452801 0.226401 0.974034i \(-0.427304\pi\)
0.226401 + 0.974034i \(0.427304\pi\)
\(138\) 0 0
\(139\) 4.58448e9 1.04165 0.520827 0.853662i \(-0.325624\pi\)
0.520827 + 0.853662i \(0.325624\pi\)
\(140\) 0 0
\(141\) 4.38451e8 0.0934190
\(142\) 0 0
\(143\) −4.36285e7 −0.00872484
\(144\) 0 0
\(145\) 3.10020e9i 0.582416i
\(146\) 0 0
\(147\) 6.60774e9 1.95621e9i 1.16715 0.345531i
\(148\) 0 0
\(149\) 1.05819e10 1.75884 0.879420 0.476047i \(-0.157931\pi\)
0.879420 + 0.476047i \(0.157931\pi\)
\(150\) 0 0
\(151\) 6.06779e9i 0.949804i −0.880039 0.474902i \(-0.842484\pi\)
0.880039 0.474902i \(-0.157516\pi\)
\(152\) 0 0
\(153\) 2.77917e9i 0.410019i
\(154\) 0 0
\(155\) 6.03621e9i 0.839986i
\(156\) 0 0
\(157\) 1.30695e9i 0.171676i 0.996309 + 0.0858382i \(0.0273568\pi\)
−0.996309 + 0.0858382i \(0.972643\pi\)
\(158\) 0 0
\(159\) 1.35977e8 0.0168724
\(160\) 0 0
\(161\) −2.16864e9 + 3.14270e8i −0.254373 + 0.0368626i
\(162\) 0 0
\(163\) 9.52503e9i 1.05687i −0.848973 0.528436i \(-0.822779\pi\)
0.848973 0.528436i \(-0.177221\pi\)
\(164\) 0 0
\(165\) 8.17143e9 0.858263
\(166\) 0 0
\(167\) 1.03941e10 1.03410 0.517051 0.855955i \(-0.327030\pi\)
0.517051 + 0.855955i \(0.327030\pi\)
\(168\) 0 0
\(169\) 1.06041e10 0.999961
\(170\) 0 0
\(171\) 9.07292e9 0.811455
\(172\) 0 0
\(173\) 2.11492e10i 1.79509i −0.440926 0.897544i \(-0.645350\pi\)
0.440926 0.897544i \(-0.354650\pi\)
\(174\) 0 0
\(175\) 1.33091e9 + 9.18402e9i 0.107269 + 0.740221i
\(176\) 0 0
\(177\) 1.81571e10 1.39048
\(178\) 0 0
\(179\) 7.49003e8i 0.0545312i −0.999628 0.0272656i \(-0.991320\pi\)
0.999628 0.0272656i \(-0.00867999\pi\)
\(180\) 0 0
\(181\) 1.25305e10i 0.867788i 0.900964 + 0.433894i \(0.142861\pi\)
−0.900964 + 0.433894i \(0.857139\pi\)
\(182\) 0 0
\(183\) 2.16881e10i 1.42953i
\(184\) 0 0
\(185\) 4.46958e9i 0.280539i
\(186\) 0 0
\(187\) −1.99938e10 −1.19566
\(188\) 0 0
\(189\) 1.58743e9 + 1.09542e10i 0.0904935 + 0.624457i
\(190\) 0 0
\(191\) 2.26420e10i 1.23102i −0.788129 0.615511i \(-0.788950\pi\)
0.788129 0.615511i \(-0.211050\pi\)
\(192\) 0 0
\(193\) 1.12574e10 0.584022 0.292011 0.956415i \(-0.405676\pi\)
0.292011 + 0.956415i \(0.405676\pi\)
\(194\) 0 0
\(195\) 7.66499e7 0.00379626
\(196\) 0 0
\(197\) 9.12718e8 0.0431756 0.0215878 0.999767i \(-0.493128\pi\)
0.0215878 + 0.999767i \(0.493128\pi\)
\(198\) 0 0
\(199\) −1.38094e10 −0.624215 −0.312108 0.950047i \(-0.601035\pi\)
−0.312108 + 0.950047i \(0.601035\pi\)
\(200\) 0 0
\(201\) 3.38058e10i 1.46086i
\(202\) 0 0
\(203\) −4.02557e9 2.77787e10i −0.166378 1.14810i
\(204\) 0 0
\(205\) −2.76832e9 −0.109477
\(206\) 0 0
\(207\) 3.27007e9i 0.123791i
\(208\) 0 0
\(209\) 6.52722e10i 2.36630i
\(210\) 0 0
\(211\) 3.87757e10i 1.34676i 0.739299 + 0.673378i \(0.235157\pi\)
−0.739299 + 0.673378i \(0.764843\pi\)
\(212\) 0 0
\(213\) 2.22763e10i 0.741542i
\(214\) 0 0
\(215\) −2.27646e10 −0.726587
\(216\) 0 0
\(217\) 7.83794e9 + 5.40863e10i 0.239957 + 1.65584i
\(218\) 0 0
\(219\) 5.06546e10i 1.48806i
\(220\) 0 0
\(221\) −1.87547e8 −0.00528864
\(222\) 0 0
\(223\) 2.88746e9 0.0781888 0.0390944 0.999236i \(-0.487553\pi\)
0.0390944 + 0.999236i \(0.487553\pi\)
\(224\) 0 0
\(225\) 1.38485e10 0.360230
\(226\) 0 0
\(227\) −6.56365e10 −1.64070 −0.820349 0.571863i \(-0.806221\pi\)
−0.820349 + 0.571863i \(0.806221\pi\)
\(228\) 0 0
\(229\) 3.62721e10i 0.871591i −0.900046 0.435795i \(-0.856467\pi\)
0.900046 0.435795i \(-0.143533\pi\)
\(230\) 0 0
\(231\) 7.32185e10 1.06105e10i 1.69187 0.245178i
\(232\) 0 0
\(233\) −8.11267e10 −1.80328 −0.901638 0.432492i \(-0.857634\pi\)
−0.901638 + 0.432492i \(0.857634\pi\)
\(234\) 0 0
\(235\) 1.80141e9i 0.0385307i
\(236\) 0 0
\(237\) 3.36113e10i 0.692019i
\(238\) 0 0
\(239\) 4.06555e10i 0.805989i −0.915202 0.402995i \(-0.867969\pi\)
0.915202 0.402995i \(-0.132031\pi\)
