Properties

Label 1100.3.j.b.1057.1
Level $1100$
Weight $3$
Character 1100.1057
Analytic conductor $29.973$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(793,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.793"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} - 6 x^{17} + 1579 x^{16} - 3420 x^{15} + 3700 x^{14} - 2060 x^{13} + \cdots + 30250000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1057.1
Root \(-3.95222 - 3.95222i\) of defining polynomial
Character \(\chi\) \(=\) 1100.1057
Dual form 1100.3.j.b.793.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.95222 + 3.95222i) q^{3} +(7.19082 + 7.19082i) q^{7} -22.2400i q^{9} +3.31662 q^{11} +(9.00000 - 9.00000i) q^{13} +(-12.3662 - 12.3662i) q^{17} +16.8538i q^{19} -56.8393 q^{21} +(-24.1259 + 24.1259i) q^{23} +(52.3274 + 52.3274i) q^{27} +13.5506i q^{29} -38.7747 q^{31} +(-13.1080 + 13.1080i) q^{33} +(-17.2266 - 17.2266i) q^{37} +71.1399i q^{39} +18.8877 q^{41} +(-46.8590 + 46.8590i) q^{43} +(-24.1412 - 24.1412i) q^{47} +54.4157i q^{49} +97.7481 q^{51} +(42.8165 - 42.8165i) q^{53} +(-66.6098 - 66.6098i) q^{57} +5.26637i q^{59} -95.5197 q^{61} +(159.924 - 159.924i) q^{63} +(-41.5998 - 41.5998i) q^{67} -190.702i q^{69} -9.80142 q^{71} +(-57.7709 + 57.7709i) q^{73} +(23.8492 + 23.8492i) q^{77} +42.6126i q^{79} -213.458 q^{81} +(82.6490 - 82.6490i) q^{83} +(-53.5550 - 53.5550i) q^{87} +24.6536i q^{89} +129.435 q^{91} +(153.246 - 153.246i) q^{93} +(19.7682 + 19.7682i) q^{97} -73.7618i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} + 28 q^{13} - 24 q^{17} - 106 q^{23} + 50 q^{27} + 88 q^{31} + 22 q^{33} - 2 q^{37} + 72 q^{41} - 168 q^{43} - 108 q^{47} + 112 q^{51} + 164 q^{53} - 48 q^{57} - 280 q^{61} + 348 q^{63} - 110 q^{67}+ \cdots + 542 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.95222 + 3.95222i −1.31741 + 1.31741i −0.401582 + 0.915823i \(0.631540\pi\)
−0.915823 + 0.401582i \(0.868460\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.19082 + 7.19082i 1.02726 + 1.02726i 0.999618 + 0.0276416i \(0.00879973\pi\)
0.0276416 + 0.999618i \(0.491200\pi\)
\(8\) 0 0
\(9\) 22.2400i 2.47111i
\(10\) 0 0
\(11\) 3.31662 0.301511
\(12\) 0 0
\(13\) 9.00000 9.00000i 0.692308 0.692308i −0.270431 0.962739i \(-0.587166\pi\)
0.962739 + 0.270431i \(0.0871663\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −12.3662 12.3662i −0.727426 0.727426i 0.242680 0.970106i \(-0.421973\pi\)
−0.970106 + 0.242680i \(0.921973\pi\)
\(18\) 0 0
\(19\) 16.8538i 0.887041i 0.896264 + 0.443521i \(0.146271\pi\)
−0.896264 + 0.443521i \(0.853729\pi\)
\(20\) 0 0
\(21\) −56.8393 −2.70663
\(22\) 0 0
\(23\) −24.1259 + 24.1259i −1.04895 + 1.04895i −0.0502150 + 0.998738i \(0.515991\pi\)
−0.998738 + 0.0502150i \(0.984009\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 52.3274 + 52.3274i 1.93805 + 1.93805i
\(28\) 0 0
\(29\) 13.5506i 0.467263i 0.972325 + 0.233631i \(0.0750609\pi\)
−0.972325 + 0.233631i \(0.924939\pi\)
\(30\) 0 0
\(31\) −38.7747 −1.25080 −0.625399 0.780305i \(-0.715064\pi\)
−0.625399 + 0.780305i \(0.715064\pi\)
\(32\) 0 0
\(33\) −13.1080 + 13.1080i −0.397213 + 0.397213i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −17.2266 17.2266i −0.465583 0.465583i 0.434897 0.900480i \(-0.356785\pi\)
−0.900480 + 0.434897i \(0.856785\pi\)
\(38\) 0 0
\(39\) 71.1399i 1.82410i
\(40\) 0 0
\(41\) 18.8877 0.460677 0.230338 0.973111i \(-0.426017\pi\)
0.230338 + 0.973111i \(0.426017\pi\)
\(42\) 0 0
\(43\) −46.8590 + 46.8590i −1.08975 + 1.08975i −0.0941909 + 0.995554i \(0.530026\pi\)
−0.995554 + 0.0941909i \(0.969974\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −24.1412 24.1412i −0.513644 0.513644i 0.401997 0.915641i \(-0.368316\pi\)
−0.915641 + 0.401997i \(0.868316\pi\)
\(48\) 0 0
\(49\) 54.4157i 1.11052i
\(50\) 0 0
\(51\) 97.7481 1.91663
\(52\) 0 0
\(53\) 42.8165 42.8165i 0.807858 0.807858i −0.176451 0.984309i \(-0.556462\pi\)
0.984309 + 0.176451i \(0.0564618\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −66.6098 66.6098i −1.16859 1.16859i
\(58\) 0 0
\(59\) 5.26637i 0.0892606i 0.999004 + 0.0446303i \(0.0142110\pi\)
−0.999004 + 0.0446303i \(0.985789\pi\)
\(60\) 0 0
\(61\) −95.5197 −1.56590 −0.782948 0.622087i \(-0.786285\pi\)
−0.782948 + 0.622087i \(0.786285\pi\)
\(62\) 0 0
\(63\) 159.924 159.924i 2.53847 2.53847i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −41.5998 41.5998i −0.620892 0.620892i 0.324868 0.945759i \(-0.394680\pi\)
−0.945759 + 0.324868i \(0.894680\pi\)
\(68\) 0 0
\(69\) 190.702i 2.76379i
\(70\) 0 0
\(71\) −9.80142 −0.138048 −0.0690241 0.997615i \(-0.521989\pi\)
−0.0690241 + 0.997615i \(0.521989\pi\)
\(72\) 0 0
