Properties

Label 1100.4.a.f.1.2
Level $1100$
Weight $4$
Character 1100.1
Self dual yes
Analytic conductor $64.902$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,4,Mod(1,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.9021010063\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 1100.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.35890 q^{3} -8.71780 q^{7} -8.00000 q^{9} -11.0000 q^{11} +69.7424 q^{13} -26.1534 q^{17} -68.0000 q^{19} -38.0000 q^{21} +117.690 q^{23} -152.561 q^{27} +260.000 q^{29} +175.000 q^{31} -47.9479 q^{33} -169.997 q^{37} +304.000 q^{39} -380.000 q^{41} +305.123 q^{43} +305.123 q^{47} -267.000 q^{49} -114.000 q^{51} +453.325 q^{53} -296.405 q^{57} -143.000 q^{59} +676.000 q^{61} +69.7424 q^{63} +527.427 q^{67} +513.000 q^{69} +1035.00 q^{71} +331.276 q^{73} +95.8958 q^{77} +218.000 q^{79} -449.000 q^{81} -758.448 q^{83} +1133.31 q^{87} +1279.00 q^{89} -608.000 q^{91} +762.807 q^{93} +771.525 q^{97} +88.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{9} - 22 q^{11} - 136 q^{19} - 76 q^{21} + 520 q^{29} + 350 q^{31} + 608 q^{39} - 760 q^{41} - 534 q^{49} - 228 q^{51} - 286 q^{59} + 1352 q^{61} + 1026 q^{69} + 2070 q^{71} + 436 q^{79} - 898 q^{81}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.35890 0.838870 0.419435 0.907785i \(-0.362228\pi\)
0.419435 + 0.907785i \(0.362228\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −8.71780 −0.470717 −0.235358 0.971909i \(-0.575626\pi\)
−0.235358 + 0.971909i \(0.575626\pi\)
\(8\) 0 0
\(9\) −8.00000 −0.296296
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 69.7424 1.48793 0.743964 0.668220i \(-0.232944\pi\)
0.743964 + 0.668220i \(0.232944\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −26.1534 −0.373125 −0.186563 0.982443i \(-0.559735\pi\)
−0.186563 + 0.982443i \(0.559735\pi\)
\(18\) 0 0
\(19\) −68.0000 −0.821067 −0.410533 0.911846i \(-0.634657\pi\)
−0.410533 + 0.911846i \(0.634657\pi\)
\(20\) 0 0
\(21\) −38.0000 −0.394870
\(22\) 0 0
\(23\) 117.690 1.06696 0.533481 0.845812i \(-0.320884\pi\)
0.533481 + 0.845812i \(0.320884\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −152.561 −1.08742
\(28\) 0 0
\(29\) 260.000 1.66485 0.832427 0.554134i \(-0.186951\pi\)
0.832427 + 0.554134i \(0.186951\pi\)
\(30\) 0 0
\(31\) 175.000 1.01390 0.506950 0.861975i \(-0.330773\pi\)
0.506950 + 0.861975i \(0.330773\pi\)
\(32\) 0 0
\(33\) −47.9479 −0.252929
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −169.997 −0.755334 −0.377667 0.925942i \(-0.623274\pi\)
−0.377667 + 0.925942i \(0.623274\pi\)
\(38\) 0 0
\(39\) 304.000 1.24818
\(40\) 0 0
\(41\) −380.000 −1.44746 −0.723732 0.690081i \(-0.757575\pi\)
−0.723732 + 0.690081i \(0.757575\pi\)
\(42\) 0 0
\(43\) 305.123 1.08211 0.541056 0.840987i \(-0.318025\pi\)
0.541056 + 0.840987i \(0.318025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 305.123 0.946952 0.473476 0.880807i \(-0.342999\pi\)
0.473476 + 0.880807i \(0.342999\pi\)
\(48\) 0 0
\(49\) −267.000 −0.778426
\(50\) 0 0
\(51\) −114.000 −0.313004
\(52\) 0 0
\(53\) 453.325 1.17489 0.587444 0.809265i \(-0.300134\pi\)
0.587444 + 0.809265i \(0.300134\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −296.405 −0.688769
\(58\) 0 0
\(59\) −143.000 −0.315543 −0.157771 0.987476i \(-0.550431\pi\)
−0.157771 + 0.987476i \(0.550431\pi\)
\(60\) 0 0
\(61\) 676.000 1.41890 0.709450 0.704756i \(-0.248943\pi\)
0.709450 + 0.704756i \(0.248943\pi\)
\(62\) 0 0
\(63\) 69.7424 0.139472
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 527.427 0.961723 0.480861 0.876797i \(-0.340324\pi\)
0.480861 + 0.876797i \(0.340324\pi\)
\(68\) 0 0
\(69\) 513.000 0.895043
\(70\) 0 0
\(71\) 1035.00 1.73003 0.865013 0.501749i \(-0.167310\pi\)
0.865013 + 0.501749i \(0.167310\pi\)
\(72\) 0 0
\(73\) 331.276 0.531136 0.265568 0.964092i \(-0.414440\pi\)
0.265568 + 0.964092i \(0.414440\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 95.8958 0.141926
\(78\) 0 0
\(79\) 218.000 0.310467 0.155234 0.987878i \(-0.450387\pi\)
0.155234 + 0.987878i \(0.450387\pi\)
\(80\) 0 0
\(81\) −449.000 −0.615912