\(240\) 0 0
\(241\) 3.59022e9i 0.0685558i −0.999412 0.0342779i \(-0.989087\pi\)
0.999412 0.0342779i \(-0.0109131\pi\)
\(242\) 0 0
\(243\) 4.83819e10 0.890133
\(244\) 0 0
\(245\) −8.03724e9 2.71484e10i −0.142515 0.481390i
\(246\) 0 0
\(247\) 6.12268e8i 0.0104666i
\(248\) 0 0
\(249\) −8.09040e10 −1.33375
\(250\) 0 0
\(251\) 4.32066e10 0.687098 0.343549 0.939135i \(-0.388371\pi\)
0.343549 + 0.939135i \(0.388371\pi\)
\(252\) 0 0
\(253\) −2.35254e10 −0.360990
\(254\) 0 0
\(255\) 3.51267e10 0.520244
\(256\) 0 0
\(257\) 6.66559e10i 0.953102i −0.879147 0.476551i \(-0.841887\pi\)
0.879147 0.476551i \(-0.158113\pi\)
\(258\) 0 0
\(259\) 5.80369e9 + 4.00488e10i 0.0801410 + 0.553019i
\(260\) 0 0
\(261\) −4.18872e10 −0.558726
\(262\) 0 0
\(263\) 3.42721e10i 0.441712i 0.975306 + 0.220856i \(0.0708851\pi\)
−0.975306 + 0.220856i \(0.929115\pi\)
\(264\) 0 0
\(265\) 5.58671e8i 0.00695904i
\(266\) 0 0
\(267\) 1.50251e11i 1.80932i
\(268\) 0 0
\(269\) 2.48906e10i 0.289835i −0.989444 0.144917i \(-0.953708\pi\)
0.989444 0.144917i \(-0.0462916\pi\)
\(270\) 0 0
\(271\) −1.35903e11 −1.53062 −0.765310 0.643662i \(-0.777414\pi\)
−0.765310 + 0.643662i \(0.777414\pi\)
\(272\) 0 0
\(273\) 6.86806e8 9.95288e7i 0.00748346 0.00108447i
\(274\) 0 0
\(275\) 9.96283e10i 1.05047i
\(276\) 0 0
\(277\) −5.95160e10 −0.607400 −0.303700 0.952768i \(-0.598222\pi\)
−0.303700 + 0.952768i \(0.598222\pi\)
\(278\) 0 0
\(279\) 8.15560e10 0.805819
\(280\) 0 0
\(281\) −7.40279e10 −0.708300 −0.354150 0.935189i \(-0.615230\pi\)
−0.354150 + 0.935189i \(0.615230\pi\)
\(282\) 0 0
\(283\) 2.24712e10 0.208251 0.104126 0.994564i \(-0.466796\pi\)
0.104126 + 0.994564i \(0.466796\pi\)
\(284\) 0 0
\(285\) 1.14675e11i 1.02960i
\(286\) 0 0
\(287\) −2.48050e10 + 3.59463e9i −0.215809 + 0.0312741i
\(288\) 0 0
\(289\) 3.26400e10 0.275239
\(290\) 0 0
\(291\) 1.12755e10i 0.0921761i
\(292\) 0 0
\(293\) 2.19592e11i 1.74065i 0.492474 + 0.870327i \(0.336093\pi\)
−0.492474 + 0.870327i \(0.663907\pi\)
\(294\) 0 0
\(295\) 7.45997e10i 0.573506i
\(296\) 0 0
\(297\) 1.18831e11i 0.886190i
\(298\) 0 0
\(299\) −2.20674e8 −0.00159673
\(300\) 0 0
\(301\) −2.03978e11 + 2.95596e10i −1.43230 + 0.207563i
\(302\) 0 0
\(303\) 1.16465e11i 0.793785i
\(304\) 0 0
\(305\) −8.91074e10 −0.589610
\(306\) 0 0
\(307\) −2.09786e11 −1.34789 −0.673943 0.738783i \(-0.735401\pi\)
−0.673943 + 0.738783i \(0.735401\pi\)
\(308\) 0 0
\(309\) 2.83065e9 0.0176633
\(310\) 0 0
\(311\) −1.56756e11 −0.950174 −0.475087 0.879939i \(-0.657583\pi\)
−0.475087 + 0.879939i \(0.657583\pi\)
\(312\) 0 0
\(313\) 5.89917e10i 0.347409i 0.984798 + 0.173705i \(0.0555738\pi\)
−0.984798 + 0.173705i \(0.944426\pi\)
\(314\) 0 0
\(315\) −4.18149e10 + 6.05963e9i −0.239295 + 0.0346776i
\(316\) 0 0
\(317\) 2.70184e11 1.50277 0.751387 0.659862i \(-0.229385\pi\)
0.751387 + 0.659862i \(0.229385\pi\)
\(318\) 0 0
\(319\) 3.01344e11i 1.62931i
\(320\) 0 0
\(321\) 2.27182e11i 1.19427i
\(322\) 0 0
\(323\) 2.80587e11i 1.43435i
\(324\) 0 0
\(325\) 9.34536e8i 0.00464645i
\(326\) 0 0
\(327\) 2.66655e11 1.28969
\(328\) 0 0
\(329\) −2.33911e9 1.61412e10i −0.0110070 0.0759545i
\(330\) 0 0
\(331\) 1.26896e11i 0.581060i 0.956866 + 0.290530i \(0.0938316\pi\)
−0.956866 + 0.290530i \(0.906168\pi\)
\(332\) 0 0
\(333\) 6.03890e10 0.269128
\(334\) 0 0
\(335\) −1.38894e11 −0.602534
\(336\) 0 0
\(337\) 1.66309e11 0.702396 0.351198 0.936301i \(-0.385774\pi\)
0.351198 + 0.936301i \(0.385774\pi\)
\(338\) 0 0
\(339\) 9.43053e10 0.387826
\(340\) 0 0
\(341\) 5.86728e11i 2.34986i
\(342\) 0 0
\(343\) −1.07268e11 2.32822e11i −0.418453 0.908239i
\(344\) 0 0
\(345\) 4.13313e10 0.157070
\(346\) 0 0
\(347\) 1.03524e11i 0.383315i 0.981462 + 0.191658i \(0.0613863\pi\)
−0.981462 + 0.191658i \(0.938614\pi\)
\(348\) 0 0
