Properties

Label 11.10.a.b.1.5
Level $11$
Weight $10$
Character 11.1
Self dual yes
Analytic conductor $5.665$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,10,Mod(1,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.66539419780\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 1608x^{3} - 7720x^{2} + 616135x + 6122025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(34.7870\) of defining polynomial
Character \(\chi\) \(=\) 11.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+37.7870 q^{2} +186.277 q^{3} +915.861 q^{4} -1746.78 q^{5} +7038.85 q^{6} -6901.51 q^{7} +15260.7 q^{8} +15016.0 q^{9} -66005.6 q^{10} +14641.0 q^{11} +170604. q^{12} +176975. q^{13} -260788. q^{14} -325384. q^{15} +107736. q^{16} -478011. q^{17} +567412. q^{18} +193539. q^{19} -1.59981e6 q^{20} -1.28559e6 q^{21} +553240. q^{22} +1.49623e6 q^{23} +2.84271e6 q^{24} +1.09811e6 q^{25} +6.68735e6 q^{26} -869347. q^{27} -6.32082e6 q^{28} +921233. q^{29} -1.22953e7 q^{30} +7.62795e6 q^{31} -3.74245e6 q^{32} +2.72728e6 q^{33} -1.80626e7 q^{34} +1.20554e7 q^{35} +1.37526e7 q^{36} -1.10914e7 q^{37} +7.31326e6 q^{38} +3.29663e7 q^{39} -2.66571e7 q^{40} -190166. q^{41} -4.85787e7 q^{42} -8.56236e6 q^{43} +1.34091e7 q^{44} -2.62297e7 q^{45} +5.65380e7 q^{46} +1.40637e7 q^{47} +2.00687e7 q^{48} +7.27725e6 q^{49} +4.14944e7 q^{50} -8.90423e7 q^{51} +1.62084e8 q^{52} -1.78790e7 q^{53} -3.28501e7 q^{54} -2.55746e7 q^{55} -1.05322e8 q^{56} +3.60518e7 q^{57} +3.48107e7 q^{58} +2.12006e7 q^{59} -2.98007e8 q^{60} +1.17020e8 q^{61} +2.88238e8 q^{62} -1.03633e8 q^{63} -1.96577e8 q^{64} -3.09136e8 q^{65} +1.03056e8 q^{66} +1.97388e6 q^{67} -4.37791e8 q^{68} +2.78712e8 q^{69} +4.55539e8 q^{70} +1.92889e8 q^{71} +2.29155e8 q^{72} +3.43655e6 q^{73} -4.19110e8 q^{74} +2.04553e8 q^{75} +1.77254e8 q^{76} -1.01045e8 q^{77} +1.24570e9 q^{78} -1.83553e8 q^{79} -1.88191e8 q^{80} -4.57500e8 q^{81} -7.18583e6 q^{82} -5.96839e8 q^{83} -1.17742e9 q^{84} +8.34980e8 q^{85} -3.23546e8 q^{86} +1.71604e8 q^{87} +2.23432e8 q^{88} -2.88850e8 q^{89} -9.91143e8 q^{90} -1.22139e9 q^{91} +1.37034e9 q^{92} +1.42091e9 q^{93} +5.31426e8 q^{94} -3.38069e8 q^{95} -6.97132e8 q^{96} +3.19612e8 q^{97} +2.74986e8 q^{98} +2.19850e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 16 q^{2} + 112 q^{3} + 708 q^{4} + 1594 q^{5} + 10378 q^{6} + 8400 q^{7} + 40716 q^{8} + 74789 q^{9} + 2986 q^{10} + 73205 q^{11} + 110288 q^{12} + 47214 q^{13} - 299852 q^{14} - 559436 q^{15} - 454776 q^{16}+ \cdots + 1094985749 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 37.7870 1.66997 0.834984 0.550275i \(-0.185477\pi\)
0.834984 + 0.550275i \(0.185477\pi\)
\(3\) 186.277 1.32774 0.663870 0.747848i \(-0.268913\pi\)
0.663870 + 0.747848i \(0.268913\pi\)
\(4\) 915.861 1.78879
\(5\) −1746.78 −1.24989 −0.624947 0.780667i \(-0.714879\pi\)
−0.624947 + 0.780667i \(0.714879\pi\)
\(6\) 7038.85 2.21728
\(7\) −6901.51 −1.08643 −0.543217 0.839593i \(-0.682794\pi\)
−0.543217 + 0.839593i \(0.682794\pi\)
\(8\) 15260.7 1.31725
\(9\) 15016.0 0.762894
\(10\) −66005.6 −2.08728
\(11\) 14641.0 0.301511
\(12\) 170604. 2.37505
\(13\) 176975. 1.71856 0.859282 0.511502i \(-0.170911\pi\)
0.859282 + 0.511502i \(0.170911\pi\)
\(14\) −260788. −1.81431
\(15\) −325384. −1.65953
\(16\) 107736. 0.410980
\(17\) −478011. −1.38809 −0.694045 0.719932i \(-0.744173\pi\)
−0.694045 + 0.719932i \(0.744173\pi\)
\(18\) 567412. 1.27401
\(19\) 193539. 0.340704 0.170352 0.985383i \(-0.445510\pi\)
0.170352 + 0.985383i \(0.445510\pi\)
\(20\) −1.59981e6 −2.23580
\(21\) −1.28559e6 −1.44250
\(22\) 553240. 0.503514
\(23\) 1.49623e6 1.11487 0.557433 0.830222i \(-0.311786\pi\)
0.557433 + 0.830222i \(0.311786\pi\)
\(24\) 2.84271e6 1.74897
\(25\) 1.09811e6 0.562234
\(26\) 6.68735e6 2.86995
\(27\) −869347. −0.314816
\(28\) −6.32082e6 −1.94340
\(29\) 921233. 0.241868 0.120934 0.992661i \(-0.461411\pi\)
0.120934 + 0.992661i \(0.461411\pi\)
\(30\) −1.22953e7 −2.77137
\(31\) 7.62795e6 1.48348 0.741738 0.670690i \(-0.234002\pi\)
0.741738 + 0.670690i \(0.234002\pi\)
\(32\) −3.74245e6 −0.630931
\(33\) 2.72728e6 0.400329
\(34\) −1.80626e7 −2.31806
\(35\) 1.20554e7 1.35793
\(36\) 1.37526e7 1.36466
\(37\) −1.10914e7 −0.972921 −0.486460 0.873703i \(-0.661712\pi\)
−0.486460 + 0.873703i \(0.661712\pi\)
\(38\) 7.31326e6 0.568964
\(39\) 3.29663e7 2.28181
\(40\) −2.66571e7 −1.64643
\(41\) −190166. −0.0105101 −0.00525505 0.999986i \(-0.501673\pi\)
−0.00525505 + 0.999986i \(0.501673\pi\)
\(42\) −4.85787e7 −2.40893
\(43\) −8.56236e6 −0.381931 −0.190966 0.981597i \(-0.561162\pi\)
−0.190966 + 0.981597i \(0.561162\pi\)
\(44\) 1.34091e7 0.539341
\(45\) −2.62297e7 −0.953536
\(46\) 5.65380e7 1.86179
\(47\) 1.40637e7 0.420397 0.210199 0.977659i \(-0.432589\pi\)
0.210199 + 0.977659i \(0.432589\pi\)
\(48\) 2.00687e7 0.545675
\(49\) 7.27725e6 0.180337
\(50\) 4.14944e7 0.938912
\(51\) −8.90423e7 −1.84302
\(52\) 1.62084e8 3.07415
\(53\) −1.78790e7 −0.311244 −0.155622 0.987817i \(-0.549738\pi\)
−0.155622 + 0.987817i \(0.549738\pi\)
\(54\) −3.28501e7 −0.525732
\(55\) −2.55746e7 −0.376857
\(56\) −1.05322e8 −1.43111
\(57\) 3.60518e7 0.452366
\(58\) 3.48107e7 0.403912
\(59\) 2.12006e7 0.227779 0.113890 0.993493i \(-0.463669\pi\)
0.113890 + 0.993493i \(0.463669\pi\)
\(60\) −2.98007e8 −2.96856
\(61\) 1.17020e8 1.08212 0.541059 0.840985i \(-0.318024\pi\)
0.541059 + 0.840985i \(0.318024\pi\)
\(62\) 2.88238e8 2.47736
\(63\) −1.03633e8 −0.828833
\(64\) −1.96577e8 −1.46461
\(65\) −3.09136e8 −2.14802
\(66\) 1.03056e8 0.668536