\(82\) 0 0
\(83\) −758.448 −1.00302 −0.501509 0.865152i \(-0.667222\pi\)
−0.501509 + 0.865152i \(0.667222\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1133.31 1.39660
\(88\) 0 0
\(89\) 1279.00 1.52330 0.761650 0.647988i \(-0.224390\pi\)
0.761650 + 0.647988i \(0.224390\pi\)
\(90\) 0 0
\(91\) −608.000 −0.700393
\(92\) 0 0
\(93\) 762.807 0.850532
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 771.525 0.807593 0.403796 0.914849i \(-0.367690\pi\)
0.403796 + 0.914849i \(0.367690\pi\)
\(98\) 0 0
\(99\) 88.0000 0.0893367
\(100\) 0 0
\(101\) 638.000 0.628548 0.314274 0.949332i \(-0.398239\pi\)
0.314274 + 0.949332i \(0.398239\pi\)
\(102\) 0 0
\(103\) −531.786 −0.508722 −0.254361 0.967109i \(-0.581865\pi\)
−0.254361 + 0.967109i \(0.581865\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 61.0246 0.0551352 0.0275676 0.999620i \(-0.491224\pi\)
0.0275676 + 0.999620i \(0.491224\pi\)
\(108\) 0 0
\(109\) −142.000 −0.124781 −0.0623905 0.998052i \(-0.519872\pi\)
−0.0623905 + 0.998052i \(0.519872\pi\)
\(110\) 0 0
\(111\) −741.000 −0.633627
\(112\) 0 0
\(113\) −2332.01 −1.94139 −0.970695 0.240314i \(-0.922750\pi\)
−0.970695 + 0.240314i \(0.922750\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −557.939 −0.440867
\(118\) 0 0
\(119\) 228.000 0.175636
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −1656.38 −1.21423
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −976.393 −0.682212 −0.341106 0.940025i \(-0.610801\pi\)
−0.341106 + 0.940025i \(0.610801\pi\)
\(128\) 0 0
\(129\) 1330.00 0.907752
\(130\) 0 0
\(131\) 774.000 0.516219 0.258110 0.966116i \(-0.416900\pi\)
0.258110 + 0.966116i \(0.416900\pi\)
\(132\) 0 0
\(133\) 592.810 0.386490
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −39.2301 −0.0244646 −0.0122323 0.999925i \(-0.503894\pi\)
−0.0122323 + 0.999925i \(0.503894\pi\)
\(138\) 0 0
\(139\) 2986.00 1.82208 0.911040 0.412317i \(-0.135280\pi\)
0.911040 + 0.412317i \(0.135280\pi\)
\(140\) 0 0
\(141\) 1330.00 0.794370
\(142\) 0 0
\(143\) −767.166 −0.448627
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1163.83 −0.652998
\(148\) 0 0
\(149\) −1546.00 −0.850022 −0.425011 0.905188i \(-0.639730\pi\)
−0.425011 + 0.905188i \(0.639730\pi\)
\(150\) 0 0
\(151\) 3150.00 1.69764 0.848819 0.528683i \(-0.177314\pi\)
0.848819 + 0.528683i \(0.177314\pi\)
\(152\) 0 0
\(153\) 209.227 0.110556
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −501.273 −0.254815 −0.127408 0.991850i \(-0.540666\pi\)
−0.127408 + 0.991850i \(0.540666\pi\)
\(158\) 0 0
\(159\) 1976.00 0.985579
\(160\) 0 0
\(161\) −1026.00 −0.502237
\(162\) 0 0
\(163\) −932.804 −0.448239 −0.224119 0.974562i \(-0.571951\pi\)
−0.224119 + 0.974562i \(0.571951\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1952.79 −0.904857 −0.452429 0.891801i \(-0.649442\pi\)
−0.452429 + 0.891801i \(0.649442\pi\)
\(168\) 0 0
\(169\) 2667.00 1.21393
\(170\) 0 0
\(171\) 544.000 0.243279
\(172\) 0 0
\(173\) 2345.09 1.03060 0.515300 0.857010i \(-0.327681\pi\)
0.515300 + 0.857010i \(0.327681\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −623.323 −0.264699
\(178\) 0 0
\(179\) 699.000 0.291875 0.145938 0.989294i \(-0.453380\pi\)
0.145938 + 0.989294i \(0.453380\pi\)
\(180\) 0 0
\(181\) −2603.00 −1.06895 −0.534474 0.845185i \(-0.679490\pi\)
−0.534474 + 0.845185i \(0.679490\pi\)
\(182\) 0 0
\(183\) 2946.62 1.19027
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 287.687 0.112502
\(188\) 0 0
\(189\) 1330.00 0.511869
\(190\) 0 0
\(191\) 1329.00 0.503472 0.251736 0.967796i \(-0.418999\pi\)
0.251736 + 0.967796i \(0.418999\pi\)
\(192\) 0 0
\(193\) 1394.85 0.520225 0.260112 0.965578i \(-0.416240\pi\)
0.260112 + 0.965578i \(0.416240\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2327.65 0.841819 0.420909 0.907103i \(-0.361711\pi\)
0.420909 + 0.907103i \(0.361711\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.00284977 −0.00142489 0.999999i \(-0.500454\pi\)
−0.00142489 + 0.999999i \(0.500454\pi\)
\(200\) 0 0
\(201\) 2299.00 0.806761
\(202\) 0 0
\(203\) −2266.63 −0.783675