\(349\) 3.39536e11i 1.22510i −0.790432 0.612550i \(-0.790144\pi\)
0.790432 0.612550i \(-0.209856\pi\)
\(350\) 0 0
\(351\) 1.11466e9i 0.00391978i
\(352\) 0 0
\(353\) 4.61304e11i 1.58125i −0.612299 0.790626i \(-0.709755\pi\)
0.612299 0.790626i \(-0.290245\pi\)
\(354\) 0 0
\(355\) −9.15240e10 −0.305849
\(356\) 0 0
\(357\) 3.14746e11 4.56116e10i 1.02554 0.148617i
\(358\) 0 0
\(359\) 4.07793e11i 1.29573i −0.761755 0.647865i \(-0.775662\pi\)
0.761755 0.647865i \(-0.224338\pi\)
\(360\) 0 0
\(361\) 5.93321e11 1.83868
\(362\) 0 0
\(363\) 3.91606e11 1.18377
\(364\) 0 0
\(365\) 2.08118e11 0.613751
\(366\) 0 0
\(367\) 6.42802e11 1.84961 0.924804 0.380444i \(-0.124229\pi\)
0.924804 + 0.380444i \(0.124229\pi\)
\(368\) 0 0
\(369\) 3.74031e10i 0.105024i
\(370\) 0 0
\(371\) −7.25426e8 5.00586e9i −0.00198797 0.0137182i
\(372\) 0 0
\(373\) −1.08459e11 −0.290120 −0.145060 0.989423i \(-0.546337\pi\)
−0.145060 + 0.989423i \(0.546337\pi\)
\(374\) 0 0
\(375\) 4.09053e11i 1.06817i
\(376\) 0 0
\(377\) 2.82667e9i 0.00720675i
\(378\) 0 0
\(379\) 2.41986e10i 0.0602441i 0.999546 + 0.0301220i \(0.00958960\pi\)
−0.999546 + 0.0301220i \(0.990410\pi\)
\(380\) 0 0
\(381\) 4.29905e11i 1.04522i
\(382\) 0 0
\(383\) 3.27819e11 0.778467 0.389233 0.921139i \(-0.372740\pi\)
0.389233 + 0.921139i \(0.372740\pi\)
\(384\) 0 0
\(385\) −4.35940e10 3.00824e11i −0.101124 0.697813i
\(386\) 0 0
\(387\) 3.07576e11i 0.697033i
\(388\) 0 0
\(389\) −3.53885e11 −0.783590 −0.391795 0.920053i \(-0.628146\pi\)
−0.391795 + 0.920053i \(0.628146\pi\)
\(390\) 0 0
\(391\) −1.01129e11 −0.218817
\(392\) 0 0
\(393\) 1.02978e12 2.17760
\(394\) 0 0
\(395\) −1.38095e11 −0.285424
\(396\) 0 0
\(397\) 5.84709e11i 1.18136i 0.806906 + 0.590680i \(0.201140\pi\)
−0.806906 + 0.590680i \(0.798860\pi\)
\(398\) 0 0
\(399\) −1.48904e11 1.02752e12i −0.294123 2.02962i
\(400\) 0 0
\(401\) 9.52365e10 0.183930 0.0919652 0.995762i \(-0.470685\pi\)
0.0919652 + 0.995762i \(0.470685\pi\)
\(402\) 0 0
\(403\) 5.50365e9i 0.0103939i
\(404\) 0 0
\(405\) 3.39689e11i 0.627384i
\(406\) 0 0
\(407\) 4.34449e11i 0.784810i
\(408\) 0 0
\(409\) 5.81633e11i 1.02777i 0.857860 + 0.513883i \(0.171793\pi\)
−0.857860 + 0.513883i \(0.828207\pi\)
\(410\) 0 0
\(411\) −3.18834e11 −0.551158
\(412\) 0 0
\(413\) −9.68667e10 6.68436e11i −0.163832 1.13054i
\(414\) 0 0
\(415\) 3.32400e11i 0.550104i
\(416\) 0 0
\(417\) −7.82896e11 −1.26792
\(418\) 0 0
\(419\) −3.53730e11 −0.560672 −0.280336 0.959902i \(-0.590446\pi\)
−0.280336 + 0.959902i \(0.590446\pi\)
\(420\) 0 0
\(421\) 5.79193e11 0.898575 0.449287 0.893387i \(-0.351678\pi\)
0.449287 + 0.893387i \(0.351678\pi\)
\(422\) 0 0
\(423\) −2.43391e10 −0.0369634
\(424\) 0 0
\(425\) 4.28274e11i 0.636754i
\(426\) 0 0
\(427\) −7.98429e11 + 1.15705e11i −1.16228 + 0.168432i
\(428\) 0 0
\(429\) 7.45048e9 0.0106200
\(430\) 0 0
\(431\) 9.64808e11i 1.34677i −0.739293 0.673384i \(-0.764840\pi\)
0.739293 0.673384i \(-0.235160\pi\)
\(432\) 0 0
\(433\) 9.35707e10i 0.127922i −0.997952 0.0639608i \(-0.979627\pi\)
0.997952 0.0639608i \(-0.0203733\pi\)
\(434\) 0 0
\(435\) 5.29424e11i 0.708928i
\(436\) 0 0
\(437\) 3.30148e11i 0.433054i
\(438\) 0 0
\(439\) 5.66295e11 0.727700 0.363850 0.931458i \(-0.381462\pi\)
0.363850 + 0.931458i \(0.381462\pi\)
\(440\) 0 0
\(441\) −3.66806e11 + 1.08592e11i −0.461809 + 0.136718i
\(442\) 0 0
\(443\) 3.70442e11i 0.456987i 0.973545 + 0.228493i \(0.0733800\pi\)
−0.973545 + 0.228493i \(0.926620\pi\)
\(444\) 0 0
\(445\) 6.17317e11 0.746257
\(446\) 0 0
\(447\) −1.80709e12 −2.14089
\(448\) 0 0
\(449\) −8.37437e11 −0.972397 −0.486199 0.873848i \(-0.661617\pi\)
−0.486199 + 0.873848i \(0.661617\pi\)
\(450\) 0 0
\(451\) −2.69085e11 −0.306263
\(452\) 0 0
\(453\) 1.03620e12i 1.15612i
\(454\) 0 0
\(455\) −4.08922e8 2.82179e9i −0.000447290 0.00308656i
