Properties

Label 11.7.d
Level $11$
Weight $7$
Character orbit 11.d
Rep. character $\chi_{11}(2,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $20$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 11.d (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(11, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 20 20 0
Eisenstein series 8 8 0

Trace form

\( 20 q - 5 q^{2} - 39 q^{3} + 215 q^{4} + 181 q^{5} - 405 q^{6} - 365 q^{7} + 1595 q^{8} - 704 q^{9} - 3498 q^{11} - 3006 q^{12} - 1805 q^{13} + 7170 q^{14} - 525 q^{15} - 2185 q^{16} + 3635 q^{17} + 11970 q^{18}+ \cdots + 252208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(11, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
11.7.d.a 11.d 11.d $20$ $2.531$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 11.7.d.a \(-5\) \(-39\) \(181\) \(-365\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\beta _{4}+\beta _{6}-\beta _{9})q^{2}+(3\beta _{4}+2\beta _{5}+\cdots)q^{3}+\cdots\)