\(73\) −57.7709 + 57.7709i −0.791383 + 0.791383i −0.981719 0.190336i \(-0.939042\pi\)
0.190336 + 0.981719i \(0.439042\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 23.8492 + 23.8492i 0.309730 + 0.309730i
\(78\) 0 0
\(79\) 42.6126i 0.539400i 0.962944 + 0.269700i \(0.0869245\pi\)
−0.962944 + 0.269700i \(0.913075\pi\)
\(80\) 0 0
\(81\) −213.458 −2.63529
\(82\) 0 0
\(83\) 82.6490 82.6490i 0.995771 0.995771i −0.00422058 0.999991i \(-0.501343\pi\)
0.999991 + 0.00422058i \(0.00134346\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −53.5550 53.5550i −0.615574 0.615574i
\(88\) 0 0
\(89\) 24.6536i 0.277006i 0.990362 + 0.138503i \(0.0442291\pi\)
−0.990362 + 0.138503i \(0.955771\pi\)
\(90\) 0 0
\(91\) 129.435 1.42236
\(92\) 0 0
\(93\) 153.246 153.246i 1.64781 1.64781i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 19.7682 + 19.7682i 0.203796 + 0.203796i 0.801624 0.597828i \(-0.203970\pi\)
−0.597828 + 0.801624i \(0.703970\pi\)
\(98\) 0 0
\(99\) 73.7618i 0.745069i
\(100\) 0 0
\(101\) −52.8786 −0.523550 −0.261775 0.965129i \(-0.584308\pi\)
−0.261775 + 0.965129i \(0.584308\pi\)
\(102\) 0 0
\(103\) −29.0656 + 29.0656i −0.282190 + 0.282190i −0.833982 0.551792i \(-0.813944\pi\)
0.551792 + 0.833982i \(0.313944\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −43.8578 43.8578i −0.409886 0.409886i 0.471813 0.881699i \(-0.343600\pi\)
−0.881699 + 0.471813i \(0.843600\pi\)
\(108\) 0 0
\(109\) 35.4173i 0.324929i 0.986714 + 0.162464i \(0.0519443\pi\)
−0.986714 + 0.162464i \(0.948056\pi\)
\(110\) 0 0
\(111\) 136.166 1.22672
\(112\) 0 0
\(113\) −10.7512 + 10.7512i −0.0951437 + 0.0951437i −0.753077 0.657933i \(-0.771431\pi\)
0.657933 + 0.753077i \(0.271431\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −200.160 200.160i −1.71077 1.71077i
\(118\) 0 0
\(119\) 177.847i 1.49451i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 0 0
\(123\) −74.6485 + 74.6485i −0.606898 + 0.606898i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −108.059 108.059i −0.850856 0.850856i 0.139382 0.990239i \(-0.455488\pi\)
−0.990239 + 0.139382i \(0.955488\pi\)
\(128\) 0 0
\(129\) 370.394i 2.87127i
\(130\) 0 0
\(131\) −189.077 −1.44333 −0.721666 0.692241i \(-0.756623\pi\)
−0.721666 + 0.692241i \(0.756623\pi\)
\(132\) 0 0
\(133\) −121.192 + 121.192i −0.911221 + 0.911221i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0927 + 12.0927i 0.0882678 + 0.0882678i 0.749862 0.661594i \(-0.230120\pi\)
−0.661594 + 0.749862i \(0.730120\pi\)
\(138\) 0 0
\(139\) 165.100i 1.18777i −0.804550 0.593885i \(-0.797593\pi\)
0.804550 0.593885i \(-0.202407\pi\)
\(140\) 0 0
\(141\) 190.823 1.35335
\(142\) 0 0
\(143\) 29.8496 29.8496i 0.208739 0.208739i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −215.063 215.063i −1.46301 1.46301i
\(148\) 0 0
\(149\) 210.631i 1.41363i −0.707396 0.706817i \(-0.750130\pi\)
0.707396 0.706817i \(-0.249870\pi\)
\(150\) 0 0
\(151\) −39.1302 −0.259140 −0.129570 0.991570i \(-0.541360\pi\)
−0.129570 + 0.991570i \(0.541360\pi\)
\(152\) 0 0
\(153\) −275.025 + 275.025i −1.79755 + 1.79755i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 150.537 + 150.537i 0.958833 + 0.958833i 0.999185 0.0403528i \(-0.0128482\pi\)
−0.0403528 + 0.999185i \(0.512848\pi\)
\(158\) 0 0
\(159\) 338.440i 2.12855i
\(160\) 0 0
\(161\) −346.970 −2.15509
\(162\) 0 0
\(163\) 146.432 146.432i 0.898355 0.898355i −0.0969357 0.995291i \(-0.530904\pi\)
0.995291 + 0.0969357i \(0.0309041\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 169.812 + 169.812i 1.01684 + 1.01684i 0.999856 + 0.0169844i \(0.00540656\pi\)
0.0169844 + 0.999856i \(0.494593\pi\)
\(168\) 0 0
\(169\) 6.99993i 0.0414197i
\(170\) 0 0
\(171\) 374.828 2.19198
\(172\) 0 0
\(173\) 81.6275 81.6275i 0.471836 0.471836i −0.430673 0.902508i \(-0.641724\pi\)
0.902508 + 0.430673i \(0.141724\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −20.8138 20.8138i −0.117592 0.117592i
\(178\) 0 0
\(179\) 232.603i 1.29946i −0.760166 0.649729i \(-0.774882\pi\)
0.760166 0.649729i \(-0.225118\pi\)
\(180\) 0 0
\(181\) −44.3335 −0.244936 −0.122468 0.992472i \(-0.539081\pi\)
−0.122468 + 0.992472i \(0.539081\pi\)
\(182\) 0 0
\(183\) 377.514 377.514i 2.06292 2.06292i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −41.0142 41.0142i −0.219327 0.219327i
\(188\) 0 0
\(189\) 752.554i 3.98176i
\(190\) 0 0
\(191\) 81.1677 0.424962 0.212481 0.977165i \(-0.431846\pi\)
0.212481 + 0.977165i \(0.431846\pi\)
\(192\) 0 0
\(193\) −84.8626 + 84.8626i −0.439702 + 0.439702i −0.891912 0.452209i \(-0.850636\pi\)
0.452209 + 0.891912i \(0.350636\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 37.0287 + 37.0287i 0.187963 + 0.187963i 0.794815 0.606852i \(-0.207568\pi\)