\(456\) 0 0
\(457\) −1.44000e11 −0.154433 −0.0772166 0.997014i \(-0.524603\pi\)
−0.0772166 + 0.997014i \(0.524603\pi\)
\(458\) 0 0
\(459\) 5.10823e11i 0.537172i
\(460\) 0 0
\(461\) 1.64706e12i 1.69846i −0.528022 0.849231i \(-0.677066\pi\)
0.528022 0.849231i \(-0.322934\pi\)
\(462\) 0 0
\(463\) 1.32888e12i 1.34392i 0.740589 + 0.671958i \(0.234546\pi\)
−0.740589 + 0.671958i \(0.765454\pi\)
\(464\) 0 0
\(465\) 1.03081e12i 1.02245i
\(466\) 0 0
\(467\) 1.24795e12 1.21414 0.607072 0.794647i \(-0.292344\pi\)
0.607072 + 0.794647i \(0.292344\pi\)
\(468\) 0 0
\(469\) −1.24453e12 + 1.80352e11i −1.18776 + 0.172124i
\(470\) 0 0
\(471\) 2.23189e11i 0.208968i
\(472\) 0 0
\(473\) −2.21276e12 −2.03263
\(474\) 0 0
\(475\) 1.39815e12 1.26018
\(476\) 0 0
\(477\) −7.54827e9 −0.00667598
\(478\) 0 0
\(479\) 7.39354e11 0.641715 0.320858 0.947127i \(-0.396029\pi\)
0.320858 + 0.947127i \(0.396029\pi\)
\(480\) 0 0
\(481\) 4.07523e9i 0.00347136i
\(482\) 0 0
\(483\) 3.70341e11 5.36681e10i 0.309628 0.0448698i
\(484\) 0 0
\(485\) −4.63264e10 −0.0380181
\(486\) 0 0
\(487\) 2.22309e12i 1.79092i −0.445139 0.895462i \(-0.646846\pi\)
0.445139 0.895462i \(-0.353154\pi\)
\(488\) 0 0
\(489\) 1.62660e12i 1.28644i
\(490\) 0 0
\(491\) 2.34437e12i 1.82037i 0.414200 + 0.910186i \(0.364062\pi\)
−0.414200 + 0.910186i \(0.635938\pi\)
\(492\) 0 0
\(493\) 1.29539e12i 0.987621i
\(494\) 0 0
\(495\) −4.53608e11 −0.339592
\(496\) 0 0
\(497\) −8.20083e11 + 1.18843e11i −0.602912 + 0.0873713i
\(498\) 0 0
\(499\) 6.06349e11i 0.437794i 0.975748 + 0.218897i \(0.0702459\pi\)
−0.975748 + 0.218897i \(0.929754\pi\)
\(500\) 0 0
\(501\) −1.77501e12 −1.25873
\(502\) 0 0
\(503\) 1.04303e12 0.726512 0.363256 0.931689i \(-0.381665\pi\)
0.363256 + 0.931689i \(0.381665\pi\)
\(504\) 0 0
\(505\) −4.78504e11 −0.327397
\(506\) 0 0
\(507\) −1.81087e12 −1.21717
\(508\) 0 0
\(509\) 2.44040e12i 1.61150i −0.592253 0.805752i \(-0.701762\pi\)
0.592253 0.805752i \(-0.298238\pi\)
\(510\) 0 0
\(511\) 1.86480e12 2.70238e11i 1.20987 0.175329i
\(512\) 0 0
\(513\) 1.66764e12 1.06310
\(514\) 0 0
\(515\) 1.16299e10i 0.00728525i
\(516\) 0 0
\(517\) 1.75100e11i 0.107790i
\(518\) 0 0
\(519\) 3.61166e12i 2.18501i
\(520\) 0 0
\(521\) 2.45154e12i 1.45770i 0.684671 + 0.728852i \(0.259946\pi\)
−0.684671 + 0.728852i \(0.740054\pi\)
\(522\) 0 0
\(523\) 1.43291e12 0.837454 0.418727 0.908112i \(-0.362476\pi\)
0.418727 + 0.908112i \(0.362476\pi\)
\(524\) 0 0
\(525\) −2.27280e11 1.56836e12i −0.130570 0.901011i
\(526\) 0 0
\(527\) 2.52218e12i 1.42439i
\(528\) 0 0
\(529\) 1.68216e12 0.933936
\(530\) 0 0
\(531\) −1.00793e12 −0.550178
\(532\) 0 0
\(533\) −2.52407e9 −0.00135466
\(534\) 0 0
\(535\) −9.33396e11 −0.492577
\(536\) 0 0
\(537\) 1.27908e11i 0.0663764i
\(538\) 0 0
\(539\) −7.81231e11 2.63886e12i −0.398685 1.34669i
\(540\) 0 0
\(541\) −1.31275e12 −0.658861 −0.329431 0.944180i \(-0.606857\pi\)
−0.329431 + 0.944180i \(0.606857\pi\)
\(542\) 0 0
\(543\) 2.13984e12i 1.05629i
\(544\) 0 0
\(545\) 1.09557e12i 0.531933i
\(546\) 0 0
\(547\) 9.83820e11i 0.469864i 0.972012 + 0.234932i \(0.0754868\pi\)
−0.972012 + 0.234932i \(0.924513\pi\)
\(548\) 0 0
\(549\) 1.20394e12i 0.565627i
\(550\) 0 0
\(551\) −4.22896e12 −1.95457
\(552\) 0 0
\(553\) −1.23737e12 + 1.79314e11i −0.562648 + 0.0815364i
\(554\) 0 0
\(555\) 7.63275e11i 0.341478i
\(556\) 0 0
\(557\) −3.38935e12 −1.49200 −0.745999 0.665947i \(-0.768028\pi\)
−0.745999 + 0.665947i \(0.768028\pi\)
\(558\) 0 0
\(559\) −2.07561e10 −0.00899070
\(560\) 0 0
\(561\) 3.41437e12 1.45538
\(562\) 0 0
\(563\) 1.64016e12 0.688018 0.344009 0.938966i \(-0.388215\pi\)
0.344009 + 0.938966i \(0.388215\pi\)
\(564\) 0 0
\(565\) 3.87460e11i 0.159959i
\(566\) 0 0
\(567\) −4.41081e11 3.04371e12i −0.179223 1.23674i
\(568\) 0 0