\(67\) 1.97388e6 0.0119670 0.00598348 0.999982i \(-0.498095\pi\)
0.00598348 + 0.999982i \(0.498095\pi\)
\(68\) −4.37791e8 −2.48300
\(69\) 2.78712e8 1.48025
\(70\) 4.55539e8 2.26769
\(71\) 1.92889e8 0.900836 0.450418 0.892818i \(-0.351275\pi\)
0.450418 + 0.892818i \(0.351275\pi\)
\(72\) 2.29155e8 1.00492
\(73\) 3.43655e6 0.0141635 0.00708173 0.999975i \(-0.497746\pi\)
0.00708173 + 0.999975i \(0.497746\pi\)
\(74\) −4.19110e8 −1.62475
\(75\) 2.04553e8 0.746500
\(76\) 1.77254e8 0.609447
\(77\) −1.01045e8 −0.327572
\(78\) 1.24570e9 3.81054
\(79\) −1.83553e8 −0.530200 −0.265100 0.964221i \(-0.585405\pi\)
−0.265100 + 0.964221i \(0.585405\pi\)
\(80\) −1.88191e8 −0.513681
\(81\) −4.57500e8 −1.18089
\(82\) −7.18583e6 −0.0175515
\(83\) −5.96839e8 −1.38040 −0.690202 0.723617i \(-0.742478\pi\)
−0.690202 + 0.723617i \(0.742478\pi\)
\(84\) −1.17742e9 −2.58033
\(85\) 8.34980e8 1.73496
\(86\) −3.23546e8 −0.637813
\(87\) 1.71604e8 0.321138
\(88\) 2.23432e8 0.397167
\(89\) −2.88850e8 −0.487997 −0.243999 0.969776i \(-0.578459\pi\)
−0.243999 + 0.969776i \(0.578459\pi\)
\(90\) −9.91143e8 −1.59237
\(91\) −1.22139e9 −1.86711
\(92\) 1.37034e9 1.99426
\(93\) 1.42091e9 1.96967
\(94\) 5.31426e8 0.702049
\(95\) −3.38069e8 −0.425843
\(96\) −6.97132e8 −0.837712
\(97\) 3.19612e8 0.366565 0.183282 0.983060i \(-0.441328\pi\)
0.183282 + 0.983060i \(0.441328\pi\)
\(98\) 2.74986e8 0.301157
\(99\) 2.19850e8 0.230021
\(100\) 1.00572e9 1.00572
\(101\) −1.66615e9 −1.59320 −0.796598 0.604510i \(-0.793369\pi\)
−0.796598 + 0.604510i \(0.793369\pi\)
\(102\) −3.36465e9 −3.07779
\(103\) 1.69407e9 1.48308 0.741538 0.670911i \(-0.234097\pi\)
0.741538 + 0.670911i \(0.234097\pi\)
\(104\) 2.70076e9 2.26379
\(105\) 2.24564e9 1.80297
\(106\) −6.75593e8 −0.519767
\(107\) −9.49695e8 −0.700418 −0.350209 0.936672i \(-0.613889\pi\)
−0.350209 + 0.936672i \(0.613889\pi\)
\(108\) −7.96201e8 −0.563139
\(109\) 8.16040e8 0.553723 0.276861 0.960910i \(-0.410706\pi\)
0.276861 + 0.960910i \(0.410706\pi\)
\(110\) −9.66388e8 −0.629339
\(111\) −2.06606e9 −1.29179
\(112\) −7.43541e8 −0.446502
\(113\) 1.38716e9 0.800340 0.400170 0.916441i \(-0.368951\pi\)
0.400170 + 0.916441i \(0.368951\pi\)
\(114\) 1.36229e9 0.755436
\(115\) −2.61358e9 −1.39346
\(116\) 8.43721e8 0.432651
\(117\) 2.65746e9 1.31108
\(118\) 8.01109e8 0.380384
\(119\) 3.29900e9 1.50807
\(120\) −4.96559e9 −2.18603
\(121\) 2.14359e8 0.0909091
\(122\) 4.42182e9 1.80710
\(123\) −3.54236e7 −0.0139547
\(124\) 6.98614e9 2.65363
\(125\) 1.49352e9 0.547161
\(126\) −3.91600e9 −1.38412
\(127\) −4.62969e9 −1.57919 −0.789596 0.613628i \(-0.789710\pi\)
−0.789596 + 0.613628i \(0.789710\pi\)
\(128\) −5.51193e9 −1.81493
\(129\) −1.59497e9 −0.507106
\(130\) −1.16813e10 −3.58713
\(131\) −2.60178e9 −0.771879 −0.385940 0.922524i \(-0.626123\pi\)
−0.385940 + 0.922524i \(0.626123\pi\)
\(132\) 2.49781e9 0.716104
\(133\) −1.33571e9 −0.370152
\(134\) 7.45870e7 0.0199844
\(135\) 1.51856e9 0.393486
\(136\) −7.29478e9 −1.82847
\(137\) −1.07365e9 −0.260389 −0.130194 0.991488i \(-0.541560\pi\)
−0.130194 + 0.991488i \(0.541560\pi\)
\(138\) 1.05317e10 2.47197
\(139\) 4.08617e9 0.928432 0.464216 0.885722i \(-0.346336\pi\)
0.464216 + 0.885722i \(0.346336\pi\)
\(140\) 1.10411e10 2.42904
\(141\) 2.61974e9 0.558178
\(142\) 7.28872e9 1.50437
\(143\) 2.59109e9 0.518167
\(144\) 1.61777e9 0.313534
\(145\) −1.60919e9 −0.302309
\(146\) 1.29857e8 0.0236525
\(147\) 1.35558e9 0.239441
\(148\) −1.01581e10 −1.74035
\(149\) −7.66479e9 −1.27398 −0.636989 0.770873i \(-0.719820\pi\)
−0.636989 + 0.770873i \(0.719820\pi\)
\(150\) 7.72945e9 1.24663
\(151\) −6.92089e8 −0.108334 −0.0541671 0.998532i \(-0.517250\pi\)
−0.0541671 + 0.998532i \(0.517250\pi\)
\(152\) 2.95354e9 0.448793
\(153\) −7.17783e9 −1.05896
\(154\) −3.81819e9 −0.547034
\(155\) −1.33244e10 −1.85419
\(156\) 3.01925e10 4.08167
\(157\) 1.07386e10 1.41059 0.705295 0.708914i \(-0.250815\pi\)
0.705295 + 0.708914i \(0.250815\pi\)
\(158\) −6.93593e9 −0.885416
\(159\) −3.33043e9 −0.413251
\(160\) 6.53724e9 0.788596
\(161\) −1.03262e10 −1.21123
\(162\) −1.72876e10 −1.97204
\(163\) −3.95770e8 −0.0439136 −0.0219568 0.999759i \(-0.506990\pi\)
−0.0219568 + 0.999759i \(0.506990\pi\)
\(164\) −1.74166e8 −0.0188003
\(165\) −4.76395e9 −0.500368
\(166\) −2.25528e10 −2.30523
\(167\) −2.64762e9 −0.263409 −0.131705 0.991289i \(-0.542045\pi\)
−0.131705 + 0.991289i \(0.542045\pi\)
\(168\) −1.96190e10 −1.90014
\(169\) 2.07155e10 1.95346
\(170\) 3.15514e10 2.89733
\(171\) 2.90618e9 0.259921
\(172\) −7.84193e9 −0.683195
\(173\) 7.34562e8 0.0623478 0.0311739 0.999514i \(-0.490075\pi\)
0.0311739 + 0.999514i \(0.490075\pi\)
\(174\) 6.48442e9 0.536289
\(175\) −7.57864e9 −0.610830
\(176\) 1.57736e9 0.123915
\(177\) 3.94918e9 0.302432
\(178\) −1.09148e10 −0.814939
\(179\) −9.31362e8 −0.0678078 −0.0339039 0.999425i \(-0.510794\pi\)
−0.0339039 + 0.999425i \(0.510794\pi\)
\(180\) −2.40227e10 −1.70568
\(181\) 2.76071e10 1.91191 0.955955 0.293512i \(-0.0948240\pi\)
0.955955 + 0.293512i \(0.0948240\pi\)
\(182\) −4.61528e10 −3.11801
\(183\) 2.17980e10 1.43677
\(184\) 2.28335e10 1.46856
\(185\) 1.93742e10 1.21605
\(186\) 5.36920e10 3.28928
\(187\) −6.99856e9 −0.418525
\(188\) 1.28804e10 0.752002
\(189\) 5.99981e9 0.342026
\(190\) −1.27746e10 −0.711144
\(191\) −1.73007e10 −0.940620 −0.470310 0.882501i \(-0.655858\pi\)
−0.470310 + 0.882501i \(0.655858\pi\)
\(192\) −3.66177e10 −1.94463
\(193\) 1.84839e10 0.958930 0.479465 0.877561i \(-0.340831\pi\)
0.479465 + 0.877561i \(0.340831\pi\)