−0.606852 + 0.794815i \(0.707568\pi\)
\(198\) 0 0
\(199\) 106.137i 0.533350i 0.963786 + 0.266675i \(0.0859251\pi\)
−0.963786 + 0.266675i \(0.914075\pi\)
\(200\) 0 0
\(201\) 328.822 1.63593
\(202\) 0 0
\(203\) −97.4400 + 97.4400i −0.480000 + 0.480000i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 536.561 + 536.561i 2.59208 + 2.59208i
\(208\) 0 0
\(209\) 55.8977i 0.267453i
\(210\) 0 0
\(211\) −306.354 −1.45191 −0.725957 0.687740i \(-0.758603\pi\)
−0.725957 + 0.687740i \(0.758603\pi\)
\(212\) 0 0
\(213\) 38.7373 38.7373i 0.181865 0.181865i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −278.822 278.822i −1.28489 1.28489i
\(218\) 0 0
\(219\) 456.646i 2.08514i
\(220\) 0 0
\(221\) −222.592 −1.00721
\(222\) 0 0
\(223\) 51.4818 51.4818i 0.230860 0.230860i −0.582192 0.813052i \(-0.697805\pi\)
0.813052 + 0.582192i \(0.197805\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 97.2323 + 97.2323i 0.428336 + 0.428336i 0.888061 0.459725i \(-0.152052\pi\)
−0.459725 + 0.888061i \(0.652052\pi\)
\(228\) 0 0
\(229\) 102.149i 0.446067i 0.974811 + 0.223034i \(0.0715960\pi\)
−0.974811 + 0.223034i \(0.928404\pi\)
\(230\) 0 0
\(231\) −188.515 −0.816081
\(232\) 0 0
\(233\) −126.126 + 126.126i −0.541311 + 0.541311i −0.923913 0.382602i \(-0.875028\pi\)
0.382602 + 0.923913i \(0.375028\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −168.414 168.414i −0.710608 0.710608i
\(238\) 0 0
\(239\) 68.4687i 0.286480i −0.989688 0.143240i \(-0.954248\pi\)
0.989688 0.143240i \(-0.0457521\pi\)
\(240\) 0 0
\(241\) −104.075 −0.431847 −0.215924 0.976410i \(-0.569276\pi\)
−0.215924 + 0.976410i \(0.569276\pi\)
\(242\) 0 0
\(243\) 372.686 372.686i 1.53369 1.53369i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 151.684 + 151.684i 0.614105 + 0.614105i
\(248\) 0 0
\(249\) 653.293i 2.62367i
\(250\) 0 0
\(251\) 79.1882 0.315491 0.157746 0.987480i \(-0.449577\pi\)
0.157746 + 0.987480i \(0.449577\pi\)
\(252\) 0 0
\(253\) −80.0167 + 80.0167i −0.316271 + 0.316271i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 218.723 + 218.723i 0.851064 + 0.851064i 0.990264 0.139201i \(-0.0444533\pi\)
−0.139201 + 0.990264i \(0.544453\pi\)
\(258\) 0 0
\(259\) 247.746i 0.956550i
\(260\) 0 0
\(261\) 301.366 1.15466
\(262\) 0 0
\(263\) −318.361 + 318.361i −1.21050 + 1.21050i −0.239637 + 0.970863i \(0.577028\pi\)
−0.970863 + 0.239637i \(0.922972\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −97.4362 97.4362i −0.364930 0.364930i
\(268\) 0 0
\(269\) 200.013i 0.743544i 0.928324 + 0.371772i \(0.121250\pi\)
−0.928324 + 0.371772i \(0.878750\pi\)
\(270\) 0 0
\(271\) 394.460 1.45557 0.727785 0.685805i \(-0.240550\pi\)
0.727785 + 0.685805i \(0.240550\pi\)
\(272\) 0 0
\(273\) −511.554 + 511.554i −1.87382 + 1.87382i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 98.3770 + 98.3770i 0.355151 + 0.355151i 0.862022 0.506871i \(-0.169198\pi\)
−0.506871 + 0.862022i \(0.669198\pi\)
\(278\) 0 0
\(279\) 862.351i 3.09086i
\(280\) 0 0
\(281\) −51.3994 −0.182916 −0.0914580 0.995809i \(-0.529153\pi\)
−0.0914580 + 0.995809i \(0.529153\pi\)
\(282\) 0 0
\(283\) −333.612 + 333.612i −1.17884 + 1.17884i −0.198801 + 0.980040i \(0.563705\pi\)
−0.980040 + 0.198801i \(0.936295\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 135.818 + 135.818i 0.473235 + 0.473235i
\(288\) 0 0
\(289\) 16.8480i 0.0582975i
\(290\) 0 0
\(291\) −156.256 −0.536963
\(292\) 0 0
\(293\) 306.323 306.323i 1.04547 1.04547i 0.0465563 0.998916i \(-0.485175\pi\)
0.998916 0.0465563i \(-0.0148247\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 173.550 + 173.550i 0.584345 + 0.584345i
\(298\) 0 0
\(299\) 434.267i 1.45240i
\(300\) 0 0
\(301\) −673.910 −2.23890
\(302\) 0 0
\(303\) 208.987 208.987i 0.689728 0.689728i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 110.822 + 110.822i 0.360985 + 0.360985i 0.864175 0.503191i \(-0.167841\pi\)
−0.503191 + 0.864175i \(0.667841\pi\)
\(308\) 0 0
\(309\) 229.747i 0.743518i
\(310\) 0 0
\(311\) −530.500 −1.70579 −0.852894 0.522085i \(-0.825154\pi\)
−0.852894 + 0.522085i \(0.825154\pi\)
\(312\) 0 0
\(313\) −385.274 + 385.274i −1.23091 + 1.23091i −0.267293 + 0.963615i \(0.586129\pi\)
−0.963615 + 0.267293i \(0.913871\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −369.972 369.972i −1.16710 1.16710i −0.982885 0.184218i \(-0.941025\pi\)
−0.184218 0.982885i \(-0.558975\pi\)
\(318\) 0 0
\(319\) 44.9423i 0.140885i
\(320\) 0 0
\(321\) 346.671 1.07997
\(322\) 0 0
\(323\) 208.418 208.418i 0.645257 0.645257i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −139.977 139.977i −0.428063 0.428063i
\(328\) 0 0
\(329\) 347.191i 1.05529i
\(330\) 0 0