\(569\) −1.45892e12 −0.583482 −0.291741 0.956497i \(-0.594235\pi\)
−0.291741 + 0.956497i \(0.594235\pi\)
\(570\) 0 0
\(571\) 3.80118e12i 1.49643i −0.663457 0.748215i \(-0.730911\pi\)
0.663457 0.748215i \(-0.269089\pi\)
\(572\) 0 0
\(573\) 3.86661e12i 1.49842i
\(574\) 0 0
\(575\) 5.03922e11i 0.192246i
\(576\) 0 0
\(577\) 3.15623e11i 0.118543i −0.998242 0.0592717i \(-0.981122\pi\)
0.998242 0.0592717i \(-0.0188778\pi\)
\(578\) 0 0
\(579\) −1.92243e12 −0.710883
\(580\) 0 0
\(581\) 4.31617e11 + 2.97841e12i 0.157147 + 1.08440i
\(582\) 0 0
\(583\) 5.43036e10i 0.0194679i
\(584\) 0 0
\(585\) −4.25495e9 −0.00150208
\(586\) 0 0
\(587\) 8.15983e11 0.283667 0.141834 0.989890i \(-0.454700\pi\)
0.141834 + 0.989890i \(0.454700\pi\)
\(588\) 0 0
\(589\) 8.23396e12 2.81897
\(590\) 0 0
\(591\) −1.55866e11 −0.0525542
\(592\) 0 0
\(593\) 5.57762e12i 1.85226i −0.377202 0.926131i \(-0.623114\pi\)
0.377202 0.926131i \(-0.376886\pi\)
\(594\) 0 0
\(595\) −1.87399e11 1.29316e12i −0.0612971 0.422985i
\(596\) 0 0
\(597\) 2.35824e12 0.759807
\(598\) 0 0
\(599\) 4.79799e12i 1.52278i 0.648292 + 0.761392i \(0.275484\pi\)
−0.648292 + 0.761392i \(0.724516\pi\)
\(600\) 0 0
\(601\) 3.84252e12i 1.20138i 0.799481 + 0.600692i \(0.205108\pi\)
−0.799481 + 0.600692i \(0.794892\pi\)
\(602\) 0 0
\(603\) 1.87661e12i 0.578025i
\(604\) 0 0
\(605\) 1.60894e12i 0.488248i
\(606\) 0 0
\(607\) 1.11143e12 0.332303 0.166151 0.986100i \(-0.446866\pi\)
0.166151 + 0.986100i \(0.446866\pi\)
\(608\) 0 0
\(609\) 6.87450e11 + 4.74380e12i 0.202518 + 1.39749i
\(610\) 0 0
\(611\) 1.64247e9i 0.000476774i
\(612\) 0 0
\(613\) 3.23418e12 0.925108 0.462554 0.886591i \(-0.346933\pi\)
0.462554 + 0.886591i \(0.346933\pi\)
\(614\) 0 0
\(615\) 4.72749e11 0.133258
\(616\) 0 0
\(617\) 2.90100e12 0.805870 0.402935 0.915229i \(-0.367990\pi\)
0.402935 + 0.915229i \(0.367990\pi\)
\(618\) 0 0
\(619\) −4.75827e12 −1.30269 −0.651346 0.758781i \(-0.725795\pi\)
−0.651346 + 0.758781i \(0.725795\pi\)
\(620\) 0 0
\(621\) 6.01052e11i 0.162181i
\(622\) 0 0
\(623\) 5.53135e12 8.01578e11i 1.47108 0.213182i
\(624\) 0 0
\(625\) 1.17259e12 0.307387
\(626\) 0 0
\(627\) 1.11466e13i 2.88030i
\(628\) 0 0
\(629\) 1.86758e12i 0.475719i
\(630\) 0 0
\(631\) 3.88629e12i 0.975894i 0.872873 + 0.487947i \(0.162254\pi\)
−0.872873 + 0.487947i \(0.837746\pi\)
\(632\) 0 0
\(633\) 6.62177e12i 1.63930i
\(634\) 0 0
\(635\) 1.76630e12 0.431104
\(636\) 0 0
\(637\) −7.32812e9 2.47531e10i −0.00176346 0.00595666i
\(638\) 0 0
\(639\) 1.23659e12i 0.293409i
\(640\) 0 0
\(641\) −3.14655e12 −0.736161 −0.368081 0.929794i \(-0.619985\pi\)
−0.368081 + 0.929794i \(0.619985\pi\)
\(642\) 0 0
\(643\) 8.30067e12 1.91498 0.957489 0.288470i \(-0.0931464\pi\)
0.957489 + 0.288470i \(0.0931464\pi\)
\(644\) 0 0
\(645\) 3.88754e12 0.884416
\(646\) 0 0
\(647\) 4.77823e12 1.07201 0.536003 0.844216i \(-0.319933\pi\)
0.536003 + 0.844216i \(0.319933\pi\)
\(648\) 0 0
\(649\) 7.25120e12i 1.60438i
\(650\) 0 0
\(651\) −1.33849e12 9.23637e12i −0.292080 2.01552i
\(652\) 0 0
\(653\) 9.59424e11 0.206491 0.103245 0.994656i \(-0.467077\pi\)
0.103245 + 0.994656i \(0.467077\pi\)
\(654\) 0 0
\(655\) 4.23092e12i 0.898151i
\(656\) 0 0
\(657\) 2.81191e12i 0.588786i
\(658\) 0 0
\(659\) 9.04123e12i 1.86743i 0.358023 + 0.933713i \(0.383451\pi\)
−0.358023 + 0.933713i \(0.616549\pi\)
\(660\) 0 0
\(661\) 2.90021e11i 0.0590912i 0.999563 + 0.0295456i \(0.00940602\pi\)
−0.999563 + 0.0295456i \(0.990594\pi\)
\(662\) 0 0
\(663\) 3.20275e10 0.00643743
\(664\) 0 0
\(665\) −4.22166e12 + 6.11784e11i −0.837117 + 0.121311i
\(666\) 0 0
\(667\) 1.52420e12i 0.298179i
\(668\) 0 0
\(669\) −4.93095e11 −0.0951729
\(670\) 0 0
\(671\) −8.66137e12 −1.64943
\(672\) 0 0
\(673\) 4.50836e12 0.847132 0.423566 0.905865i \(-0.360778\pi\)
