Defining parameters
| Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1100.x (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 275 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(180\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1100, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 44 | 8 | 36 |
| Cusp forms | 20 | 8 | 12 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1100, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1100.1.x.a | $8$ | $0.549$ | \(\Q(\zeta_{15})\) | $D_{15}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(2\) | \(-4\) | \(0\) | \(q+(\zeta_{30}^{2}+\zeta_{30}^{4})q^{3}-\zeta_{30}^{5}q^{5}+(\zeta_{30}^{4}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1100, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1100, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)