\(331\) −434.871 −1.31381 −0.656904 0.753974i \(-0.728134\pi\)
−0.656904 + 0.753974i \(0.728134\pi\)
\(332\) 0 0
\(333\) −383.119 + 383.119i −1.15051 + 1.15051i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −380.700 380.700i −1.12967 1.12967i −0.990230 0.139442i \(-0.955469\pi\)
−0.139442 0.990230i \(-0.544531\pi\)
\(338\) 0 0
\(339\) 84.9825i 0.250686i
\(340\) 0 0
\(341\) −128.601 −0.377130
\(342\) 0 0
\(343\) −38.9432 + 38.9432i −0.113537 + 0.113537i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.29216 7.29216i −0.0210149 0.0210149i 0.696521 0.717536i \(-0.254730\pi\)
−0.717536 + 0.696521i \(0.754730\pi\)
\(348\) 0 0
\(349\) 390.203i 1.11806i 0.829147 + 0.559030i \(0.188826\pi\)
−0.829147 + 0.559030i \(0.811174\pi\)
\(350\) 0 0
\(351\) 941.893 2.68346
\(352\) 0 0
\(353\) 302.231 302.231i 0.856178 0.856178i −0.134708 0.990885i \(-0.543010\pi\)
0.990885 + 0.134708i \(0.0430096\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 702.889 + 702.889i 1.96888 + 1.96888i
\(358\) 0 0
\(359\) 184.439i 0.513758i −0.966444 0.256879i \(-0.917306\pi\)
0.966444 0.256879i \(-0.0826942\pi\)
\(360\) 0 0
\(361\) 76.9501 0.213158
\(362\) 0 0
\(363\) −43.4744 + 43.4744i −0.119764 + 0.119764i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 121.109 + 121.109i 0.329998 + 0.329998i 0.852586 0.522588i \(-0.175033\pi\)
−0.522588 + 0.852586i \(0.675033\pi\)
\(368\) 0 0
\(369\) 420.064i 1.13838i
\(370\) 0 0
\(371\) 615.771 1.65976
\(372\) 0 0
\(373\) 57.2108 57.2108i 0.153380 0.153380i −0.626246 0.779626i \(-0.715409\pi\)
0.779626 + 0.626246i \(0.215409\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 121.956 + 121.956i 0.323490 + 0.323490i
\(378\) 0 0
\(379\) 502.705i 1.32640i 0.748443 + 0.663199i \(0.230802\pi\)
−0.748443 + 0.663199i \(0.769198\pi\)
\(380\) 0 0
\(381\) 854.143 2.24185
\(382\) 0 0
\(383\) −341.372 + 341.372i −0.891310 + 0.891310i −0.994646 0.103336i \(-0.967048\pi\)
0.103336 + 0.994646i \(0.467048\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1042.15 + 1042.15i 2.69288 + 2.69288i
\(388\) 0 0
\(389\) 495.697i 1.27429i −0.770746 0.637143i \(-0.780116\pi\)
0.770746 0.637143i \(-0.219884\pi\)
\(390\) 0 0
\(391\) 596.694 1.52607
\(392\) 0 0
\(393\) 747.271 747.271i 1.90145 1.90145i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −321.828 321.828i −0.810651 0.810651i 0.174081 0.984731i \(-0.444305\pi\)
−0.984731 + 0.174081i \(0.944305\pi\)
\(398\) 0 0
\(399\) 957.957i 2.40090i
\(400\) 0 0
\(401\) −148.698 −0.370819 −0.185410 0.982661i \(-0.559361\pi\)
−0.185410 + 0.982661i \(0.559361\pi\)
\(402\) 0 0
\(403\) −348.973 + 348.973i −0.865937 + 0.865937i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −57.1341 57.1341i −0.140379 0.140379i
\(408\) 0 0
\(409\) 414.463i 1.01336i −0.862135 0.506678i \(-0.830873\pi\)
0.862135 0.506678i \(-0.169127\pi\)
\(410\) 0 0
\(411\) −95.5858 −0.232569
\(412\) 0 0
\(413\) −37.8695 + 37.8695i −0.0916938 + 0.0916938i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 652.511 + 652.511i 1.56477 + 1.56477i
\(418\) 0 0
\(419\) 463.547i 1.10632i −0.833076 0.553159i \(-0.813422\pi\)
0.833076 0.553159i \(-0.186578\pi\)
\(420\) 0 0
\(421\) 801.861 1.90466 0.952329 0.305074i \(-0.0986813\pi\)
0.952329 + 0.305074i \(0.0986813\pi\)
\(422\) 0 0
\(423\) −536.902 + 536.902i −1.26927 + 1.26927i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −686.865 686.865i −1.60858 1.60858i
\(428\) 0 0
\(429\) 235.944i 0.549987i
\(430\) 0 0
\(431\) −163.062 −0.378335 −0.189167 0.981945i \(-0.560579\pi\)
−0.189167 + 0.981945i \(0.560579\pi\)
\(432\) 0 0
\(433\) 65.2169 65.2169i 0.150616 0.150616i −0.627777 0.778393i \(-0.716035\pi\)
0.778393 + 0.627777i \(0.216035\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −406.613 406.613i −0.930465 0.930465i
\(438\) 0 0
\(439\) 104.810i 0.238748i −0.992849 0.119374i \(-0.961911\pi\)
0.992849 0.119374i \(-0.0380887\pi\)
\(440\) 0 0
\(441\) 1210.21 2.74423
\(442\) 0 0
\(443\) 307.200 307.200i 0.693454 0.693454i −0.269536 0.962990i \(-0.586870\pi\)
0.962990 + 0.269536i \(0.0868703\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 832.461 + 832.461i 1.86233 + 1.86233i
\(448\) 0 0
\(449\) 716.991i 1.59686i 0.602087 + 0.798430i \(0.294336\pi\)
−0.602087 + 0.798430i \(0.705664\pi\)
\(450\) 0 0
\(451\) 62.6436 0.138899
\(452\) 0 0
\(453\) 154.651 154.651i 0.341393 0.341393i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 81.7651 + 81.7651i 0.178917 + 0.178917i 0.790884 0.611967i \(-0.209621\pi\)
−0.611967 + 0.790884i \(0.709621\pi\)
\(458\) 0 0
\(459\) 1294.19i 2.81958i
\(460\) 0 0
\(461\) 577.600 1.25293 0.626464 0.779450i \(-0.284502\pi\)
0.626464 + 0.779450i \(0.284502\pi\)