0.423566 + 0.905865i \(0.360778\pi\)
\(674\) 0 0
\(675\) 2.54541e12 0.471943
\(676\) 0 0
\(677\) 4.48072e12i 0.819782i 0.912134 + 0.409891i \(0.134433\pi\)
−0.912134 + 0.409891i \(0.865567\pi\)
\(678\) 0 0
\(679\) −4.15098e11 + 6.01542e10i −0.0749440 + 0.0108605i
\(680\) 0 0
\(681\) 1.12088e13 1.99709
\(682\) 0 0
\(683\) 3.88544e12i 0.683199i −0.939846 0.341599i \(-0.889031\pi\)
0.939846 0.341599i \(-0.110969\pi\)
\(684\) 0 0
\(685\) 1.30995e12i 0.227326i
\(686\) 0 0
\(687\) 6.19422e12i 1.06092i
\(688\) 0 0
\(689\) 5.09380e8i 8.61104e-5i
\(690\) 0 0
\(691\) −1.02128e13 −1.70409 −0.852045 0.523468i \(-0.824638\pi\)
−0.852045 + 0.523468i \(0.824638\pi\)
\(692\) 0 0
\(693\) −4.06447e12 + 5.89004e11i −0.669428 + 0.0970106i
\(694\) 0 0
\(695\) 3.21659e12i 0.522955i
\(696\) 0 0
\(697\) −1.15672e12 −0.185644
\(698\) 0 0
\(699\) 1.38541e13 2.19498
\(700\) 0 0
\(701\) −1.09832e13 −1.71790 −0.858948 0.512063i \(-0.828881\pi\)
−0.858948 + 0.512063i \(0.828881\pi\)
\(702\) 0 0
\(703\) 6.09692e12 0.941481
\(704\) 0 0
\(705\) 3.07629e11i 0.0469003i
\(706\) 0 0
\(707\) −4.28754e12 + 6.21331e11i −0.645388 + 0.0935268i
\(708\) 0 0
\(709\) 2.44868e12 0.363936 0.181968 0.983304i \(-0.441753\pi\)
0.181968 + 0.983304i \(0.441753\pi\)
\(710\) 0 0
\(711\) 1.86582e12i 0.273814i
\(712\) 0 0
\(713\) 2.96769e12i 0.430046i
\(714\) 0 0
\(715\) 3.06109e10i 0.00438024i
\(716\) 0 0
\(717\) 6.94279e12i 0.981065i
\(718\) 0 0
\(719\) −1.14434e13 −1.59689 −0.798445 0.602067i \(-0.794344\pi\)
−0.798445 + 0.602067i \(0.794344\pi\)
\(720\) 0 0
\(721\) −1.51013e10 1.04208e11i −0.00208116 0.0143612i
\(722\) 0 0
\(723\) 6.13105e11i 0.0834474i
\(724\) 0 0
\(725\) −6.45488e12 −0.867695
\(726\) 0 0
\(727\) −1.31151e13 −1.74127 −0.870635 0.491929i \(-0.836292\pi\)
−0.870635 + 0.491929i \(0.836292\pi\)
\(728\) 0 0
\(729\) 1.26719e12 0.166176
\(730\) 0 0
\(731\) −9.51202e12 −1.23210
\(732\) 0 0
\(733\) 5.70825e12i 0.730357i −0.930937 0.365179i \(-0.881008\pi\)
0.930937 0.365179i \(-0.118992\pi\)
\(734\) 0 0
\(735\) 1.37253e12 + 4.63616e12i 0.173471 + 0.585957i
\(736\) 0 0
\(737\) −1.35007e13 −1.68559
\(738\) 0 0
\(739\) 1.35668e13i 1.67331i −0.547731 0.836655i \(-0.684508\pi\)
0.547731 0.836655i \(-0.315492\pi\)
\(740\) 0 0
\(741\) 1.04558e11i 0.0127401i
\(742\) 0 0
\(743\) 1.62987e13i 1.96202i 0.193967 + 0.981008i \(0.437865\pi\)
−0.193967 + 0.981008i \(0.562135\pi\)
\(744\) 0 0
\(745\) 7.42455e12i 0.883012i
\(746\) 0 0
\(747\) 4.49110e12 0.527728
\(748\) 0 0
\(749\) −8.36351e12 + 1.21200e12i −0.971002 + 0.140713i
\(750\) 0 0
\(751\) 6.88388e12i 0.789684i 0.918749 + 0.394842i \(0.129201\pi\)
−0.918749 + 0.394842i \(0.870799\pi\)
\(752\) 0 0
\(753\) −7.37844e12 −0.836349
\(754\) 0 0
\(755\) 4.25732e12 0.476842
\(756\) 0 0
\(757\) 2.32574e12 0.257412 0.128706 0.991683i \(-0.458918\pi\)
0.128706 + 0.991683i \(0.458918\pi\)
\(758\) 0 0
\(759\) 4.01746e12 0.439404
\(760\) 0 0
\(761\) 7.21032e12i 0.779334i 0.920956 + 0.389667i \(0.127410\pi\)
−0.920956 + 0.389667i \(0.872590\pi\)
\(762\) 0 0
\(763\) −1.42259e12 9.81666e12i −0.151956 1.04858i
\(764\) 0 0
\(765\) −1.94994e12 −0.205847
\(766\) 0 0
\(767\) 6.80179e10i 0.00709649i
\(768\) 0 0
\(769\) 5.15415e11i 0.0531482i 0.999647 + 0.0265741i \(0.00845979\pi\)
−0.999647 + 0.0265741i \(0.991540\pi\)
\(770\) 0 0
\(771\) 1.13829e13i 1.16013i
\(772\) 0 0
\(773\) 1.69506e13i 1.70757i −0.520626 0.853785i \(-0.674301\pi\)
0.520626 0.853785i \(-0.325699\pi\)
\(774\) 0 0
\(775\) 1.25679e13 1.25143
\(776\) 0 0
\(777\) −9.91102e11 6.83917e12i −0.0975492 0.673145i
\(778\) 0 0
\(779\) 3.77625e12i 0.367402i
\(780\) 0 0
\(781\) −8.89627e12 −0.855614
\(782\) 0 0
\(783\) −7.69903e12 −0.731995
\(784\) 0 0
\(785\) −9.16990e11 −0.0861888
\(786\) 0 0
\(787\) −9.80859e12 −0.911423 −0.455712 0.890127i \(-0.650615\pi\)