\(194\) 1.20772e10 0.612151
\(195\) −5.75848e10 −2.85202
\(196\) 6.66495e9 0.322585
\(197\) −2.69918e8 −0.0127683 −0.00638417 0.999980i \(-0.502032\pi\)
−0.00638417 + 0.999980i \(0.502032\pi\)
\(198\) 8.30747e9 0.384128
\(199\) 3.30838e10 1.49546 0.747732 0.664000i \(-0.231143\pi\)
0.747732 + 0.664000i \(0.231143\pi\)
\(200\) 1.67580e10 0.740605
\(201\) 3.67688e8 0.0158890
\(202\) −6.29591e10 −2.66058
\(203\) −6.35790e9 −0.262773
\(204\) −8.15503e10 −3.29678
\(205\) 3.32179e8 0.0131365
\(206\) 6.40138e10 2.47669
\(207\) 2.24674e10 0.850524
\(208\) 1.90665e10 0.706296
\(209\) 2.83360e9 0.102726
\(210\) 8.48563e10 3.01090
\(211\) −1.65131e10 −0.573532 −0.286766 0.958001i \(-0.592580\pi\)
−0.286766 + 0.958001i \(0.592580\pi\)
\(212\) −1.63746e10 −0.556750
\(213\) 3.59308e10 1.19608
\(214\) −3.58862e10 −1.16967
\(215\) 1.49566e10 0.477374
\(216\) −1.32668e10 −0.414692
\(217\) −5.26444e10 −1.61170
\(218\) 3.08357e10 0.924698
\(219\) 6.40149e8 0.0188054
\(220\) −2.34228e10 −0.674118
\(221\) −8.45958e10 −2.38552
\(222\) −7.80705e10 −2.15724
\(223\) 6.66167e9 0.180389 0.0901947 0.995924i \(-0.471251\pi\)
0.0901947 + 0.995924i \(0.471251\pi\)
\(224\) 2.58286e10 0.685464
\(225\) 1.64893e10 0.428925
\(226\) 5.24168e10 1.33654
\(227\) 5.36225e10 1.34039 0.670194 0.742186i \(-0.266211\pi\)
0.670194 + 0.742186i \(0.266211\pi\)
\(228\) 3.30184e10 0.809187
\(229\) −5.82017e10 −1.39854 −0.699272 0.714856i \(-0.746492\pi\)
−0.699272 + 0.714856i \(0.746492\pi\)
\(230\) −9.87594e10 −2.32704
\(231\) −1.88223e10 −0.434930
\(232\) 1.40586e10 0.318601
\(233\) −3.76554e10 −0.837000 −0.418500 0.908217i \(-0.637444\pi\)
−0.418500 + 0.908217i \(0.637444\pi\)
\(234\) 1.00417e11 2.18946
\(235\) −2.45662e10 −0.525452
\(236\) 1.94168e10 0.407450
\(237\) −3.41917e10 −0.703968
\(238\) 1.24659e11 2.51842
\(239\) 8.85989e9 0.175646 0.0878229 0.996136i \(-0.472009\pi\)
0.0878229 + 0.996136i \(0.472009\pi\)
\(240\) −3.50556e10 −0.682035
\(241\) 9.59085e10 1.83139 0.915694 0.401877i \(-0.131642\pi\)
0.915694 + 0.401877i \(0.131642\pi\)
\(242\) 8.09999e9 0.151815
\(243\) −6.81102e10 −1.25310
\(244\) 1.07174e11 1.93568
\(245\) −1.27118e10 −0.225402
\(246\) −1.33855e9 −0.0233038
\(247\) 3.42514e10 0.585521
\(248\) 1.16408e11 1.95411
\(249\) −1.11177e11 −1.83282
\(250\) 5.64356e10 0.913741
\(251\) 7.20438e10 1.14568 0.572842 0.819666i \(-0.305841\pi\)
0.572842 + 0.819666i \(0.305841\pi\)
\(252\) −9.49137e10 −1.48261
\(253\) 2.19063e10 0.336145
\(254\) −1.74942e11 −2.63720
\(255\) 1.55537e11 2.30358
\(256\) −1.07632e11 −1.56625
\(257\) 9.49867e10 1.35820 0.679100 0.734046i \(-0.262370\pi\)
0.679100 + 0.734046i \(0.262370\pi\)
\(258\) −6.02691e10 −0.846850
\(259\) 7.65472e10 1.05701
\(260\) −2.83125e11 −3.84236
\(261\) 1.38333e10 0.184520
\(262\) −9.83135e10 −1.28901
\(263\) 3.34976e10 0.431731 0.215865 0.976423i \(-0.430743\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(264\) 4.16202e10 0.527334
\(265\) 3.12306e10 0.389022
\(266\) −5.04725e10 −0.618141
\(267\) −5.38060e10 −0.647933
\(268\) 1.80780e9 0.0214064
\(269\) −1.13277e11 −1.31903 −0.659516 0.751690i \(-0.729239\pi\)
−0.659516 + 0.751690i \(0.729239\pi\)
\(270\) 5.73818e10 0.657109
\(271\) −5.85641e10 −0.659583 −0.329792 0.944054i \(-0.606979\pi\)
−0.329792 + 0.944054i \(0.606979\pi\)
\(272\) −5.14989e10 −0.570477
\(273\) −2.27517e11 −2.47903
\(274\) −4.05702e10 −0.434840
\(275\) 1.60775e10 0.169520
\(276\) 2.55262e11 2.64786
\(277\) −5.61058e10 −0.572596 −0.286298 0.958141i \(-0.592425\pi\)
−0.286298 + 0.958141i \(0.592425\pi\)
\(278\) 1.54404e11 1.55045
\(279\) 1.14542e11 1.13173
\(280\) 1.83974e11 1.78873
\(281\) −5.82633e10 −0.557464 −0.278732 0.960369i \(-0.589914\pi\)
−0.278732 + 0.960369i \(0.589914\pi\)
\(282\) 9.89924e10 0.932139
\(283\) −8.51619e10 −0.789235 −0.394617 0.918846i \(-0.629123\pi\)
−0.394617 + 0.918846i \(0.629123\pi\)
\(284\) 1.76660e11 1.61141
\(285\) −6.29745e10 −0.565409
\(286\) 9.79094e10 0.865321
\(287\) 1.31244e9 0.0114185
\(288\) −5.61968e10 −0.481333
\(289\) 1.09907e11 0.926794
\(290\) −6.08065e10 −0.504846
\(291\) 5.95363e10 0.486702
\(292\) 3.14740e9 0.0253355
\(293\) 4.86121e10 0.385337 0.192668 0.981264i \(-0.438286\pi\)
0.192668 + 0.981264i \(0.438286\pi\)
\(294\) 5.12235e10 0.399858
\(295\) −3.70328e10 −0.284700
\(296\) −1.69262e11 −1.28158
\(297\) −1.27281e10 −0.0949205
\(298\) −2.89630e11 −2.12750
\(299\) 2.64794e11 1.91597
\(300\) 1.87342e11 1.33533
\(301\) 5.90932e10 0.414943
\(302\) −2.61520e10 −0.180915
\(303\) −3.10366e11 −2.11535
\(304\) 2.08511e10 0.140022
\(305\) −2.04407e11 −1.35253
\(306\) −2.71229e11 −1.76844
\(307\) 5.54371e10 0.356187 0.178093 0.984014i \(-0.443007\pi\)
0.178093 + 0.984014i \(0.443007\pi\)
\(308\) −9.25432e10 −0.585957
\(309\) 3.15565e11 1.96914
\(310\) −5.03488e11 −3.09643
\(311\) −1.91969e11 −1.16362 −0.581809 0.813326i \(-0.697655\pi\)
−0.581809 + 0.813326i \(0.697655\pi\)
\(312\) 5.03088e11 3.00572
\(313\) 1.21549e11 0.715819 0.357909 0.933756i \(-0.383490\pi\)
0.357909 + 0.933756i \(0.383490\pi\)
\(314\) 4.05781e11 2.35564
\(315\) 1.81025e11 1.03595
\(316\) −1.68109e11 −0.948416
\(317\) 3.42125e11 1.90291 0.951456 0.307786i \(-0.0995880\pi\)
0.951456 + 0.307786i \(0.0995880\pi\)
\(318\) −1.25847e11 −0.690115
\(319\) 1.34878e10 0.0729259
\(320\) 3.43377e11 1.83061
\(321\) −1.76906e11 −0.929973
\(322\) −3.90198e11 −2.02271
\(323\) −9.25136e10 −0.472927
\(324\) −4.19006e11 −2.11236
\(325\) 1.94338e11 0.966235
\(326\) −1.49550e10 −0.0733343
\(327\) 1.52009e11 0.735200