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −941.522 −0.316137
\(208\) 0 0
\(209\) 748.000 0.247561
\(210\) 0 0
\(211\) −2840.00 −0.926605 −0.463303 0.886200i \(-0.653336\pi\)
−0.463303 + 0.886200i \(0.653336\pi\)
\(212\) 0 0
\(213\) 4511.46 1.45127
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1525.61 −0.477260
\(218\) 0 0
\(219\) 1444.00 0.445555
\(220\) 0 0
\(221\) −1824.00 −0.555183
\(222\) 0 0
\(223\) −4154.03 −1.24742 −0.623710 0.781656i \(-0.714375\pi\)
−0.623710 + 0.781656i \(0.714375\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2467.14 −0.721364 −0.360682 0.932689i \(-0.617456\pi\)
−0.360682 + 0.932689i \(0.617456\pi\)
\(228\) 0 0
\(229\) 5813.00 1.67744 0.838720 0.544563i \(-0.183304\pi\)
0.838720 + 0.544563i \(0.183304\pi\)
\(230\) 0 0
\(231\) 418.000 0.119058
\(232\) 0 0
\(233\) −2022.53 −0.568671 −0.284335 0.958725i \(-0.591773\pi\)
−0.284335 + 0.958725i \(0.591773\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 950.240 0.260442
\(238\) 0 0
\(239\) −246.000 −0.0665792 −0.0332896 0.999446i \(-0.510598\pi\)
−0.0332896 + 0.999446i \(0.510598\pi\)
\(240\) 0 0
\(241\) 3388.00 0.905561 0.452781 0.891622i \(-0.350432\pi\)
0.452781 + 0.891622i \(0.350432\pi\)
\(242\) 0 0
\(243\) 2162.01 0.570754
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4742.48 −1.22169
\(248\) 0 0
\(249\) −3306.00 −0.841403
\(250\) 0 0
\(251\) 1091.00 0.274356 0.137178 0.990546i \(-0.456197\pi\)
0.137178 + 0.990546i \(0.456197\pi\)
\(252\) 0 0
\(253\) −1294.59 −0.321701
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4132.24 1.00296 0.501482 0.865168i \(-0.332788\pi\)
0.501482 + 0.865168i \(0.332788\pi\)
\(258\) 0 0
\(259\) 1482.00 0.355548
\(260\) 0 0
\(261\) −2080.00 −0.493290
\(262\) 0 0
\(263\) −6982.96 −1.63721 −0.818607 0.574353i \(-0.805254\pi\)
−0.818607 + 0.574353i \(0.805254\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5575.03 1.27785
\(268\) 0 0
\(269\) −314.000 −0.0711707 −0.0355853 0.999367i \(-0.511330\pi\)
−0.0355853 + 0.999367i \(0.511330\pi\)
\(270\) 0 0
\(271\) 3180.00 0.712809 0.356405 0.934332i \(-0.384003\pi\)
0.356405 + 0.934332i \(0.384003\pi\)
\(272\) 0 0
\(273\) −2650.21 −0.587539
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3879.42 −0.841487 −0.420743 0.907180i \(-0.638231\pi\)
−0.420743 + 0.907180i \(0.638231\pi\)
\(278\) 0 0
\(279\) −1400.00 −0.300415
\(280\) 0 0
\(281\) −4218.00 −0.895462 −0.447731 0.894168i \(-0.647768\pi\)
−0.447731 + 0.894168i \(0.647768\pi\)
\(282\) 0 0
\(283\) 8351.65 1.75425 0.877127 0.480258i \(-0.159457\pi\)
0.877127 + 0.480258i \(0.159457\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3312.76 0.681346
\(288\) 0 0
\(289\) −4229.00 −0.860778
\(290\) 0 0
\(291\) 3363.00 0.677466
\(292\) 0 0
\(293\) 6363.99 1.26890 0.634451 0.772963i \(-0.281226\pi\)
0.634451 + 0.772963i \(0.281226\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1678.18 0.327871
\(298\) 0 0
\(299\) 8208.00 1.58756
\(300\) 0 0
\(301\) −2660.00 −0.509368
\(302\) 0 0
\(303\) 2780.98 0.527271
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6608.09 1.22848 0.614240 0.789119i \(-0.289462\pi\)
0.614240 + 0.789119i \(0.289462\pi\)
\(308\) 0 0
\(309\) −2318.00 −0.426752
\(310\) 0 0
\(311\) 5812.00 1.05971 0.529853 0.848090i \(-0.322247\pi\)
0.529853 + 0.848090i \(0.322247\pi\)
\(312\) 0 0
\(313\) −5888.87 −1.06345 −0.531723 0.846918i \(-0.678455\pi\)
−0.531723 + 0.846918i \(0.678455\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8966.26 1.58863 0.794314 0.607507i \(-0.207831\pi\)
0.794314 + 0.607507i \(0.207831\pi\)
\(318\) 0 0
\(319\) −2860.00 −0.501973
\(320\) 0 0
\(321\) 266.000 0.0462513
\(322\) 0 0
\(323\) 1778.43 0.306361
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −618.964 −0.104675
\(328\) 0 0
\(329\) −2660.00 −0.445746
\(330\) 0 0
\(331\) 8683.00 1.44188 0.720938 0.693000i \(-0.243711\pi\)
0.720938 + 0.693000i \(0.243711\pi\)
\(332\) 0 0
\(333\) 1359.98 0.223803
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5152.22 −0.832817 −0.416408 0.909178i \(-0.636711\pi\)