−0.455712 + 0.890127i \(0.650615\pi\)
\(788\) 0 0
\(789\) 5.85268e12i 0.537661i
\(790\) 0 0
\(791\) −5.03112e11 3.47176e12i −0.0456952 0.315323i
\(792\) 0 0
\(793\) −8.12456e10 −0.00729576
\(794\) 0 0
\(795\) 9.54048e10i 0.00847068i
\(796\) 0 0
\(797\) 1.16917e13i 1.02640i −0.858269 0.513199i \(-0.828460\pi\)
0.858269 0.513199i \(-0.171540\pi\)
\(798\) 0 0
\(799\) 7.52704e11i 0.0653377i
\(800\) 0 0
\(801\) 8.34066e12i 0.715902i
\(802\) 0 0
\(803\) 2.02294e13 1.71697
\(804\) 0 0
\(805\) −2.20500e11 1.52157e12i −0.0185066 0.127706i
\(806\) 0 0
\(807\) 4.25059e12i 0.352792i
\(808\) 0 0
\(809\) −2.06211e13 −1.69256 −0.846278 0.532742i \(-0.821162\pi\)
−0.846278 + 0.532742i \(0.821162\pi\)
\(810\) 0 0
\(811\) 8.98562e10 0.00729380 0.00364690 0.999993i \(-0.498839\pi\)
0.00364690 + 0.999993i \(0.498839\pi\)
\(812\) 0 0
\(813\) 2.32083e13 1.86310
\(814\) 0 0
\(815\) 6.68301e12 0.530594
\(816\) 0 0
\(817\) 3.10531e13i 2.43840i
\(818\) 0 0
\(819\) −3.81256e10 + 5.52500e9i −0.00296101 + 0.000429096i
\(820\) 0 0
\(821\) −1.76196e13 −1.35348 −0.676740 0.736222i \(-0.736608\pi\)
−0.676740 + 0.736222i \(0.736608\pi\)
\(822\) 0 0
\(823\) 1.64339e13i 1.24865i 0.781163 + 0.624327i \(0.214627\pi\)
−0.781163 + 0.624327i \(0.785373\pi\)
\(824\) 0 0
\(825\) 1.70136e13i 1.27866i
\(826\) 0 0
\(827\) 2.21536e12i 0.164691i −0.996604 0.0823453i \(-0.973759\pi\)
0.996604 0.0823453i \(-0.0262410\pi\)
\(828\) 0 0
\(829\) 9.81244e12i 0.721575i 0.932648 + 0.360788i \(0.117492\pi\)
−0.932648 + 0.360788i \(0.882508\pi\)
\(830\) 0 0
\(831\) 1.01636e13 0.739339
\(832\) 0 0
\(833\) −3.35829e12 1.13437e13i −0.241666 0.816308i
\(834\) 0 0
\(835\) 7.29278e12i 0.519163i
\(836\) 0 0
\(837\) 1.49903e13 1.05572
\(838\) 0 0
\(839\) −6.56726e12 −0.457568 −0.228784 0.973477i \(-0.573475\pi\)
−0.228784 + 0.973477i \(0.573475\pi\)
\(840\) 0 0
\(841\) 5.01680e12 0.345816
\(842\) 0 0
\(843\) 1.26418e13 0.862155
\(844\) 0 0
\(845\) 7.44010e12i 0.502023i
\(846\) 0 0
\(847\) −2.08919e12 1.44166e13i −0.139477 0.962470i
\(848\) 0 0
\(849\) −3.83743e12 −0.253487
\(850\) 0 0
\(851\) 2.19746e12i 0.143627i
\(852\) 0 0
\(853\) 1.77620e13i 1.14874i −0.818596 0.574370i \(-0.805247\pi\)
0.818596 0.574370i \(-0.194753\pi\)
\(854\) 0 0
\(855\) 6.36580e12i 0.407385i
\(856\) 0 0
\(857\) 1.28931e13i 0.816480i 0.912875 + 0.408240i \(0.133857\pi\)
−0.912875 + 0.408240i \(0.866143\pi\)
\(858\) 0 0
\(859\) 9.86398e11 0.0618134 0.0309067 0.999522i \(-0.490161\pi\)
0.0309067 + 0.999522i \(0.490161\pi\)
\(860\) 0 0
\(861\) 4.23597e12 6.13858e11i 0.262687 0.0380674i
\(862\) 0 0
\(863\) 1.11654e13i 0.685210i 0.939479 + 0.342605i \(0.111309\pi\)
−0.939479 + 0.342605i \(0.888691\pi\)
\(864\) 0 0
\(865\) 1.48388e13 0.901210
\(866\) 0 0
\(867\) −5.57396e12 −0.335026
\(868\) 0 0
\(869\) −1.34230e13 −0.798474
\(870\) 0 0
\(871\) −1.26639e11 −0.00745568
\(872\) 0 0
\(873\) 6.25922e11i 0.0364717i
\(874\) 0 0
\(875\) −1.50589e13 + 2.18227e12i −0.868475 + 0.125856i
\(876\) 0 0
\(877\) 2.73296e13 1.56004 0.780019 0.625755i \(-0.215209\pi\)
0.780019 + 0.625755i \(0.215209\pi\)
\(878\) 0 0
\(879\) 3.75000e13i 2.11876i
\(880\) 0 0
\(881\) 2.62844e13i 1.46996i 0.678087 + 0.734982i \(0.262809\pi\)
−0.678087 + 0.734982i \(0.737191\pi\)
\(882\) 0 0
\(883\) 1.13800e13i 0.629968i −0.949097 0.314984i \(-0.898001\pi\)
0.949097 0.314984i \(-0.101999\pi\)
\(884\) 0 0
\(885\) 1.27395e13i 0.698082i
\(886\) 0 0
\(887\) −1.98246e13 −1.07535 −0.537674 0.843153i \(-0.680697\pi\)
−0.537674 + 0.843153i \(0.680697\pi\)
\(888\) 0 0
\(889\) 1.58265e13 2.29351e12i 0.849822 0.123152i
\(890\) 0 0
\(891\) 3.30182e13i 1.75511i
\(892\) 0 0
\(893\) −2.45729e12 −0.129308
\(894\) 0 0
\(895\) 5.25520e11 0.0273770
\(896\) 0 0
\(897\) 3.76847e10 0.00194357
