Properties

Label 110.6.a.h
Level $110$
Weight $6$
Character orbit 110.a
Self dual yes
Analytic conductor $17.642$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,6,Mod(1,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 110.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,12,25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6422201794\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.709185.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 166x - 704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta_{2} + 8) q^{3} + 16 q^{4} + 25 q^{5} + (4 \beta_{2} + 32) q^{6} + (\beta_1 + 53) q^{7} + 64 q^{8} + (8 \beta_{2} - \beta_1 + 68) q^{9} + 100 q^{10} + 121 q^{11} + (16 \beta_{2} + 128) q^{12}+ \cdots + (968 \beta_{2} - 121 \beta_1 + 8228) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} + 25 q^{3} + 48 q^{4} + 75 q^{5} + 100 q^{6} + 159 q^{7} + 192 q^{8} + 212 q^{9} + 300 q^{10} + 363 q^{11} + 400 q^{12} + 444 q^{13} + 636 q^{14} + 625 q^{15} + 768 q^{16} + 1023 q^{17} + 848 q^{18}+ \cdots + 25652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 166x - 704 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{2} + 27\nu + 102 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 7\nu - 108 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 3 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 27\beta_{2} + 7\beta _1 + 1101 ) / 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.31647
15.0911
−8.77462
4.00000 −13.2599 16.0000 25.0000 −53.0397 18.0952 64.0000 −67.1746 100.000
1.2 4.00000 15.0517 16.0000 25.0000 60.2069 193.859 64.0000 −16.4453 100.000
1.3 4.00000 23.2082 16.0000 25.0000 92.8327 −52.9544 64.0000 295.620 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.6.a.h 3
3.b odd 2 1 990.6.a.v 3
4.b odd 2 1 880.6.a.i 3
5.b even 2 1 550.6.a.k 3
5.c odd 4 2 550.6.b.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.6.a.h 3 1.a even 1 1 trivial
550.6.a.k 3 5.b even 2 1
550.6.b.l 6 5.c odd 4 2
880.6.a.i 3 4.b odd 2 1
990.6.a.v 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 25T_{3}^{2} - 158T_{3} + 4632 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(110))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 25 T^{2} + \cdots + 4632 \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 159 T^{2} + \cdots + 185760 \) Copy content Toggle raw display
$11$ \( (T - 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 444 T^{2} + \cdots + 398396448 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 1244827144 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 3670188400 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 15084641088 \) Copy content Toggle raw display
$29$ \( T^{3} - 1305 T^{2} + \cdots + 28124500 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 28863295488 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 558761410332 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 376445579672 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 1021689891200 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 1149845848672 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 4161422398780 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 12735694359200 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 10752273603940 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 36912328239616 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 137777074006720 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 5146054668016 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 38185482179200 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 293039494873344 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 421429288376700 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 277986854215152 \) Copy content Toggle raw display
show more
show less