−0.416408 + 0.909178i \(0.636711\pi\)
\(338\) 0 0
\(339\) −10165.0 −1.62858
\(340\) 0 0
\(341\) −1925.00 −0.305703
\(342\) 0 0
\(343\) 5317.86 0.837135
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −52.3068 −0.00809215 −0.00404607 0.999992i \(-0.501288\pi\)
−0.00404607 + 0.999992i \(0.501288\pi\)
\(348\) 0 0
\(349\) 2126.00 0.326081 0.163040 0.986619i \(-0.447870\pi\)
0.163040 + 0.986619i \(0.447870\pi\)
\(350\) 0 0
\(351\) −10640.0 −1.61801
\(352\) 0 0
\(353\) −7588.84 −1.14423 −0.572115 0.820173i \(-0.693877\pi\)
−0.572115 + 0.820173i \(0.693877\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 993.829 0.147336
\(358\) 0 0
\(359\) 4156.00 0.610990 0.305495 0.952194i \(-0.401178\pi\)
0.305495 + 0.952194i \(0.401178\pi\)
\(360\) 0 0
\(361\) −2235.00 −0.325849
\(362\) 0 0
\(363\) 527.427 0.0762610
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −13299.0 −1.89156 −0.945780 0.324809i \(-0.894700\pi\)
−0.945780 + 0.324809i \(0.894700\pi\)
\(368\) 0 0
\(369\) 3040.00 0.428878
\(370\) 0 0
\(371\) −3952.00 −0.553039
\(372\) 0 0
\(373\) −5622.98 −0.780555 −0.390277 0.920697i \(-0.627621\pi\)
−0.390277 + 0.920697i \(0.627621\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18133.0 2.47718
\(378\) 0 0
\(379\) 631.000 0.0855206 0.0427603 0.999085i \(-0.486385\pi\)
0.0427603 + 0.999085i \(0.486385\pi\)
\(380\) 0 0
\(381\) −4256.00 −0.572287
\(382\) 0 0
\(383\) −7091.93 −0.946164 −0.473082 0.881019i \(-0.656858\pi\)
−0.473082 + 0.881019i \(0.656858\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2440.98 −0.320626
\(388\) 0 0
\(389\) −5613.00 −0.731595 −0.365797 0.930694i \(-0.619204\pi\)
−0.365797 + 0.930694i \(0.619204\pi\)
\(390\) 0 0
\(391\) −3078.00 −0.398110
\(392\) 0 0
\(393\) 3373.79 0.433041
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −14018.2 −1.77218 −0.886088 0.463516i \(-0.846588\pi\)
−0.886088 + 0.463516i \(0.846588\pi\)
\(398\) 0 0
\(399\) 2584.00 0.324215
\(400\) 0 0
\(401\) −162.000 −0.0201743 −0.0100871 0.999949i \(-0.503211\pi\)
−0.0100871 + 0.999949i \(0.503211\pi\)
\(402\) 0 0
\(403\) 12204.9 1.50861
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1869.97 0.227742
\(408\) 0 0
\(409\) −14142.0 −1.70972 −0.854862 0.518856i \(-0.826358\pi\)
−0.854862 + 0.518856i \(0.826358\pi\)
\(410\) 0 0
\(411\) −171.000 −0.0205226
\(412\) 0 0
\(413\) 1246.65 0.148531
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13015.7 1.52849
\(418\) 0 0
\(419\) −11532.0 −1.34457 −0.672285 0.740292i \(-0.734687\pi\)
−0.672285 + 0.740292i \(0.734687\pi\)
\(420\) 0 0
\(421\) −3430.00 −0.397074 −0.198537 0.980093i \(-0.563619\pi\)
−0.198537 + 0.980093i \(0.563619\pi\)
\(422\) 0 0
\(423\) −2440.98 −0.280578
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5893.23 −0.667900
\(428\) 0 0
\(429\) −3344.00 −0.376340
\(430\) 0 0
\(431\) 8658.00 0.967613 0.483806 0.875175i \(-0.339254\pi\)
0.483806 + 0.875175i \(0.339254\pi\)
\(432\) 0 0
\(433\) −745.372 −0.0827258 −0.0413629 0.999144i \(-0.513170\pi\)
−0.0413629 + 0.999144i \(0.513170\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8002.94 −0.876047
\(438\) 0 0
\(439\) 4532.00 0.492712 0.246356 0.969179i \(-0.420767\pi\)
0.246356 + 0.969179i \(0.420767\pi\)
\(440\) 0 0
\(441\) 2136.00 0.230645
\(442\) 0 0
\(443\) 4310.95 0.462346 0.231173 0.972913i \(-0.425744\pi\)
0.231173 + 0.972913i \(0.425744\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6738.86 −0.713058
\(448\) 0 0
\(449\) −2333.00 −0.245214 −0.122607 0.992455i \(-0.539125\pi\)
−0.122607 + 0.992455i \(0.539125\pi\)
\(450\) 0 0
\(451\) 4180.00 0.436427
\(452\) 0 0
\(453\) 13730.5 1.42410
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6921.93 0.708521 0.354261 0.935147i \(-0.384733\pi\)
0.354261 + 0.935147i \(0.384733\pi\)
\(458\) 0 0
\(459\) 3990.00 0.405746
\(460\) 0 0
\(461\) 5332.00 0.538690 0.269345 0.963044i \(-0.413193\pi\)
0.269345 + 0.963044i \(0.413193\pi\)
\(462\) 0 0
\(463\) −9314.97 −0.934996 −0.467498 0.883994i \(-0.654845\pi\)
−0.467498 + 0.883994i \(0.654845\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17623.0 −1.74625 −0.873123 0.487501i \(-0.837909\pi\)