\(462\) 0 0
\(463\) −275.856 + 275.856i −0.595802 + 0.595802i −0.939193 0.343391i \(-0.888424\pi\)
0.343391 + 0.939193i \(0.388424\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −521.011 521.011i −1.11566 1.11566i −0.992371 0.123284i \(-0.960657\pi\)
−0.123284 0.992371i \(-0.539343\pi\)
\(468\) 0 0
\(469\) 598.272i 1.27563i
\(470\) 0 0
\(471\) −1189.91 −2.52634
\(472\) 0 0
\(473\) −155.414 + 155.414i −0.328570 + 0.328570i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −952.239 952.239i −1.99631 1.99631i
\(478\) 0 0
\(479\) 226.368i 0.472585i −0.971682 0.236292i \(-0.924068\pi\)
0.971682 0.236292i \(-0.0759323\pi\)
\(480\) 0 0
\(481\) −310.078 −0.644654
\(482\) 0 0
\(483\) 1371.30 1371.30i 2.83913 2.83913i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −273.568 273.568i −0.561740 0.561740i 0.368061 0.929802i \(-0.380022\pi\)
−0.929802 + 0.368061i \(0.880022\pi\)
\(488\) 0 0
\(489\) 1157.46i 2.36699i
\(490\) 0 0
\(491\) −125.180 −0.254948 −0.127474 0.991842i \(-0.540687\pi\)
−0.127474 + 0.991842i \(0.540687\pi\)
\(492\) 0 0
\(493\) 167.570 167.570i 0.339899 0.339899i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −70.4802 70.4802i −0.141811 0.141811i
\(498\) 0 0
\(499\) 17.3246i 0.0347186i 0.999849 + 0.0173593i \(0.00552591\pi\)
−0.999849 + 0.0173593i \(0.994474\pi\)
\(500\) 0 0
\(501\) −1342.27 −2.67918
\(502\) 0 0
\(503\) −440.004 + 440.004i −0.874759 + 0.874759i −0.992987 0.118227i \(-0.962279\pi\)
0.118227 + 0.992987i \(0.462279\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −27.6652 27.6652i −0.0545665 0.0545665i
\(508\) 0 0
\(509\) 71.8708i 0.141200i 0.997505 + 0.0706000i \(0.0224914\pi\)
−0.997505 + 0.0706000i \(0.977509\pi\)
\(510\) 0 0
\(511\) −830.840 −1.62591
\(512\) 0 0
\(513\) −881.914 + 881.914i −1.71913 + 1.71913i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −80.0675 80.0675i −0.154869 0.154869i
\(518\) 0 0
\(519\) 645.219i 1.24320i
\(520\) 0 0
\(521\) 531.546 1.02024 0.510121 0.860103i \(-0.329601\pi\)
0.510121 + 0.860103i \(0.329601\pi\)
\(522\) 0 0
\(523\) 541.418 541.418i 1.03522 1.03522i 0.0358591 0.999357i \(-0.488583\pi\)
0.999357 0.0358591i \(-0.0114168\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 479.498 + 479.498i 0.909863 + 0.909863i
\(528\) 0 0
\(529\) 635.121i 1.20061i
\(530\) 0 0
\(531\) 117.124 0.220573
\(532\) 0 0
\(533\) 169.990 169.990i 0.318930 0.318930i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 919.298 + 919.298i 1.71191 + 1.71191i
\(538\) 0 0
\(539\) 180.476i 0.334836i
\(540\) 0 0
\(541\) −623.541 −1.15257 −0.576286 0.817248i \(-0.695498\pi\)
−0.576286 + 0.817248i \(0.695498\pi\)
\(542\) 0 0
\(543\) 175.215 175.215i 0.322680 0.322680i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −450.982 450.982i −0.824464 0.824464i 0.162281 0.986745i \(-0.448115\pi\)
−0.986745 + 0.162281i \(0.948115\pi\)
\(548\) 0 0
\(549\) 2124.36i 3.86951i
\(550\) 0 0
\(551\) −228.379 −0.414481
\(552\) 0 0
\(553\) −306.419 + 306.419i −0.554104 + 0.554104i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −313.715 313.715i −0.563222 0.563222i 0.366999 0.930221i \(-0.380385\pi\)
−0.930221 + 0.366999i \(0.880385\pi\)
\(558\) 0 0
\(559\) 843.463i 1.50888i
\(560\) 0 0
\(561\) 324.194 0.577886
\(562\) 0 0
\(563\) −461.442 + 461.442i −0.819613 + 0.819613i −0.986052 0.166439i \(-0.946773\pi\)
0.166439 + 0.986052i \(0.446773\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1534.94 1534.94i −2.70712 2.70712i
\(568\) 0 0
\(569\) 929.437i 1.63346i 0.577022 + 0.816729i \(0.304215\pi\)
−0.577022 + 0.816729i \(0.695785\pi\)
\(570\) 0 0
\(571\) 207.841 0.363994 0.181997 0.983299i \(-0.441744\pi\)
0.181997 + 0.983299i \(0.441744\pi\)
\(572\) 0 0
\(573\) −320.792 + 320.792i −0.559847 + 0.559847i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 183.868 + 183.868i 0.318663 + 0.318663i 0.848253 0.529591i \(-0.177654\pi\)
−0.529591 + 0.848253i \(0.677654\pi\)
\(578\) 0 0
\(579\) 670.790i 1.15853i
\(580\) 0 0
\(581\) 1188.63 2.04583
\(582\) 0 0
\(583\) 142.006 142.006i 0.243578 0.243578i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 721.923 + 721.923i 1.22985 + 1.22985i 0.964019 + 0.265833i \(0.0856469\pi\)
0.265833 + 0.964019i \(0.414353\pi\)
\(588\) 0 0
\(589\) 653.501i 1.10951i
\(590\) 0 0
\(591\) −292.691 −0.495247
\(592\) 0 0
\(593\) 57.9020 57.9020i 0.0976425 0.0976425i −0.656598 0.754241i \(-0.728005\pi\)
0.754241 + 0.656598i \(0.228005\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −419.475 419.475i −0.702639 0.702639i
\(598\) 0 0
\(599\) 649.630i 1.08452i −0.840210 0.542262i \(-0.817568\pi\)
0.840210 0.542262i \(-0.182432\pi\)
\(600\) 0 0