\(328\) −2.90207e9 −0.0138445
\(329\) −9.70609e10 −0.456733
\(330\) −1.80016e11 −0.835599
\(331\) −1.16598e11 −0.533907 −0.266953 0.963709i \(-0.586017\pi\)
−0.266953 + 0.963709i \(0.586017\pi\)
\(332\) −5.46622e11 −2.46925
\(333\) −1.66548e11 −0.742235
\(334\) −1.00046e11 −0.439885
\(335\) −3.44793e9 −0.0149574
\(336\) −1.38504e11 −0.592839
\(337\) −1.93953e11 −0.819147 −0.409574 0.912277i \(-0.634322\pi\)
−0.409574 + 0.912277i \(0.634322\pi\)
\(338\) 7.82778e11 3.26222
\(339\) 2.58396e11 1.06264
\(340\) 7.64725e11 3.10349
\(341\) 1.11681e11 0.447285
\(342\) 1.09816e11 0.434059
\(343\) 2.28277e11 0.890509
\(344\) −1.30668e11 −0.503100
\(345\) −4.86849e11 −1.85016
\(346\) 2.77569e10 0.104119
\(347\) −8.60648e10 −0.318671 −0.159336 0.987224i \(-0.550935\pi\)
−0.159336 + 0.987224i \(0.550935\pi\)
\(348\) 1.57166e11 0.574448
\(349\) 1.92176e11 0.693402 0.346701 0.937976i \(-0.387302\pi\)
0.346701 + 0.937976i \(0.387302\pi\)
\(350\) −2.86374e11 −1.02007
\(351\) −1.53852e11 −0.541031
\(352\) −5.47933e10 −0.190233
\(353\) 2.92048e11 1.00108 0.500538 0.865714i \(-0.333135\pi\)
0.500538 + 0.865714i \(0.333135\pi\)
\(354\) 1.49228e11 0.505051
\(355\) −3.36935e11 −1.12595
\(356\) −2.64546e11 −0.872925
\(357\) 6.14527e11 2.00232
\(358\) −3.51934e10 −0.113237
\(359\) −4.95274e11 −1.57369 −0.786847 0.617148i \(-0.788288\pi\)
−0.786847 + 0.617148i \(0.788288\pi\)
\(360\) −4.00283e11 −1.25605
\(361\) −2.85230e11 −0.883921
\(362\) 1.04319e12 3.19283
\(363\) 3.99301e10 0.120704
\(364\) −1.11863e12 −3.33986
\(365\) −6.00289e9 −0.0177028
\(366\) 8.23683e11 2.39936
\(367\) −3.88365e11 −1.11749 −0.558744 0.829340i \(-0.688717\pi\)
−0.558744 + 0.829340i \(0.688717\pi\)
\(368\) 1.61197e11 0.458187
\(369\) −2.85555e9 −0.00801808
\(370\) 7.32093e11 2.03076
\(371\) 1.23392e11 0.338146
\(372\) 1.30136e12 3.52333
\(373\) −5.39272e11 −1.44251 −0.721254 0.692671i \(-0.756434\pi\)
−0.721254 + 0.692671i \(0.756434\pi\)
\(374\) −2.64455e11 −0.698923
\(375\) 2.78208e11 0.726488
\(376\) 2.14622e11 0.553770
\(377\) 1.63035e11 0.415666
\(378\) 2.26715e11 0.571172
\(379\) 7.49252e11 1.86531 0.932656 0.360766i \(-0.117485\pi\)
0.932656 + 0.360766i \(0.117485\pi\)
\(380\) −3.09624e11 −0.761744
\(381\) −8.62403e11 −2.09676
\(382\) −6.53744e11 −1.57081
\(383\) −6.85788e11 −1.62853 −0.814264 0.580495i \(-0.802859\pi\)
−0.814264 + 0.580495i \(0.802859\pi\)
\(384\) −1.02674e12 −2.40975
\(385\) 1.76503e11 0.409430
\(386\) 6.98454e11 1.60138
\(387\) −1.28573e11 −0.291373
\(388\) 2.92720e11 0.655707
\(389\) 3.64740e11 0.807627 0.403813 0.914841i \(-0.367685\pi\)
0.403813 + 0.914841i \(0.367685\pi\)
\(390\) −2.17596e12 −4.76277
\(391\) −7.15213e11 −1.54753
\(392\) 1.11056e11 0.237550
\(393\) −4.84651e11 −1.02486
\(394\) −1.01994e10 −0.0213227
\(395\) 3.20627e11 0.662693
\(396\) 2.01352e11 0.411459
\(397\) −1.71931e11 −0.347375 −0.173687 0.984801i \(-0.555568\pi\)
−0.173687 + 0.984801i \(0.555568\pi\)
\(398\) 1.25014e12 2.49738
\(399\) −2.48812e11 −0.491465
\(400\) 1.18306e11 0.231067
\(401\) −3.46992e11 −0.670146 −0.335073 0.942192i \(-0.608761\pi\)
−0.335073 + 0.942192i \(0.608761\pi\)
\(402\) 1.38938e10 0.0265341
\(403\) 1.34995e12 2.54945
\(404\) −1.52597e12 −2.84989
\(405\) 7.99151e11 1.47598
\(406\) −2.40246e11 −0.438823
\(407\) −1.62389e11 −0.293347
\(408\) −1.35885e12 −2.42773
\(409\) 1.06588e12 1.88344 0.941719 0.336399i \(-0.109209\pi\)
0.941719 + 0.336399i \(0.109209\pi\)
\(410\) 1.25521e10 0.0219375
\(411\) −1.99997e11 −0.345728
\(412\) 1.55153e12 2.65291
\(413\) −1.46316e11 −0.247467
\(414\) 8.48977e11 1.42035
\(415\) 1.04255e12 1.72536
\(416\) −6.62319e11 −1.08429
\(417\) 7.61159e11 1.23272
\(418\) 1.07073e11 0.171549
\(419\) −1.21217e12 −1.92133 −0.960665 0.277709i \(-0.910425\pi\)
−0.960665 + 0.277709i \(0.910425\pi\)
\(420\) 2.05670e12 3.22514
\(421\) 7.44489e11 1.15502 0.577509 0.816384i \(-0.304025\pi\)
0.577509 + 0.816384i \(0.304025\pi\)
\(422\) −6.23981e11 −0.957779
\(423\) 2.11181e11 0.320718
\(424\) −2.72845e11 −0.409987
\(425\) −5.24910e11 −0.780431
\(426\) 1.35772e12 1.99741
\(427\) −8.07612e11 −1.17565
\(428\) −8.69788e11 −1.25290
\(429\) 4.82659e11 0.687991
\(430\) 5.65164e11 0.797198
\(431\) 6.48927e11 0.905833 0.452917 0.891553i \(-0.350384\pi\)
0.452917 + 0.891553i \(0.350384\pi\)
\(432\) −9.36599e10 −0.129383
\(433\) −2.13599e11 −0.292013 −0.146007 0.989284i \(-0.546642\pi\)
−0.146007 + 0.989284i \(0.546642\pi\)
\(434\) −1.98928e12 −2.69148
\(435\) −2.99755e11 −0.401388
\(436\) 7.47379e11 0.990493
\(437\) 2.89578e11 0.379839
\(438\) 2.41893e10 0.0314044
\(439\) −5.97567e11 −0.767885 −0.383943 0.923357i \(-0.625434\pi\)
−0.383943 + 0.923357i \(0.625434\pi\)
\(440\) −3.90286e11 −0.496416
\(441\) 1.09275e11 0.137578
\(442\) −3.19662e12 −3.98374
\(443\) −9.46336e11 −1.16742 −0.583712 0.811961i \(-0.698400\pi\)
−0.583712 + 0.811961i \(0.698400\pi\)
\(444\) −1.89223e12 −2.31073
\(445\) 5.04557e11 0.609945
\(446\) 2.51725e11 0.301244
\(447\) −1.42777e12 −1.69151
\(448\) 1.35668e12 1.59120
\(449\) 6.30900e11 0.732575 0.366288 0.930502i \(-0.380629\pi\)
0.366288 + 0.930502i \(0.380629\pi\)
\(450\) 6.23082e11 0.716290
\(451\) −2.78423e9 −0.00316891
\(452\) 1.27045e12 1.43164
\(453\) −1.28920e11 −0.143840
\(454\) 2.02624e12 2.23840
\(455\) 2.13350e12 2.33368
\(456\) 5.50175e11 0.595880
\(457\) 7.97795e11 0.855596 0.427798 0.903874i \(-0.359289\pi\)
0.427798 + 0.903874i \(0.359289\pi\)
\(458\) −2.19927e12 −2.33552
\(459\) 4.15557e11 0.436992
\(460\) −2.39367e12 −2.49261