−0.873123 + 0.487501i \(0.837909\pi\)
\(468\) 0 0
\(469\) −4598.00 −0.452699
\(470\) 0 0
\(471\) −2185.00 −0.213757
\(472\) 0 0
\(473\) −3356.35 −0.326269
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3626.60 −0.348115
\(478\) 0 0
\(479\) −13748.0 −1.31140 −0.655702 0.755020i \(-0.727627\pi\)
−0.655702 + 0.755020i \(0.727627\pi\)
\(480\) 0 0
\(481\) −11856.0 −1.12388
\(482\) 0 0
\(483\) −4472.23 −0.421312
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4101.72 0.381657 0.190828 0.981623i \(-0.438883\pi\)
0.190828 + 0.981623i \(0.438883\pi\)
\(488\) 0 0
\(489\) −4066.00 −0.376014
\(490\) 0 0
\(491\) −4016.00 −0.369123 −0.184562 0.982821i \(-0.559087\pi\)
−0.184562 + 0.982821i \(0.559087\pi\)
\(492\) 0 0
\(493\) −6799.88 −0.621199
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9022.92 −0.814353
\(498\) 0 0
\(499\) −14236.0 −1.27714 −0.638568 0.769565i \(-0.720473\pi\)
−0.638568 + 0.769565i \(0.720473\pi\)
\(500\) 0 0
\(501\) −8512.00 −0.759058
\(502\) 0 0
\(503\) 18089.4 1.60351 0.801757 0.597650i \(-0.203899\pi\)
0.801757 + 0.597650i \(0.203899\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11625.2 1.01833
\(508\) 0 0
\(509\) −8379.00 −0.729652 −0.364826 0.931076i \(-0.618871\pi\)
−0.364826 + 0.931076i \(0.618871\pi\)
\(510\) 0 0
\(511\) −2888.00 −0.250015
\(512\) 0 0
\(513\) 10374.2 0.892848
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3356.35 −0.285517
\(518\) 0 0
\(519\) 10222.0 0.864539
\(520\) 0 0
\(521\) −20277.0 −1.70509 −0.852545 0.522654i \(-0.824942\pi\)
−0.852545 + 0.522654i \(0.824942\pi\)
\(522\) 0 0
\(523\) 12152.6 1.01605 0.508027 0.861341i \(-0.330375\pi\)
0.508027 + 0.861341i \(0.330375\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4576.84 −0.378312
\(528\) 0 0
\(529\) 1684.00 0.138407
\(530\) 0 0
\(531\) 1144.00 0.0934941
\(532\) 0 0
\(533\) −26502.1 −2.15372
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3046.87 0.244846
\(538\) 0 0
\(539\) 2937.00 0.234704
\(540\) 0 0
\(541\) −4796.00 −0.381139 −0.190569 0.981674i \(-0.561033\pi\)
−0.190569 + 0.981674i \(0.561033\pi\)
\(542\) 0 0
\(543\) −11346.2 −0.896708
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16790.5 1.31245 0.656224 0.754566i \(-0.272153\pi\)
0.656224 + 0.754566i \(0.272153\pi\)
\(548\) 0 0
\(549\) −5408.00 −0.420415
\(550\) 0 0
\(551\) −17680.0 −1.36696
\(552\) 0 0
\(553\) −1900.48 −0.146142
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9859.83 −0.750044 −0.375022 0.927016i \(-0.622365\pi\)
−0.375022 + 0.927016i \(0.622365\pi\)
\(558\) 0 0
\(559\) 21280.0 1.61010
\(560\) 0 0
\(561\) 1254.00 0.0943742
\(562\) 0 0
\(563\) −10095.2 −0.755706 −0.377853 0.925866i \(-0.623338\pi\)
−0.377853 + 0.925866i \(0.623338\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3914.29 0.289920
\(568\) 0 0
\(569\) −12240.0 −0.901806 −0.450903 0.892573i \(-0.648898\pi\)
−0.450903 + 0.892573i \(0.648898\pi\)
\(570\) 0 0
\(571\) 21224.0 1.55551 0.777755 0.628567i \(-0.216358\pi\)
0.777755 + 0.628567i \(0.216358\pi\)
\(572\) 0 0
\(573\) 5792.98 0.422347
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 972.034 0.0701323 0.0350661 0.999385i \(-0.488836\pi\)
0.0350661 + 0.999385i \(0.488836\pi\)
\(578\) 0 0
\(579\) 6080.00 0.436401
\(580\) 0 0
\(581\) 6612.00 0.472138
\(582\) 0 0
\(583\) −4986.58 −0.354242
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7662.94 −0.538814 −0.269407 0.963026i \(-0.586828\pi\)
−0.269407 + 0.963026i \(0.586828\pi\)
\(588\) 0 0
\(589\) −11900.0 −0.832480
\(590\) 0 0
\(591\) 10146.0 0.706177
\(592\) 0 0
\(593\) −14541.3 −1.00698 −0.503490 0.864001i \(-0.667951\pi\)
−0.503490 + 0.864001i \(0.667951\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −34.8712 −0.00239059
\(598\) 0 0
\(599\) −20520.0 −1.39971 −0.699853 0.714286i \(-0.746751\pi\)
−0.699853 + 0.714286i \(0.746751\pi\)
\(600\) 0 0
\(601\) 12726.0 0.863734 0.431867 0.901937i \(-0.357855\pi\)
0.431867 + 0.901937i \(0.357855\pi\)
\(602\) 0 0
\(603\) −4219.41 −0.284955