\(601\) −123.798 −0.205986 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(602\) 0 0
\(603\) −925.179 + 925.179i −1.53429 + 1.53429i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 238.329 + 238.329i 0.392635 + 0.392635i 0.875626 0.482991i \(-0.160449\pi\)
−0.482991 + 0.875626i \(0.660449\pi\)
\(608\) 0 0
\(609\) 770.208i 1.26471i
\(610\) 0 0
\(611\) −434.543 −0.711199
\(612\) 0 0
\(613\) −265.136 + 265.136i −0.432521 + 0.432521i −0.889485 0.456964i \(-0.848937\pi\)
0.456964 + 0.889485i \(0.348937\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −296.733 296.733i −0.480929 0.480929i 0.424499 0.905428i \(-0.360450\pi\)
−0.905428 + 0.424499i \(0.860450\pi\)
\(618\) 0 0
\(619\) 263.457i 0.425617i 0.977094 + 0.212809i \(0.0682611\pi\)
−0.977094 + 0.212809i \(0.931739\pi\)
\(620\) 0 0
\(621\) −2524.89 −4.06585
\(622\) 0 0
\(623\) −177.279 + 177.279i −0.284557 + 0.284557i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −220.920 220.920i −0.352344 0.352344i
\(628\) 0 0
\(629\) 426.056i 0.677355i
\(630\) 0 0
\(631\) −415.483 −0.658451 −0.329226 0.944251i \(-0.606788\pi\)
−0.329226 + 0.944251i \(0.606788\pi\)
\(632\) 0 0
\(633\) 1210.78 1210.78i 1.91276 1.91276i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 489.741 + 489.741i 0.768825 + 0.768825i
\(638\) 0 0
\(639\) 217.984i 0.341133i
\(640\) 0 0
\(641\) 136.257 0.212569 0.106284 0.994336i \(-0.466105\pi\)
0.106284 + 0.994336i \(0.466105\pi\)
\(642\) 0 0
\(643\) 388.304 388.304i 0.603895 0.603895i −0.337449 0.941344i \(-0.609564\pi\)
0.941344 + 0.337449i \(0.109564\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 325.747 + 325.747i 0.503474 + 0.503474i 0.912516 0.409042i \(-0.134137\pi\)
−0.409042 + 0.912516i \(0.634137\pi\)
\(648\) 0 0
\(649\) 17.4666i 0.0269131i
\(650\) 0 0
\(651\) 2203.93 3.38545
\(652\) 0 0
\(653\) 352.232 352.232i 0.539406 0.539406i −0.383948 0.923355i \(-0.625436\pi\)
0.923355 + 0.383948i \(0.125436\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1284.83 + 1284.83i 1.95560 + 1.95560i
\(658\) 0 0
\(659\) 9.72092i 0.0147510i 0.999973 + 0.00737551i \(0.00234772\pi\)
−0.999973 + 0.00737551i \(0.997652\pi\)
\(660\) 0 0
\(661\) −489.500 −0.740544 −0.370272 0.928923i \(-0.620736\pi\)
−0.370272 + 0.928923i \(0.620736\pi\)
\(662\) 0 0
\(663\) 879.733 879.733i 1.32690 1.32690i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −326.921 326.921i −0.490137 0.490137i
\(668\) 0 0
\(669\) 406.934i 0.608272i
\(670\) 0 0
\(671\) −316.803 −0.472136
\(672\) 0 0
\(673\) −714.517 + 714.517i −1.06169 + 1.06169i −0.0637224 + 0.997968i \(0.520297\pi\)
−0.997968 + 0.0637224i \(0.979703\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 498.782 + 498.782i 0.736753 + 0.736753i 0.971948 0.235195i \(-0.0755730\pi\)
−0.235195 + 0.971948i \(0.575573\pi\)
\(678\) 0 0
\(679\) 284.299i 0.418702i
\(680\) 0 0
\(681\) −768.566 −1.12858
\(682\) 0 0
\(683\) 40.5043 40.5043i 0.0593035 0.0593035i −0.676833 0.736137i \(-0.736648\pi\)
0.736137 + 0.676833i \(0.236648\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −403.716 403.716i −0.587651 0.587651i
\(688\) 0 0
\(689\) 770.697i 1.11857i
\(690\) 0 0
\(691\) 10.5277 0.0152354 0.00761771 0.999971i \(-0.497575\pi\)
0.00761771 + 0.999971i \(0.497575\pi\)
\(692\) 0 0
\(693\) 530.408 530.408i 0.765379 0.765379i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −233.571 233.571i −0.335108 0.335108i
\(698\) 0 0
\(699\) 996.951i 1.42625i
\(700\) 0 0
\(701\) 411.838 0.587500 0.293750 0.955882i \(-0.405097\pi\)
0.293750 + 0.955882i \(0.405097\pi\)
\(702\) 0 0
\(703\) 290.333 290.333i 0.412991 0.412991i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −380.240 380.240i −0.537822 0.537822i
\(708\) 0 0
\(709\) 632.010i 0.891411i 0.895180 + 0.445705i \(0.147047\pi\)
−0.895180 + 0.445705i \(0.852953\pi\)
\(710\) 0 0
\(711\) 947.705 1.33292
\(712\) 0 0
\(713\) 935.476 935.476i 1.31203 1.31203i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 270.603 + 270.603i 0.377410 + 0.377410i
\(718\) 0 0
\(719\) 339.623i 0.472354i 0.971710 + 0.236177i \(0.0758945\pi\)
−0.971710 + 0.236177i \(0.924105\pi\)
\(720\) 0 0
\(721\) −418.011 −0.579765
\(722\) 0 0
\(723\) 411.328 411.328i 0.568918 0.568918i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 889.248 + 889.248i 1.22318 + 1.22318i 0.966497 + 0.256678i \(0.0826281\pi\)
0.256678 + 0.966497i \(0.417372\pi\)
\(728\) 0 0
\(729\) 1024.75i 1.40569i
\(730\) 0 0
\(731\) 1158.94 1.58542
\(732\) 0 0
\(733\) 198.708 198.708i 0.271089 0.271089i −0.558450 0.829538i \(-0.688604\pi\)
0.829538 + 0.558450i \(0.188604\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −137.971 137.971i −0.187206 0.187206i