\(461\) 1.61323e12 1.66358 0.831789 0.555091i \(-0.187317\pi\)
0.831789 + 0.555091i \(0.187317\pi\)
\(462\) −7.11241e11 −0.726319
\(463\) −3.08097e11 −0.311583 −0.155791 0.987790i \(-0.549793\pi\)
−0.155791 + 0.987790i \(0.549793\pi\)
\(464\) 9.92498e10 0.0994029
\(465\) −2.48202e12 −2.46188
\(466\) −1.42289e12 −1.39776
\(467\) −6.29999e11 −0.612934 −0.306467 0.951881i \(-0.599147\pi\)
−0.306467 + 0.951881i \(0.599147\pi\)
\(468\) 2.43386e12 2.34525
\(469\) −1.36227e10 −0.0130013
\(470\) −9.28284e11 −0.877487
\(471\) 2.00036e12 1.87290
\(472\) 3.23536e11 0.300043
\(473\) −1.25361e11 −0.115157
\(474\) −1.29200e12 −1.17560
\(475\) 2.12527e11 0.191555
\(476\) 3.02142e12 2.69762
\(477\) −2.68471e11 −0.237446
\(478\) 3.34789e11 0.293323
\(479\) −5.78348e10 −0.0501972 −0.0250986 0.999685i \(-0.507990\pi\)
−0.0250986 + 0.999685i \(0.507990\pi\)
\(480\) 1.21774e12 1.04705
\(481\) −1.96289e12 −1.67203
\(482\) 3.62410e12 3.05836
\(483\) −1.92354e12 −1.60819
\(484\) 1.96323e11 0.162617
\(485\) −5.58292e11 −0.458167
\(486\) −2.57368e12 −2.09263
\(487\) −4.44052e11 −0.357729 −0.178864 0.983874i \(-0.557242\pi\)
−0.178864 + 0.983874i \(0.557242\pi\)
\(488\) 1.78580e12 1.42542
\(489\) −7.37228e10 −0.0583058
\(490\) −4.80340e11 −0.376414
\(491\) 5.36565e11 0.416635 0.208317 0.978061i \(-0.433201\pi\)
0.208317 + 0.978061i \(0.433201\pi\)
\(492\) −3.24431e10 −0.0249620
\(493\) −4.40359e11 −0.335734
\(494\) 1.29426e12 0.977801
\(495\) −3.84029e11 −0.287502
\(496\) 8.21805e11 0.609679
\(497\) −1.33123e12 −0.978698
\(498\) −4.20106e12 −3.06074
\(499\) −1.27663e12 −0.921751 −0.460875 0.887465i \(-0.652464\pi\)
−0.460875 + 0.887465i \(0.652464\pi\)
\(500\) 1.36785e12 0.978756
\(501\) −4.93189e11 −0.349739
\(502\) 2.72232e12 1.91325
\(503\) −1.81225e12 −1.26230 −0.631148 0.775662i \(-0.717416\pi\)
−0.631148 + 0.775662i \(0.717416\pi\)
\(504\) −1.58152e12 −1.09178
\(505\) 2.91040e12 1.99132
\(506\) 8.27773e11 0.561350
\(507\) 3.85882e12 2.59369
\(508\) −4.24015e12 −2.82484
\(509\) 2.77734e12 1.83400 0.917000 0.398887i \(-0.130603\pi\)
0.917000 + 0.398887i \(0.130603\pi\)
\(510\) 5.87729e12 3.84691
\(511\) −2.37174e10 −0.0153877
\(512\) −1.24499e12 −0.800665
\(513\) −1.68252e11 −0.107259
\(514\) 3.58927e12 2.26815
\(515\) −2.95916e12 −1.85369
\(516\) −1.46077e12 −0.907106
\(517\) 2.05907e11 0.126755
\(518\) 2.89249e12 1.76518
\(519\) 1.36832e11 0.0827816
\(520\) −4.71762e12 −2.82949
\(521\) −2.46844e11 −0.146775 −0.0733875 0.997304i \(-0.523381\pi\)
−0.0733875 + 0.997304i \(0.523381\pi\)
\(522\) 5.22718e11 0.308142
\(523\) −4.70491e11 −0.274975 −0.137488 0.990503i \(-0.543903\pi\)
−0.137488 + 0.990503i \(0.543903\pi\)
\(524\) −2.38287e12 −1.38073
\(525\) −1.41172e12 −0.811023
\(526\) 1.26578e12 0.720977
\(527\) −3.64625e12 −2.05920
\(528\) 2.93826e11 0.164527
\(529\) 4.37545e11 0.242925
\(530\) 1.18011e12 0.649653
\(531\) 3.18349e11 0.173772
\(532\) −1.22332e12 −0.662124
\(533\) −3.36546e10 −0.0180623
\(534\) −2.03317e12 −1.08203
\(535\) 1.65891e12 0.875447
\(536\) 3.01228e10 0.0157635
\(537\) −1.73491e11 −0.0900311
\(538\) −4.28039e12 −2.20274
\(539\) 1.06546e11 0.0543737
\(540\) 1.39079e12 0.703864
\(541\) 7.44378e11 0.373599 0.186800 0.982398i \(-0.440189\pi\)
0.186800 + 0.982398i \(0.440189\pi\)
\(542\) −2.21296e12 −1.10148
\(543\) 5.14257e12 2.53852
\(544\) 1.78893e12 0.875788
\(545\) −1.42544e12 −0.692094
\(546\) −8.59720e12 −4.13990
\(547\) −2.66193e12 −1.27131 −0.635657 0.771972i \(-0.719271\pi\)
−0.635657 + 0.771972i \(0.719271\pi\)
\(548\) −9.83318e11 −0.465781
\(549\) 1.75717e12 0.825540
\(550\) 6.07520e11 0.283093
\(551\) 1.78294e11 0.0824053
\(552\) 4.25335e12 1.94987
\(553\) 1.26679e12 0.576027
\(554\) −2.12007e12 −0.956217
\(555\) 3.60896e12 1.61459
\(556\) 3.74236e12 1.66077
\(557\) 6.59469e11 0.290299 0.145150 0.989410i \(-0.453634\pi\)
0.145150 + 0.989410i \(0.453634\pi\)
\(558\) 4.32819e12 1.88996
\(559\) −1.51532e12 −0.656374
\(560\) 1.29880e12 0.558080
\(561\) −1.30367e12 −0.555692
\(562\) −2.20160e12 −0.930946
\(563\) 2.33871e12 0.981044 0.490522 0.871429i \(-0.336806\pi\)
0.490522 + 0.871429i \(0.336806\pi\)
\(564\) 2.39932e12 0.998464
\(565\) −2.42307e12 −1.00034
\(566\) −3.21802e12 −1.31800
\(567\) 3.15744e12 1.28295
\(568\) 2.94363e12 1.18663
\(569\) −2.41826e12 −0.967160 −0.483580 0.875300i \(-0.660664\pi\)
−0.483580 + 0.875300i \(0.660664\pi\)
\(570\) −2.37962e12 −0.944215
\(571\) 2.10936e12 0.830403 0.415201 0.909730i \(-0.363711\pi\)
0.415201 + 0.909730i \(0.363711\pi\)
\(572\) 2.37307e12 0.926892
\(573\) −3.22272e12 −1.24890
\(574\) 4.95931e10 0.0190685
\(575\) 1.64303e12 0.626815
\(576\) −2.95181e12 −1.11734
\(577\) −3.57287e12 −1.34192 −0.670960 0.741494i \(-0.734118\pi\)
−0.670960 + 0.741494i \(0.734118\pi\)
\(578\) 4.15304e12 1.54772
\(579\) 3.44313e12 1.27321
\(580\) −1.47379e12 −0.540768
\(581\) 4.11909e12 1.49972
\(582\) 2.24970e12 0.812777
\(583\) −2.61766e11 −0.0938435
\(584\) 5.24441e10 0.0186569
\(585\) −4.64199e12 −1.63871
\(586\) 1.83691e12 0.643500
\(587\) 8.17852e11 0.284317 0.142159 0.989844i \(-0.454596\pi\)
0.142159 + 0.989844i \(0.454596\pi\)
\(588\) 1.24153e12 0.428309
\(589\) 1.47630e12 0.505425
\(590\) −1.39936e12 −0.475440
\(591\) −5.02795e10 −0.0169530
\(592\) −1.19494e12 −0.399851
\(593\) −5.72237e12 −1.90033 −0.950166 0.311744i \(-0.899087\pi\)
−0.950166 + 0.311744i \(0.899087\pi\)
\(594\) −4.80958e11 −0.158514
\(595\) −5.76262e12 −1.88492
\(596\) −7.01988e12 −2.27888
\(597\) 6.16274e12 1.98559
\(598\) 1.00058e13 3.19960