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3338.92 0.223266 0.111633 0.993750i \(-0.464392\pi\)
0.111633 + 0.993750i \(0.464392\pi\)
\(608\) 0 0
\(609\) −9880.00 −0.657402
\(610\) 0 0
\(611\) 21280.0 1.40900
\(612\) 0 0
\(613\) 5457.34 0.359576 0.179788 0.983705i \(-0.442459\pi\)
0.179788 + 0.983705i \(0.442459\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1272.80 0.0830485 0.0415243 0.999137i \(-0.486779\pi\)
0.0415243 + 0.999137i \(0.486779\pi\)
\(618\) 0 0
\(619\) −17307.0 −1.12379 −0.561896 0.827208i \(-0.689928\pi\)
−0.561896 + 0.827208i \(0.689928\pi\)
\(620\) 0 0
\(621\) −17955.0 −1.16024
\(622\) 0 0
\(623\) −11150.1 −0.717043
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3260.46 0.207672
\(628\) 0 0
\(629\) 4446.00 0.281834
\(630\) 0 0
\(631\) 24977.0 1.57578 0.787891 0.615814i \(-0.211173\pi\)
0.787891 + 0.615814i \(0.211173\pi\)
\(632\) 0 0
\(633\) −12379.3 −0.777302
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −18621.2 −1.15824
\(638\) 0 0
\(639\) −8280.00 −0.512601
\(640\) 0 0
\(641\) −23151.0 −1.42654 −0.713268 0.700891i \(-0.752786\pi\)
−0.713268 + 0.700891i \(0.752786\pi\)
\(642\) 0 0
\(643\) −710.501 −0.0435761 −0.0217880 0.999763i \(-0.506936\pi\)
−0.0217880 + 0.999763i \(0.506936\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3081.74 0.187258 0.0936289 0.995607i \(-0.470153\pi\)
0.0936289 + 0.995607i \(0.470153\pi\)
\(648\) 0 0
\(649\) 1573.00 0.0951397
\(650\) 0 0
\(651\) −6650.00 −0.400360
\(652\) 0 0
\(653\) 579.734 0.0347423 0.0173712 0.999849i \(-0.494470\pi\)
0.0173712 + 0.999849i \(0.494470\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2650.21 −0.157374
\(658\) 0 0
\(659\) −3458.00 −0.204408 −0.102204 0.994763i \(-0.532589\pi\)
−0.102204 + 0.994763i \(0.532589\pi\)
\(660\) 0 0
\(661\) −12983.0 −0.763964 −0.381982 0.924170i \(-0.624758\pi\)
−0.381982 + 0.924170i \(0.624758\pi\)
\(662\) 0 0
\(663\) −7950.63 −0.465727
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 30599.5 1.77634
\(668\) 0 0
\(669\) −18107.0 −1.04642
\(670\) 0 0
\(671\) −7436.00 −0.427815
\(672\) 0 0
\(673\) −31357.9 −1.79608 −0.898038 0.439918i \(-0.855007\pi\)
−0.898038 + 0.439918i \(0.855007\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8796.26 −0.499361 −0.249681 0.968328i \(-0.580326\pi\)
−0.249681 + 0.968328i \(0.580326\pi\)
\(678\) 0 0
\(679\) −6726.00 −0.380148
\(680\) 0 0
\(681\) −10754.0 −0.605131
\(682\) 0 0
\(683\) 6355.27 0.356044 0.178022 0.984027i \(-0.443030\pi\)
0.178022 + 0.984027i \(0.443030\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 25338.3 1.40716
\(688\) 0 0
\(689\) 31616.0 1.74815
\(690\) 0 0
\(691\) 11819.0 0.650674 0.325337 0.945598i \(-0.394522\pi\)
0.325337 + 0.945598i \(0.394522\pi\)
\(692\) 0 0
\(693\) −767.166 −0.0420523
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9938.29 0.540085
\(698\) 0 0
\(699\) −8816.00 −0.477041
\(700\) 0 0
\(701\) 6978.00 0.375971 0.187985 0.982172i \(-0.439804\pi\)
0.187985 + 0.982172i \(0.439804\pi\)
\(702\) 0 0
\(703\) 11559.8 0.620179
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5561.96 −0.295868
\(708\) 0 0
\(709\) 17947.0 0.950654 0.475327 0.879809i \(-0.342330\pi\)
0.475327 + 0.879809i \(0.342330\pi\)
\(710\) 0 0
\(711\) −1744.00 −0.0919903
\(712\) 0 0
\(713\) 20595.8 1.08179
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1072.29 −0.0558513
\(718\) 0 0
\(719\) 905.000 0.0469413 0.0234707 0.999725i \(-0.492528\pi\)
0.0234707 + 0.999725i \(0.492528\pi\)
\(720\) 0 0
\(721\) 4636.00 0.239464
\(722\) 0 0
\(723\) 14767.9 0.759649
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 30961.3 1.57949 0.789745 0.613435i \(-0.210213\pi\)
0.789745 + 0.613435i \(0.210213\pi\)
\(728\) 0 0
\(729\) 21547.0 1.09470
\(730\) 0 0
\(731\) −7980.00 −0.403763
\(732\) 0 0
\(733\) 23520.6 1.18520 0.592602 0.805496i \(-0.298101\pi\)
0.592602 + 0.805496i \(0.298101\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5801.69 −0.289970
\(738\) 0 0
\(739\) 30654.0 1.52588 0.762940 0.646469i \(-0.223755\pi\)
0.762940 + 0.646469i \(0.223755\pi\)
\(740\) 0 0