\(898\) 0 0
\(899\) −3.80139e13 −1.94099
\(900\) 0 0
\(901\) 2.33436e11i 0.0118007i
\(902\) 0 0
\(903\) 3.48335e13 5.04792e12i 1.74342 0.252649i
\(904\) 0 0
\(905\) −8.79170e12 −0.435667
\(906\) 0 0
\(907\) 1.83615e13i 0.900898i 0.892802 + 0.450449i \(0.148736\pi\)
−0.892802 + 0.450449i \(0.851264\pi\)
\(908\) 0 0
\(909\) 6.46514e12i 0.314080i
\(910\) 0 0
\(911\) 1.96288e12i 0.0944193i 0.998885 + 0.0472097i \(0.0150329\pi\)
−0.998885 + 0.0472097i \(0.984967\pi\)
\(912\) 0 0
\(913\) 3.23098e13i 1.53892i
\(914\) 0 0
\(915\) 1.52170e13 0.717684
\(916\) 0 0
\(917\) −5.49379e12 3.79103e13i −0.256573 1.77050i
\(918\) 0 0
\(919\) 3.37030e13i 1.55865i −0.626620 0.779325i \(-0.715562\pi\)
0.626620 0.779325i \(-0.284438\pi\)
\(920\) 0 0
\(921\) 3.58254e13 1.64067
\(922\) 0 0
\(923\) −8.34490e10 −0.00378454
\(924\) 0 0
\(925\) 9.30605e12 0.417953
\(926\) 0 0
\(927\) −1.57134e11 −0.00698892
\(928\) 0 0
\(929\) 2.36893e12i 0.104348i 0.998638 + 0.0521738i \(0.0166150\pi\)
−0.998638 + 0.0521738i \(0.983385\pi\)
\(930\) 0 0
\(931\) −3.70330e13 + 1.09635e13i −1.61553 + 0.478275i
\(932\) 0 0
\(933\) 2.67694e13 1.15657
\(934\) 0 0
\(935\) 1.40282e13i 0.600274i
\(936\) 0 0
\(937\) 3.48576e13i 1.47730i −0.674088 0.738651i \(-0.735463\pi\)
0.674088 0.738651i \(-0.264537\pi\)
\(938\) 0 0
\(939\) 1.00741e13i 0.422873i
\(940\) 0 0
\(941\) 5.16797e12i 0.214865i 0.994212 + 0.107433i \(0.0342630\pi\)
−0.994212 + 0.107433i \(0.965737\pi\)
\(942\) 0 0
\(943\) −1.36104e12 −0.0560489
\(944\) 0 0
\(945\) −7.68575e12 + 1.11378e12i −0.313504 + 0.0454316i
\(946\) 0 0
\(947\) 2.25617e13i 0.911583i 0.890087 + 0.455791i \(0.150644\pi\)
−0.890087 + 0.455791i \(0.849356\pi\)
\(948\) 0 0
\(949\) 1.89756e11 0.00759448
\(950\) 0 0
\(951\) −4.61397e13 −1.82920
\(952\) 0 0
\(953\) 1.59596e13 0.626763 0.313382 0.949627i \(-0.398538\pi\)
0.313382 + 0.949627i \(0.398538\pi\)
\(954\) 0 0
\(955\) 1.58862e13 0.618025
\(956\) 0 0
\(957\) 5.14608e13i 1.98323i
\(958\) 0 0
\(959\) 1.70096e12 + 1.17376e13i 0.0649396 + 0.448120i
\(960\) 0 0
\(961\) 4.75750e13 1.79938
\(962\) 0 0
\(963\) 1.26112e13i 0.472541i
\(964\) 0 0
\(965\) 7.89847e12i 0.293204i
\(966\) 0 0
\(967\) 1.34087e13i 0.493138i 0.969125 + 0.246569i \(0.0793032\pi\)
−0.969125 + 0.246569i \(0.920697\pi\)
\(968\) 0 0
\(969\) 4.79161e13i 1.74592i
\(970\) 0 0
\(971\) 2.96980e13 1.07211 0.536057 0.844182i \(-0.319913\pi\)
0.536057 + 0.844182i \(0.319913\pi\)
\(972\) 0 0
\(973\) 4.17670e12 + 2.88216e13i 0.149391 + 1.03089i
\(974\) 0 0
\(975\) 1.59592e11i 0.00565574i
\(976\) 0 0
\(977\) 6.06605e11 0.0213000 0.0106500 0.999943i \(-0.496610\pi\)
0.0106500 + 0.999943i \(0.496610\pi\)
\(978\) 0 0
\(979\) 6.00041e13 2.08766
\(980\) 0 0
\(981\) −1.48024e13 −0.510296
\(982\) 0 0
\(983\) 4.86971e13 1.66346 0.831731 0.555179i \(-0.187350\pi\)
0.831731 + 0.555179i \(0.187350\pi\)
\(984\) 0 0
\(985\) 6.40387e11i 0.0216760i
\(986\) 0 0
\(987\) 3.99452e11 + 2.75644e12i 0.0133979 + 0.0924532i
\(988\) 0 0
\(989\) −1.11922e13 −0.371990
\(990\) 0 0
\(991\) 4.02951e13i 1.32715i −0.748108 0.663577i \(-0.769038\pi\)
0.748108 0.663577i \(-0.230962\pi\)
\(992\) 0 0
\(993\) 2.16701e13i 0.707277i
\(994\) 0 0
\(995\) 9.68900e12i 0.313383i
\(996\) 0 0
\(997\) 2.94016e13i 0.942418i −0.882022 0.471209i \(-0.843818\pi\)
0.882022 0.471209i \(-0.156182\pi\)
\(998\) 0 0
\(999\) 1.10998e13 0.352589
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.f.b.111.4 yes 24
4.3 odd 2 inner 112.10.f.b.111.22 yes 24
7.6 odd 2 inner 112.10.f.b.111.21 yes 24
28.27 even 2 inner 112.10.f.b.111.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.f.b.111.3 24 28.27 even 2 inner
112.10.f.b.111.4 yes 24 1.1 even 1 trivial
112.10.f.b.111.21 yes 24 7.6 odd 2 inner
112.10.f.b.111.22 yes 24 4.3 odd 2 inner