\(738\) 0 0
\(739\) 513.878i 0.695370i 0.937611 + 0.347685i \(0.113032\pi\)
−0.937611 + 0.347685i \(0.886968\pi\)
\(740\) 0 0
\(741\) −1198.98 −1.61805
\(742\) 0 0
\(743\) −272.464 + 272.464i −0.366708 + 0.366708i −0.866275 0.499567i \(-0.833492\pi\)
0.499567 + 0.866275i \(0.333492\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1838.11 1838.11i −2.46066 2.46066i
\(748\) 0 0
\(749\) 630.747i 0.842118i
\(750\) 0 0
\(751\) −904.450 −1.20433 −0.602164 0.798373i \(-0.705695\pi\)
−0.602164 + 0.798373i \(0.705695\pi\)
\(752\) 0 0
\(753\) −312.969 + 312.969i −0.415630 + 0.415630i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 821.722 + 821.722i 1.08550 + 1.08550i 0.995986 + 0.0895122i \(0.0285308\pi\)
0.0895122 + 0.995986i \(0.471469\pi\)
\(758\) 0 0
\(759\) 632.486i 0.833315i
\(760\) 0 0
\(761\) −279.035 −0.366668 −0.183334 0.983051i \(-0.558689\pi\)
−0.183334 + 0.983051i \(0.558689\pi\)
\(762\) 0 0
\(763\) −254.679 + 254.679i −0.333786 + 0.333786i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 47.3974 + 47.3974i 0.0617958 + 0.0617958i
\(768\) 0 0
\(769\) 1.86178i 0.00242104i −0.999999 0.00121052i \(-0.999615\pi\)
0.999999 0.00121052i \(-0.000385321\pi\)
\(770\) 0 0
\(771\) −1728.88 −2.24239
\(772\) 0 0
\(773\) −410.232 + 410.232i −0.530701 + 0.530701i −0.920781 0.390080i \(-0.872447\pi\)
0.390080 + 0.920781i \(0.372447\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 979.147 + 979.147i 1.26016 + 1.26016i
\(778\) 0 0
\(779\) 318.330i 0.408639i
\(780\) 0 0
\(781\) −32.5076 −0.0416231
\(782\) 0 0
\(783\) −709.069 + 709.069i −0.905580 + 0.905580i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −362.180 362.180i −0.460204 0.460204i 0.438519 0.898722i \(-0.355503\pi\)
−0.898722 + 0.438519i \(0.855503\pi\)
\(788\) 0 0
\(789\) 2516.47i 3.18944i
\(790\) 0 0
\(791\) −154.620 −0.195475
\(792\) 0 0
\(793\) −859.677 + 859.677i −1.08408 + 1.08408i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −530.618 530.618i −0.665769 0.665769i 0.290965 0.956734i \(-0.406024\pi\)
−0.956734 + 0.290965i \(0.906024\pi\)
\(798\) 0 0
\(799\) 597.073i 0.747275i
\(800\) 0 0
\(801\) 548.296 0.684514
\(802\) 0 0
\(803\) −191.604 + 191.604i −0.238611 + 0.238611i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −790.496 790.496i −0.979549 0.979549i
\(808\) 0 0
\(809\) 767.584i 0.948806i 0.880308 + 0.474403i \(0.157336\pi\)
−0.880308 + 0.474403i \(0.842664\pi\)
\(810\) 0 0
\(811\) 1160.22 1.43060 0.715302 0.698816i \(-0.246289\pi\)
0.715302 + 0.698816i \(0.246289\pi\)
\(812\) 0 0
\(813\) −1558.99 + 1558.99i −1.91758 + 1.91758i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −789.752 789.752i −0.966649 0.966649i
\(818\) 0 0
\(819\) 2878.63i 3.51481i
\(820\) 0 0
\(821\) 337.531 0.411121 0.205561 0.978644i \(-0.434098\pi\)
0.205561 + 0.978644i \(0.434098\pi\)
\(822\) 0 0
\(823\) −376.069 + 376.069i −0.456949 + 0.456949i −0.897653 0.440704i \(-0.854729\pi\)
0.440704 + 0.897653i \(0.354729\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1048.91 + 1048.91i 1.26833 + 1.26833i 0.946951 + 0.321378i \(0.104146\pi\)
0.321378 + 0.946951i \(0.395854\pi\)
\(828\) 0 0
\(829\) 100.841i 0.121642i 0.998149 + 0.0608208i \(0.0193718\pi\)
−0.998149 + 0.0608208i \(0.980628\pi\)
\(830\) 0 0
\(831\) −777.614 −0.935757
\(832\) 0 0
\(833\) 672.918 672.918i 0.807824 0.807824i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2028.98 2028.98i −2.42411 2.42411i
\(838\) 0 0
\(839\) 13.0660i 0.0155734i −0.999970 0.00778668i \(-0.997521\pi\)
0.999970 0.00778668i \(-0.00247860\pi\)
\(840\) 0 0
\(841\) 657.381 0.781666
\(842\) 0 0
\(843\) 203.141 203.141i 0.240974 0.240974i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 79.0990 + 79.0990i 0.0933872 + 0.0933872i
\(848\) 0 0
\(849\) 2637.01i 3.10602i
\(850\) 0 0
\(851\) 831.214 0.976750
\(852\) 0 0
\(853\) −904.060 + 904.060i −1.05986 + 1.05986i −0.0617686 + 0.998090i \(0.519674\pi\)
−0.998090 + 0.0617686i \(0.980326\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −515.656 515.656i −0.601699 0.601699i 0.339064 0.940763i \(-0.389890\pi\)
−0.940763 + 0.339064i \(0.889890\pi\)
\(858\) 0 0
\(859\) 1663.47i 1.93652i 0.249939 + 0.968261i \(0.419589\pi\)
−0.249939 + 0.968261i \(0.580411\pi\)
\(860\) 0 0
\(861\) −1073.57 −1.24688
\(862\) 0 0
\(863\) −28.4642 + 28.4642i −0.0329828 + 0.0329828i −0.723406 0.690423i \(-0.757424\pi\)
0.690423 + 0.723406i \(0.257424\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −66.5869 66.5869i −0.0768015 0.0768015i
\(868\) 0 0
\(869\) 141.330i 0.162635i
\(870\) 0 0
\(871\) −748.796 −0.859697
\(872\) 0 0