\(599\) 2.47346e12 0.785026 0.392513 0.919747i \(-0.371606\pi\)
0.392513 + 0.919747i \(0.371606\pi\)
\(600\) 3.12162e12 0.983330
\(601\) −3.56879e12 −1.11580 −0.557899 0.829909i \(-0.688392\pi\)
−0.557899 + 0.829909i \(0.688392\pi\)
\(602\) 2.23296e12 0.692941
\(603\) 2.96398e10 0.00912951
\(604\) −6.33857e11 −0.193787
\(605\) −3.74438e11 −0.113627
\(606\) −1.17278e13 −3.53256
\(607\) 2.18785e11 0.0654136 0.0327068 0.999465i \(-0.489587\pi\)
0.0327068 + 0.999465i \(0.489587\pi\)
\(608\) −7.24310e11 −0.214960
\(609\) −1.18433e12 −0.348895
\(610\) −7.72395e12 −2.25868
\(611\) 2.48892e12 0.722480
\(612\) −6.57389e12 −1.89427
\(613\) 7.35293e10 0.0210324 0.0105162 0.999945i \(-0.496653\pi\)
0.0105162 + 0.999945i \(0.496653\pi\)
\(614\) 2.09480e12 0.594820
\(615\) 6.18772e10 0.0174418
\(616\) −1.54202e12 −0.431495
\(617\) −2.07966e12 −0.577708 −0.288854 0.957373i \(-0.593274\pi\)
−0.288854 + 0.957373i \(0.593274\pi\)
\(618\) 1.19243e13 3.28840
\(619\) −4.74329e12 −1.29859 −0.649294 0.760537i \(-0.724936\pi\)
−0.649294 + 0.760537i \(0.724936\pi\)
\(620\) −1.22032e13 −3.31675
\(621\) −1.30074e12 −0.350977
\(622\) −7.25396e12 −1.94320
\(623\) 1.99350e12 0.530176
\(624\) 3.55165e12 0.937777
\(625\) −4.75360e12 −1.24613
\(626\) 4.59299e12 1.19539
\(627\) 5.27834e11 0.136393
\(628\) 9.83509e12 2.52325
\(629\) 5.30180e12 1.35050
\(630\) 6.84038e12 1.73001
\(631\) 6.48301e12 1.62796 0.813981 0.580891i \(-0.197296\pi\)
0.813981 + 0.580891i \(0.197296\pi\)
\(632\) −2.80115e12 −0.698408
\(633\) −3.07601e12 −0.761501
\(634\) 1.29279e13 3.17780
\(635\) 8.08704e12 1.97382
\(636\) −3.05021e12 −0.739219
\(637\) 1.28789e12 0.309921
\(638\) 5.09663e11 0.121784
\(639\) 2.89643e12 0.687242
\(640\) 9.62812e12 2.26846
\(641\) 4.07928e12 0.954383 0.477191 0.878799i \(-0.341655\pi\)
0.477191 + 0.878799i \(0.341655\pi\)
\(642\) −6.68476e12 −1.55302
\(643\) −6.68210e12 −1.54157 −0.770786 0.637095i \(-0.780136\pi\)
−0.770786 + 0.637095i \(0.780136\pi\)
\(644\) −9.45739e12 −2.16663
\(645\) 2.78606e12 0.633828
\(646\) −3.49582e12 −0.789773
\(647\) 5.99370e12 1.34470 0.672351 0.740233i \(-0.265285\pi\)
0.672351 + 0.740233i \(0.265285\pi\)
\(648\) −6.98176e12 −1.55553
\(649\) 3.10398e11 0.0686781
\(650\) 7.34346e12 1.61358
\(651\) −9.80643e12 −2.13992
\(652\) −3.62470e11 −0.0785522
\(653\) −3.72436e12 −0.801571 −0.400785 0.916172i \(-0.631263\pi\)
−0.400785 + 0.916172i \(0.631263\pi\)
\(654\) 5.74398e12 1.22776
\(655\) 4.54473e12 0.964767
\(656\) −2.04878e10 −0.00431944
\(657\) 5.16033e10 0.0108052
\(658\) −3.66764e12 −0.762730
\(659\) −4.31652e11 −0.0891557 −0.0445779 0.999006i \(-0.514194\pi\)
−0.0445779 + 0.999006i \(0.514194\pi\)
\(660\) −4.36312e12 −0.895054
\(661\) 6.45586e12 1.31537 0.657685 0.753293i \(-0.271536\pi\)
0.657685 + 0.753293i \(0.271536\pi\)
\(662\) −4.40589e12 −0.891606
\(663\) −1.57582e13 −3.16735
\(664\) −9.10818e12 −1.81834
\(665\) 2.33319e12 0.462650
\(666\) −6.29337e12 −1.23951
\(667\) 1.37837e12 0.269650
\(668\) −2.42485e12 −0.471184
\(669\) 1.24091e12 0.239510
\(670\) −1.30287e11 −0.0249784
\(671\) 1.71328e12 0.326271
\(672\) 4.81127e12 0.910118
\(673\) 2.96787e11 0.0557670 0.0278835 0.999611i \(-0.491123\pi\)
0.0278835 + 0.999611i \(0.491123\pi\)
\(674\) −7.32891e12 −1.36795
\(675\) −9.54642e11 −0.177000
\(676\) 1.89725e13 3.49434
\(677\) 7.10476e11 0.129987 0.0649936 0.997886i \(-0.479297\pi\)
0.0649936 + 0.997886i \(0.479297\pi\)
\(678\) 9.76403e12 1.77458
\(679\) −2.20581e12 −0.398248
\(680\) 1.27424e13 2.28539
\(681\) 9.98863e12 1.77969
\(682\) 4.22009e12 0.746951
\(683\) −7.65172e12 −1.34544 −0.672722 0.739895i \(-0.734875\pi\)
−0.672722 + 0.739895i \(0.734875\pi\)
\(684\) 2.66166e12 0.464943
\(685\) 1.87544e12 0.325458
\(686\) 8.62591e12 1.48712
\(687\) −1.08416e13 −1.85690
\(688\) −9.22474e11 −0.156966
\(689\) −3.16412e12 −0.534893
\(690\) −1.83966e13 −3.08970
\(691\) 2.61735e12 0.436728 0.218364 0.975867i \(-0.429928\pi\)
0.218364 + 0.975867i \(0.429928\pi\)
\(692\) 6.72756e11 0.111527
\(693\) −1.51730e12 −0.249903
\(694\) −3.25214e12 −0.532171
\(695\) −7.13764e12 −1.16044
\(696\) 2.61880e12 0.423020
\(697\) 9.09016e10 0.0145890
\(698\) 7.26177e12 1.15796
\(699\) −7.01433e12 −1.11132
\(700\) −6.94098e12 −1.09265
\(701\) −1.25535e12 −0.196351 −0.0981757 0.995169i \(-0.531301\pi\)
−0.0981757 + 0.995169i \(0.531301\pi\)
\(702\) −5.81363e12 −0.903504
\(703\) −2.14661e12 −0.331478
\(704\) −2.87808e12 −0.441597
\(705\) −4.57611e12 −0.697663
\(706\) 1.10356e13 1.67177
\(707\) 1.14990e13 1.73090
\(708\) 3.61690e12 0.540987
\(709\) −1.99447e12 −0.296428 −0.148214 0.988955i \(-0.547352\pi\)
−0.148214 + 0.988955i \(0.547352\pi\)
\(710\) −1.27318e13 −1.88030
\(711\) −2.75624e12 −0.404486
\(712\) −4.40805e12 −0.642816
\(713\) 1.14132e13 1.65388
\(714\) 2.32211e13 3.34381
\(715\) −4.52605e12 −0.647653
\(716\) −8.52997e11 −0.121294
\(717\) 1.65039e12 0.233212
\(718\) −1.87149e13 −2.62802
\(719\) −7.70921e12 −1.07580 −0.537898 0.843010i \(-0.680782\pi\)
−0.537898 + 0.843010i \(0.680782\pi\)
\(720\) −2.82588e12 −0.391884
\(721\) −1.16916e13 −1.61126
\(722\) −1.07780e13 −1.47612
\(723\) 1.78655e13 2.43161
\(724\) 2.52843e13 3.42001
\(725\) 1.01162e12 0.135986
\(726\) 1.50884e12 0.201571
\(727\) −4.68468e12 −0.621979 −0.310989 0.950413i \(-0.600660\pi\)
−0.310989 + 0.950413i \(0.600660\pi\)
\(728\) −1.86393e13 −2.45945
\(729\) −3.68238e12 −0.482898
\(730\) −2.26831e11 −0.0295631
\(731\) 4.09290e12 0.530155
\(732\) 1.99640e13 2.57008
\(733\) −5.45837e12 −0.698386 −0.349193 0.937051i \(-0.613544\pi\)