\(741\) −20672.0 −1.02484
\(742\) 0 0
\(743\) 40154.2 1.98266 0.991328 0.131408i \(-0.0419499\pi\)
0.991328 + 0.131408i \(0.0419499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6067.59 0.297191
\(748\) 0 0
\(749\) −532.000 −0.0259531
\(750\) 0 0
\(751\) 19735.0 0.958909 0.479454 0.877567i \(-0.340835\pi\)
0.479454 + 0.877567i \(0.340835\pi\)
\(752\) 0 0
\(753\) 4755.56 0.230149
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −10583.4 −0.508138 −0.254069 0.967186i \(-0.581769\pi\)
−0.254069 + 0.967186i \(0.581769\pi\)
\(758\) 0 0
\(759\) −5643.00 −0.269866
\(760\) 0 0
\(761\) 6876.00 0.327536 0.163768 0.986499i \(-0.447635\pi\)
0.163768 + 0.986499i \(0.447635\pi\)
\(762\) 0 0
\(763\) 1237.93 0.0587365
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9973.16 −0.469505
\(768\) 0 0
\(769\) 16956.0 0.795122 0.397561 0.917576i \(-0.369857\pi\)
0.397561 + 0.917576i \(0.369857\pi\)
\(770\) 0 0
\(771\) 18012.0 0.841357
\(772\) 0 0
\(773\) 29954.4 1.39377 0.696884 0.717184i \(-0.254569\pi\)
0.696884 + 0.717184i \(0.254569\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6459.89 0.298259
\(778\) 0 0
\(779\) 25840.0 1.18846
\(780\) 0 0
\(781\) −11385.0 −0.521623
\(782\) 0 0
\(783\) −39666.0 −1.81040
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1098.44 −0.0497525 −0.0248763 0.999691i \(-0.507919\pi\)
−0.0248763 + 0.999691i \(0.507919\pi\)
\(788\) 0 0
\(789\) −30438.0 −1.37341
\(790\) 0 0
\(791\) 20330.0 0.913845
\(792\) 0 0
\(793\) 47145.9 2.11122
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14118.5 −0.627481 −0.313740 0.949509i \(-0.601582\pi\)
−0.313740 + 0.949509i \(0.601582\pi\)
\(798\) 0 0
\(799\) −7980.00 −0.353332
\(800\) 0 0
\(801\) −10232.0 −0.451348
\(802\) 0 0
\(803\) −3644.04 −0.160144
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1368.69 −0.0597030
\(808\) 0 0
\(809\) −30076.0 −1.30707 −0.653533 0.756898i \(-0.726714\pi\)
−0.653533 + 0.756898i \(0.726714\pi\)
\(810\) 0 0
\(811\) −7062.00 −0.305771 −0.152886 0.988244i \(-0.548857\pi\)
−0.152886 + 0.988244i \(0.548857\pi\)
\(812\) 0 0
\(813\) 13861.3 0.597954
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −20748.4 −0.888486
\(818\) 0 0
\(819\) 4864.00 0.207524
\(820\) 0 0
\(821\) −14090.0 −0.598958 −0.299479 0.954103i \(-0.596813\pi\)
−0.299479 + 0.954103i \(0.596813\pi\)
\(822\) 0 0
\(823\) −10300.1 −0.436255 −0.218128 0.975920i \(-0.569995\pi\)
−0.218128 + 0.975920i \(0.569995\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16110.5 0.677408 0.338704 0.940893i \(-0.390011\pi\)
0.338704 + 0.940893i \(0.390011\pi\)
\(828\) 0 0
\(829\) −14611.0 −0.612136 −0.306068 0.952010i \(-0.599014\pi\)
−0.306068 + 0.952010i \(0.599014\pi\)
\(830\) 0 0
\(831\) −16910.0 −0.705898
\(832\) 0 0
\(833\) 6982.96 0.290450
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −26698.3 −1.10254
\(838\) 0 0
\(839\) 37259.0 1.53316 0.766581 0.642147i \(-0.221956\pi\)
0.766581 + 0.642147i \(0.221956\pi\)
\(840\) 0 0
\(841\) 43211.0 1.77174
\(842\) 0 0
\(843\) −18385.8 −0.751177
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1054.85 −0.0427924
\(848\) 0 0
\(849\) 36404.0 1.47159
\(850\) 0 0
\(851\) −20007.0 −0.805912
\(852\) 0 0
\(853\) −5239.40 −0.210309 −0.105154 0.994456i \(-0.533534\pi\)
−0.105154 + 0.994456i \(0.533534\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26781.1 −1.06747 −0.533736 0.845651i \(-0.679213\pi\)
−0.533736 + 0.845651i \(0.679213\pi\)
\(858\) 0 0
\(859\) 29955.0 1.18982 0.594908 0.803794i \(-0.297189\pi\)
0.594908 + 0.803794i \(0.297189\pi\)
\(860\) 0 0
\(861\) 14440.0 0.571561
\(862\) 0 0
\(863\) 14462.8 0.570475 0.285238 0.958457i \(-0.407927\pi\)
0.285238 + 0.958457i \(0.407927\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −18433.8 −0.722081
\(868\) 0 0
\(869\) −2398.00 −0.0936094
\(870\) 0 0
\(871\) 36784.0 1.43097
\(872\) 0 0
\(873\) −6172.20 −0.239287
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24898.0 0.958662 0.479331 0.877634i \(-0.340879\pi\)
0.479331 + 0.877634i \(0.340879\pi\)
\(878\) 0 0
\(879\) 27740.0 1.06444
\(880\) 0 0
