Properties

Label 110.4.k
Level $110$
Weight $4$
Character orbit 110.k
Rep. character $\chi_{110}(7,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $144$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.k (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(110, [\chi])\).

Total New Old
Modular forms 464 144 320
Cusp forms 400 144 256
Eisenstein series 64 0 64

Trace form

\( 144 q + 8 q^{3} + 32 q^{5} - 40 q^{7} - 44 q^{11} + 128 q^{12} - 256 q^{15} + 576 q^{16} - 640 q^{17} - 64 q^{20} + 312 q^{22} - 984 q^{23} - 520 q^{25} + 304 q^{26} - 364 q^{27} + 240 q^{28} - 432 q^{31}+ \cdots + 7044 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(110, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
110.4.k.a 110.k 55.l $144$ $6.490$ None 110.4.k.a \(0\) \(8\) \(32\) \(-40\) $\mathrm{SU}(2)[C_{20}]$

Decomposition of \(S_{4}^{\mathrm{old}}(110, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(110, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)