−0.349193 + 0.937051i \(0.613544\pi\)
\(734\) −1.46752e13 −1.86617
\(735\) −2.36790e12 −0.299276
\(736\) −5.59956e12 −0.703403
\(737\) 2.88995e10 0.00360817
\(738\) −1.07903e11 −0.0133899
\(739\) 2.64808e11 0.0326611 0.0163306 0.999867i \(-0.494802\pi\)
0.0163306 + 0.999867i \(0.494802\pi\)
\(740\) 1.77440e13 2.17525
\(741\) 6.38025e12 0.777420
\(742\) 4.66261e12 0.564692
\(743\) 7.14179e12 0.859721 0.429860 0.902895i \(-0.358563\pi\)
0.429860 + 0.902895i \(0.358563\pi\)
\(744\) 2.16841e13 2.59456
\(745\) 1.33887e13 1.59234
\(746\) −2.03775e13 −2.40894
\(747\) −8.96216e12 −1.05310
\(748\) −6.40970e12 −0.748653
\(749\) 6.55433e12 0.760957
\(750\) 1.05126e13 1.21321
\(751\) 1.16806e13 1.33994 0.669969 0.742389i \(-0.266307\pi\)
0.669969 + 0.742389i \(0.266307\pi\)
\(752\) 1.51517e12 0.172775
\(753\) 1.34201e13 1.52117
\(754\) 6.16060e12 0.694148
\(755\) 1.20893e12 0.135406
\(756\) 5.49499e12 0.611813
\(757\) −1.58048e13 −1.74927 −0.874634 0.484784i \(-0.838898\pi\)
−0.874634 + 0.484784i \(0.838898\pi\)
\(758\) 2.83120e13 3.11501
\(759\) 4.08063e12 0.446313
\(760\) −5.15917e12 −0.560943
\(761\) −1.44129e13 −1.55784 −0.778918 0.627126i \(-0.784231\pi\)
−0.778918 + 0.627126i \(0.784231\pi\)
\(762\) −3.25877e13 −3.50151
\(763\) −5.63191e12 −0.601583
\(764\) −1.58451e13 −1.68257
\(765\) 1.25381e13 1.32359
\(766\) −2.59139e13 −2.71959
\(767\) 3.75197e12 0.391454
\(768\) −2.00493e13 −2.07958
\(769\) −5.16582e12 −0.532686 −0.266343 0.963878i \(-0.585815\pi\)
−0.266343 + 0.963878i \(0.585815\pi\)
\(770\) 6.66954e12 0.683735
\(771\) 1.76938e13 1.80334
\(772\) 1.69287e13 1.71532
\(773\) −1.55878e12 −0.157028 −0.0785142 0.996913i \(-0.525018\pi\)
−0.0785142 + 0.996913i \(0.525018\pi\)
\(774\) −4.85838e12 −0.486583
\(775\) 8.37636e12 0.834060
\(776\) 4.87750e12 0.482858
\(777\) 1.42590e13 1.40344
\(778\) 1.37825e13 1.34871
\(779\) −3.68046e10 −0.00358083
\(780\) −5.27396e13 −5.10166
\(781\) 2.82409e12 0.271612
\(782\) −2.70258e13 −2.58433
\(783\) −8.00871e11 −0.0761438
\(784\) 7.84022e11 0.0741149
\(785\) −1.87580e13 −1.76309
\(786\) −1.83135e13 −1.71147
\(787\) 7.02163e12 0.652457 0.326228 0.945291i \(-0.394222\pi\)
0.326228 + 0.945291i \(0.394222\pi\)
\(788\) −2.47208e11 −0.0228399
\(789\) 6.23983e12 0.573226
\(790\) 1.21155e13 1.10668
\(791\) −9.57352e12 −0.869516
\(792\) 3.35506e12 0.302996
\(793\) 2.07095e13 1.85969
\(794\) −6.49678e12 −0.580104
\(795\) 5.81753e12 0.516520
\(796\) 3.03001e13 2.67507
\(797\) −1.97524e13 −1.73403 −0.867015 0.498282i \(-0.833964\pi\)
−0.867015 + 0.498282i \(0.833964\pi\)
\(798\) −9.40186e12 −0.820731
\(799\) −6.72261e12 −0.583549
\(800\) −4.10964e12 −0.354731
\(801\) −4.33738e12 −0.372290
\(802\) −1.31118e13 −1.11912
\(803\) 5.03145e10 0.00427045
\(804\) 3.36751e11 0.0284221
\(805\) 1.80377e13 1.51390
\(806\) 5.10108e13 4.25750
\(807\) −2.11008e13 −1.75133
\(808\) −2.54267e13 −2.09864
\(809\) 1.32781e12 0.108985 0.0544927 0.998514i \(-0.482646\pi\)
0.0544927 + 0.998514i \(0.482646\pi\)
\(810\) 3.01976e13 2.46484
\(811\) −4.86137e12 −0.394607 −0.197303 0.980342i \(-0.563218\pi\)
−0.197303 + 0.980342i \(0.563218\pi\)
\(812\) −5.82295e12 −0.470046
\(813\) −1.09091e13 −0.875755
\(814\) −6.13619e12 −0.489879
\(815\) 6.91324e11 0.0548873
\(816\) −9.59306e12 −0.757445
\(817\) −1.65715e12 −0.130125
\(818\) 4.02763e13 3.14528
\(819\) −1.83405e13 −1.42440
\(820\) 3.04229e11 0.0234984
\(821\) 1.78619e13 1.37209 0.686046 0.727558i \(-0.259345\pi\)
0.686046 + 0.727558i \(0.259345\pi\)
\(822\) −7.55729e12 −0.577355
\(823\) −1.21898e13 −0.926184 −0.463092 0.886310i \(-0.653260\pi\)
−0.463092 + 0.886310i \(0.653260\pi\)
\(824\) 2.58526e13 1.95359
\(825\) 2.99486e12 0.225078
\(826\) −5.52886e12 −0.413262
\(827\) 2.23842e13 1.66405 0.832027 0.554735i \(-0.187180\pi\)
0.832027 + 0.554735i \(0.187180\pi\)
\(828\) 2.05770e13 1.52141
\(829\) 1.35823e13 0.998800 0.499400 0.866372i \(-0.333554\pi\)
0.499400 + 0.866372i \(0.333554\pi\)
\(830\) 3.93947e13 2.88129
\(831\) −1.04512e13 −0.760259
\(832\) −3.47891e13 −2.51703
\(833\) −3.47861e12 −0.250324
\(834\) 2.87619e13 2.05860
\(835\) 4.62480e12 0.329233
\(836\) 2.59518e12 0.183755
\(837\) −6.63134e12 −0.467021
\(838\) −4.58045e13 −3.20856
\(839\) −1.61585e13 −1.12583 −0.562915 0.826515i \(-0.690320\pi\)
−0.562915 + 0.826515i \(0.690320\pi\)
\(840\) 3.42701e13 2.37497
\(841\) −1.36585e13 −0.941500
\(842\) 2.81320e13 1.92884
\(843\) −1.08531e13 −0.740167
\(844\) −1.51237e13 −1.02593
\(845\) −3.61854e13 −2.44162
\(846\) 7.97992e12 0.535589
\(847\) −1.47940e12 −0.0987667
\(848\) −1.92621e12 −0.127915
\(849\) −1.58637e13 −1.04790
\(850\) −1.98348e13 −1.30329
\(851\) −1.65952e13 −1.08468
\(852\) 3.29076e13 2.13953
\(853\) 9.90861e12 0.640829 0.320414 0.947277i \(-0.396178\pi\)
0.320414 + 0.947277i \(0.396178\pi\)
\(854\) −3.05173e13 −1.96329
\(855\) −5.07646e12 −0.324873
\(856\) −1.44930e13 −0.922628
\(857\) 1.84954e13 1.17125 0.585624 0.810582i \(-0.300849\pi\)
0.585624 + 0.810582i \(0.300849\pi\)
\(858\) 1.82383e13 1.14892
\(859\) −2.83772e12 −0.177828 −0.0889141 0.996039i \(-0.528340\pi\)
−0.0889141 + 0.996039i \(0.528340\pi\)
\(860\) 1.36981e13 0.853921
\(861\) 2.44476e11 0.0151608
\(862\) 2.45210e13 1.51271
\(863\) 1.23192e13 0.756019 0.378010 0.925802i \(-0.376609\pi\)
0.378010 + 0.925802i \(0.376609\pi\)
\(864\) 3.25349e12 0.198627
\(865\) −1.28312e12 −0.0779281
\(866\) −8.07126e12 −0.487653
\(867\) 2.04730e13 1.23054
\(868\) −4.82149e13 −2.88299
\(869\) −2.68740e12 −0.159861