\(881\) −19987.0 −0.764335 −0.382168 0.924093i \(-0.624822\pi\)
−0.382168 + 0.924093i \(0.624822\pi\)
\(882\) 0 0
\(883\) −5466.06 −0.208321 −0.104161 0.994560i \(-0.533216\pi\)
−0.104161 + 0.994560i \(0.533216\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25586.7 −0.968567 −0.484283 0.874911i \(-0.660920\pi\)
−0.484283 + 0.874911i \(0.660920\pi\)
\(888\) 0 0
\(889\) 8512.00 0.321129
\(890\) 0 0
\(891\) 4939.00 0.185705
\(892\) 0 0
\(893\) −20748.4 −0.777511
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 35777.8 1.33176
\(898\) 0 0
\(899\) 45500.0 1.68800
\(900\) 0 0
\(901\) −11856.0 −0.438380
\(902\) 0 0
\(903\) −11594.7 −0.427294
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1368.69 0.0501067 0.0250533 0.999686i \(-0.492024\pi\)
0.0250533 + 0.999686i \(0.492024\pi\)
\(908\) 0 0
\(909\) −5104.00 −0.186237
\(910\) 0 0
\(911\) −20068.0 −0.729838 −0.364919 0.931039i \(-0.618903\pi\)
−0.364919 + 0.931039i \(0.618903\pi\)
\(912\) 0 0
\(913\) 8342.93 0.302421
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6747.58 −0.242993
\(918\) 0 0
\(919\) −10946.0 −0.392900 −0.196450 0.980514i \(-0.562941\pi\)
−0.196450 + 0.980514i \(0.562941\pi\)
\(920\) 0 0
\(921\) 28804.0 1.03054
\(922\) 0 0
\(923\) 72183.4 2.57415
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4254.29 0.150733
\(928\) 0 0
\(929\) −33338.0 −1.17738 −0.588689 0.808360i \(-0.700356\pi\)
−0.588689 + 0.808360i \(0.700356\pi\)
\(930\) 0 0
\(931\) 18156.0 0.639139
\(932\) 0 0
\(933\) 25333.9 0.888955
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −51487.3 −1.79511 −0.897555 0.440903i \(-0.854658\pi\)
−0.897555 + 0.440903i \(0.854658\pi\)
\(938\) 0 0
\(939\) −25669.0 −0.892094
\(940\) 0 0
\(941\) −21590.0 −0.747942 −0.373971 0.927440i \(-0.622004\pi\)
−0.373971 + 0.927440i \(0.622004\pi\)
\(942\) 0 0
\(943\) −44722.3 −1.54439
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23420.4 0.803653 0.401827 0.915716i \(-0.368375\pi\)
0.401827 + 0.915716i \(0.368375\pi\)
\(948\) 0 0
\(949\) 23104.0 0.790292
\(950\) 0 0
\(951\) 39083.0 1.33265
\(952\) 0 0
\(953\) −22221.7 −0.755331 −0.377665 0.925942i \(-0.623273\pi\)
−0.377665 + 0.925942i \(0.623273\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −12466.5 −0.421090
\(958\) 0 0
\(959\) 342.000 0.0115159
\(960\) 0 0
\(961\) 834.000 0.0279950
\(962\) 0 0
\(963\) −488.197 −0.0163364
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −15883.8 −0.528221 −0.264110 0.964492i \(-0.585078\pi\)
−0.264110 + 0.964492i \(0.585078\pi\)
\(968\) 0 0
\(969\) 7752.00 0.256997
\(970\) 0 0
\(971\) −13965.0 −0.461543 −0.230771 0.973008i \(-0.574125\pi\)
−0.230771 + 0.973008i \(0.574125\pi\)
\(972\) 0 0
\(973\) −26031.3 −0.857684
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36418.6 1.19256 0.596282 0.802775i \(-0.296644\pi\)
0.596282 + 0.802775i \(0.296644\pi\)
\(978\) 0 0
\(979\) −14069.0 −0.459292
\(980\) 0 0
\(981\) 1136.00 0.0369722
\(982\) 0 0
\(983\) −49844.0 −1.61727 −0.808635 0.588310i \(-0.799793\pi\)
−0.808635 + 0.588310i \(0.799793\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −11594.7 −0.373923
\(988\) 0 0
\(989\) 35910.0 1.15457
\(990\) 0 0
\(991\) 55024.0 1.76377 0.881884 0.471466i \(-0.156275\pi\)
0.881884 + 0.471466i \(0.156275\pi\)
\(992\) 0 0
\(993\) 37848.3 1.20955
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51740.1 1.64356 0.821779 0.569807i \(-0.192982\pi\)
0.821779 + 0.569807i \(0.192982\pi\)
\(998\) 0 0
\(999\) 25935.0 0.821368
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.4.a.f.1.2 2
5.2 odd 4 220.4.b.a.89.1 2
5.3 odd 4 220.4.b.a.89.2 yes 2
5.4 even 2 inner 1100.4.a.f.1.1 2
15.2 even 4 1980.4.c.a.1189.1 2
15.8 even 4 1980.4.c.a.1189.2 2
20.3 even 4 880.4.b.b.529.1 2
20.7 even 4 880.4.b.b.529.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.4.b.a.89.1 2 5.2 odd 4
220.4.b.a.89.2 yes 2 5.3 odd 4
880.4.b.b.529.1 2 20.3 even 4
880.4.b.b.529.2 2 20.7 even 4
1100.4.a.f.1.1 2 5.4 even 2 inner
1100.4.a.f.1.2 2 1.1 even 1 trivial
1980.4.c.a.1189.1 2 15.2 even 4
1980.4.c.a.1189.2 2 15.8 even 4