\(873\) 439.645 439.645i 0.503602 0.503602i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1127.16 1127.16i −1.28524 1.28524i −0.937644 0.347596i \(-0.886998\pi\)
−0.347596 0.937644i \(-0.613002\pi\)
\(878\) 0 0
\(879\) 2421.31i 2.75462i
\(880\) 0 0
\(881\) −355.371 −0.403372 −0.201686 0.979450i \(-0.564642\pi\)
−0.201686 + 0.979450i \(0.564642\pi\)
\(882\) 0 0
\(883\) 264.850 264.850i 0.299943 0.299943i −0.541048 0.840991i \(-0.681972\pi\)
0.840991 + 0.541048i \(0.181972\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 851.097 + 851.097i 0.959523 + 0.959523i 0.999212 0.0396890i \(-0.0126367\pi\)
−0.0396890 + 0.999212i \(0.512637\pi\)
\(888\) 0 0
\(889\) 1554.06i 1.74810i
\(890\) 0 0
\(891\) −707.961 −0.794569
\(892\) 0 0
\(893\) 406.871 406.871i 0.455623 0.455623i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1716.32 1716.32i −1.91340 1.91340i
\(898\) 0 0
\(899\) 525.422i 0.584451i
\(900\) 0 0
\(901\) −1058.96 −1.17531
\(902\) 0 0
\(903\) 2663.44 2663.44i 2.94954 2.94954i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 590.259 + 590.259i 0.650781 + 0.650781i 0.953181 0.302400i \(-0.0977877\pi\)
−0.302400 + 0.953181i \(0.597788\pi\)
\(908\) 0 0
\(909\) 1176.02i 1.29375i
\(910\) 0 0
\(911\) 617.826 0.678185 0.339092 0.940753i \(-0.389880\pi\)
0.339092 + 0.940753i \(0.389880\pi\)
\(912\) 0 0
\(913\) 274.116 274.116i 0.300236 0.300236i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1359.61 1359.61i −1.48268 1.48268i
\(918\) 0 0
\(919\) 1001.25i 1.08950i 0.838599 + 0.544750i \(0.183375\pi\)
−0.838599 + 0.544750i \(0.816625\pi\)
\(920\) 0 0
\(921\) −875.988 −0.951127
\(922\) 0 0
\(923\) −88.2128 + 88.2128i −0.0955718 + 0.0955718i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 646.419 + 646.419i 0.697324 + 0.697324i
\(928\) 0 0
\(929\) 1140.11i 1.22724i −0.789601 0.613621i \(-0.789712\pi\)
0.789601 0.613621i \(-0.210288\pi\)
\(930\) 0 0
\(931\) −917.110 −0.985081
\(932\) 0 0
\(933\) 2096.65 2096.65i 2.24721 2.24721i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55.8420 + 55.8420i 0.0595966 + 0.0595966i 0.736277 0.676680i \(-0.236582\pi\)
−0.676680 + 0.736277i \(0.736582\pi\)
\(938\) 0 0
\(939\) 3045.37i 3.24321i
\(940\) 0 0
\(941\) 557.134 0.592065 0.296033 0.955178i \(-0.404336\pi\)
0.296033 + 0.955178i \(0.404336\pi\)
\(942\) 0 0
\(943\) −455.685 + 455.685i −0.483229 + 0.483229i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −920.019 920.019i −0.971509 0.971509i 0.0280967 0.999605i \(-0.491055\pi\)
−0.999605 + 0.0280967i \(0.991055\pi\)
\(948\) 0 0
\(949\) 1039.88i 1.09576i
\(950\) 0 0
\(951\) 2924.42 3.07510
\(952\) 0 0
\(953\) 29.6394 29.6394i 0.0311012 0.0311012i −0.691385 0.722486i \(-0.742999\pi\)
0.722486 + 0.691385i \(0.242999\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −177.622 177.622i −0.185603 0.185603i
\(958\) 0 0
\(959\) 173.913i 0.181348i
\(960\) 0 0
\(961\) 542.479 0.564495
\(962\) 0 0
\(963\) −975.398 + 975.398i −1.01287 + 1.01287i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 501.846 + 501.846i 0.518972 + 0.518972i 0.917260 0.398288i \(-0.130396\pi\)
−0.398288 + 0.917260i \(0.630396\pi\)
\(968\) 0 0
\(969\) 1647.43i 1.70013i
\(970\) 0 0
\(971\) −281.520 −0.289927 −0.144964 0.989437i \(-0.546307\pi\)
−0.144964 + 0.989437i \(0.546307\pi\)
\(972\) 0 0
\(973\) 1187.20 1187.20i 1.22015 1.22015i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −503.792 503.792i −0.515652 0.515652i 0.400601 0.916253i \(-0.368801\pi\)
−0.916253 + 0.400601i \(0.868801\pi\)
\(978\) 0 0
\(979\) 81.7666i 0.0835206i
\(980\) 0 0
\(981\) 787.680 0.802936
\(982\) 0 0
\(983\) 385.480 385.480i 0.392147 0.392147i −0.483305 0.875452i \(-0.660564\pi\)
0.875452 + 0.483305i \(0.160564\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1372.17 + 1372.17i 1.39025 + 1.39025i
\(988\) 0 0
\(989\) 2261.04i 2.28618i
\(990\) 0 0
\(991\) −435.164 −0.439116 −0.219558 0.975599i \(-0.570462\pi\)
−0.219558 + 0.975599i \(0.570462\pi\)
\(992\) 0 0
\(993\) 1718.70 1718.70i 1.73082 1.73082i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 812.819 + 812.819i 0.815264 + 0.815264i 0.985418 0.170153i \(-0.0544263\pi\)
−0.170153 + 0.985418i \(0.554426\pi\)
\(998\) 0 0
\(999\) 1802.84i 1.80465i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.j.b.1057.1 20
5.2 odd 4 220.3.j.a.133.10 20
5.3 odd 4 inner 1100.3.j.b.793.1 20
5.4 even 2 220.3.j.a.177.10 yes 20
15.2 even 4 1980.3.s.a.793.1 20
15.14 odd 2 1980.3.s.a.397.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.j.a.133.10 20 5.2 odd 4
220.3.j.a.177.10 yes 20 5.4 even 2
1100.3.j.b.793.1 20 5.3 odd 4 inner
1100.3.j.b.1057.1 20 1.1 even 1 trivial
1980.3.s.a.397.1 20 15.14 odd 2
1980.3.s.a.793.1 20 15.2 even 4