\(870\) −1.13268e13 −0.670305
\(871\) 3.49326e11 0.0205660
\(872\) 1.24533e13 0.729393
\(873\) 4.79931e12 0.279650
\(874\) 1.09423e13 0.634318
\(875\) −1.03075e13 −0.594454
\(876\) 5.86287e11 0.0336389
\(877\) 1.02172e13 0.583223 0.291611 0.956537i \(-0.405809\pi\)
0.291611 + 0.956537i \(0.405809\pi\)
\(878\) −2.25803e13 −1.28234
\(879\) 9.05531e12 0.511627
\(880\) −2.75530e12 −0.154881
\(881\) 9.94286e12 0.556058 0.278029 0.960573i \(-0.410319\pi\)
0.278029 + 0.960573i \(0.410319\pi\)
\(882\) 4.12920e12 0.229751
\(883\) 1.22195e13 0.676440 0.338220 0.941067i \(-0.390175\pi\)
0.338220 + 0.941067i \(0.390175\pi\)
\(884\) −7.74779e13 −4.26720
\(885\) −6.89835e12 −0.378008
\(886\) −3.57592e13 −1.94956
\(887\) −6.23629e12 −0.338275 −0.169137 0.985592i \(-0.554098\pi\)
−0.169137 + 0.985592i \(0.554098\pi\)
\(888\) −3.15296e13 −1.70161
\(889\) 3.19518e13 1.71569
\(890\) 1.90657e13 1.01859
\(891\) −6.69825e12 −0.356051
\(892\) 6.10116e12 0.322679
\(893\) 2.72187e12 0.143231
\(894\) −5.39513e13 −2.82477
\(895\) 1.62688e12 0.0847525
\(896\) 3.80406e13 1.97180
\(897\) 4.93250e13 2.54391
\(898\) 2.38399e13 1.22338
\(899\) 7.02712e12 0.358805
\(900\) 1.51019e13 0.767256
\(901\) 8.54633e12 0.432034
\(902\) −1.05208e11 −0.00529198
\(903\) 1.10077e13 0.550936
\(904\) 2.11691e13 1.05425
\(905\) −4.82236e13 −2.38969
\(906\) −4.87151e12 −0.240207
\(907\) −7.49095e12 −0.367540 −0.183770 0.982969i \(-0.558830\pi\)
−0.183770 + 0.982969i \(0.558830\pi\)
\(908\) 4.91107e13 2.39767
\(909\) −2.50190e13 −1.21544
\(910\) 8.06188e13 3.89717
\(911\) −6.38388e12 −0.307080 −0.153540 0.988142i \(-0.549067\pi\)
−0.153540 + 0.988142i \(0.549067\pi\)
\(912\) 3.88407e12 0.185913
\(913\) −8.73832e12 −0.416207
\(914\) 3.01463e13 1.42882
\(915\) −3.80763e13 −1.79581
\(916\) −5.33046e13 −2.50170
\(917\) 1.79562e13 0.838595
\(918\) 1.57027e13 0.729763
\(919\) −4.13467e13 −1.91215 −0.956074 0.293125i \(-0.905305\pi\)
−0.956074 + 0.293125i \(0.905305\pi\)
\(920\) −3.98850e13 −1.83554
\(921\) 1.03266e13 0.472924
\(922\) 6.09594e13 2.77812
\(923\) 3.41365e13 1.54815
\(924\) −1.72386e13 −0.777999
\(925\) −1.21796e13 −0.547009
\(926\) −1.16421e13 −0.520333
\(927\) 2.54382e13 1.13143
\(928\) −3.44767e12 −0.152602
\(929\) −9.00173e12 −0.396511 −0.198255 0.980150i \(-0.563528\pi\)
−0.198255 + 0.980150i \(0.563528\pi\)
\(930\) −9.37881e13 −4.11126
\(931\) 1.40843e12 0.0614415
\(932\) −3.44871e13 −1.49722
\(933\) −3.57594e13 −1.54498
\(934\) −2.38058e13 −1.02358
\(935\) 1.22249e13 0.523112
\(936\) 4.05546e13 1.72703
\(937\) 1.35851e13 0.575752 0.287876 0.957668i \(-0.407051\pi\)
0.287876 + 0.957668i \(0.407051\pi\)
\(938\) −5.14763e11 −0.0217117
\(939\) 2.26418e13 0.950421
\(940\) −2.24992e13 −0.939923
\(941\) −5.55297e12 −0.230872 −0.115436 0.993315i \(-0.536827\pi\)
−0.115436 + 0.993315i \(0.536827\pi\)
\(942\) 7.55876e13 3.12767
\(943\) −2.84532e11 −0.0117173
\(944\) 2.28407e12 0.0936128
\(945\) −1.04803e13 −0.427496
\(946\) −4.73704e12 −0.192308
\(947\) −5.91071e12 −0.238817 −0.119408 0.992845i \(-0.538100\pi\)
−0.119408 + 0.992845i \(0.538100\pi\)
\(948\) −3.13148e13 −1.25925
\(949\) 6.08182e11 0.0243408
\(950\) 8.03078e12 0.319891
\(951\) 6.37300e13 2.52657
\(952\) 5.03450e13 1.98651
\(953\) −1.11396e13 −0.437474 −0.218737 0.975784i \(-0.570194\pi\)
−0.218737 + 0.975784i \(0.570194\pi\)
\(954\) −1.01447e13 −0.396527
\(955\) 3.02206e13 1.17568
\(956\) 8.11442e12 0.314193
\(957\) 2.51246e12 0.0968267
\(958\) −2.18540e12 −0.0838276
\(959\) 7.40984e12 0.282895
\(960\) 6.39631e13 2.43057
\(961\) 3.17461e13 1.20070
\(962\) −7.41719e13 −2.79223
\(963\) −1.42607e13 −0.534344
\(964\) 8.78388e13 3.27597
\(965\) −3.22874e13 −1.19856
\(966\) −7.26848e13 −2.68563
\(967\) 3.61835e13 1.33074 0.665368 0.746516i \(-0.268275\pi\)
0.665368 + 0.746516i \(0.268275\pi\)
\(968\) 3.27127e12 0.119750
\(969\) −1.72331e13 −0.627924
\(970\) −2.10962e13 −0.765123
\(971\) 3.39332e13 1.22500 0.612502 0.790469i \(-0.290163\pi\)
0.612502 + 0.790469i \(0.290163\pi\)
\(972\) −6.23795e13 −2.24152
\(973\) −2.82008e13 −1.00868
\(974\) −1.67794e13 −0.597395
\(975\) 3.62007e13 1.28291
\(976\) 1.26072e13 0.444728
\(977\) −5.50249e12 −0.193212 −0.0966059 0.995323i \(-0.530799\pi\)
−0.0966059 + 0.995323i \(0.530799\pi\)
\(978\) −2.78577e12 −0.0973688
\(979\) −4.22905e12 −0.147137
\(980\) −1.16422e13 −0.403197
\(981\) 1.22537e13 0.422431
\(982\) 2.02752e13 0.695766
\(983\) −1.04553e13 −0.357145 −0.178572 0.983927i \(-0.557148\pi\)
−0.178572 + 0.983927i \(0.557148\pi\)
\(984\) −5.40589e11 −0.0183818
\(985\) 4.71488e11 0.0159591
\(986\) −1.66399e13 −0.560666
\(987\) −1.80802e13 −0.606423
\(988\) 3.13695e13 1.04737
\(989\) −1.28112e13 −0.425802
\(990\) −1.45113e13 −0.480119
\(991\) −1.90183e13 −0.626383 −0.313191 0.949690i \(-0.601398\pi\)
−0.313191 + 0.949690i \(0.601398\pi\)
\(992\) −2.85473e13 −0.935970
\(993\) −2.17195e13 −0.708889
\(994\) −5.03032e13 −1.63439
\(995\) −5.77900e13 −1.86917
\(996\) −1.01823e14 −3.27852
\(997\) 1.67341e13 0.536382 0.268191 0.963366i \(-0.413574\pi\)
0.268191 + 0.963366i \(0.413574\pi\)
\(998\) −4.82402e13 −1.53929
\(999\) 9.64225e12 0.306291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 11.10.a.b.1.5 5
3.2 odd 2 99.10.a.f.1.1 5
4.3 odd 2 176.10.a.j.1.2 5
5.4 even 2 275.10.a.b.1.1 5
11.10 odd 2 121.10.a.c.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.10.a.b.1.5 5 1.1 even 1 trivial
99.10.a.f.1.1 5 3.2 odd 2
121.10.a.c.1.1 5 11.10 odd 2
176.10.a.j.1.2 5 4.3 odd 2
275.10.a.b.1.1 5 5.4 even 2