Properties

Label 11.10.a.b.1.2
Level $11$
Weight $10$
Character 11.1
Self dual yes
Analytic conductor $5.665$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,10,Mod(1,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.66539419780\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 1608x^{3} - 7720x^{2} + 616135x + 6122025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-18.6530\) of defining polynomial
Character \(\chi\) \(=\) 11.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.6530 q^{2} -245.723 q^{3} -266.983 q^{4} +2148.33 q^{5} +3846.30 q^{6} -7680.33 q^{7} +12193.4 q^{8} +40696.7 q^{9} -33627.8 q^{10} +14641.0 q^{11} +65603.9 q^{12} -54948.1 q^{13} +120220. q^{14} -527892. q^{15} -54168.5 q^{16} +353899. q^{17} -637025. q^{18} +268903. q^{19} -573567. q^{20} +1.88723e6 q^{21} -229176. q^{22} +388124. q^{23} -2.99620e6 q^{24} +2.66218e6 q^{25} +860104. q^{26} -5.16354e6 q^{27} +2.05052e6 q^{28} +4.13797e6 q^{29} +8.26311e6 q^{30} +6.38666e6 q^{31} -5.39514e6 q^{32} -3.59763e6 q^{33} -5.53958e6 q^{34} -1.64998e7 q^{35} -1.08653e7 q^{36} -5.32172e6 q^{37} -4.20914e6 q^{38} +1.35020e7 q^{39} +2.61955e7 q^{40} -551287. q^{41} -2.95409e7 q^{42} -6.73430e6 q^{43} -3.90890e6 q^{44} +8.74297e7 q^{45} -6.07532e6 q^{46} -275206. q^{47} +1.33104e7 q^{48} +1.86338e7 q^{49} -4.16711e7 q^{50} -8.69609e7 q^{51} +1.46702e7 q^{52} +5.30922e7 q^{53} +8.08249e7 q^{54} +3.14536e7 q^{55} -9.36496e7 q^{56} -6.60756e7 q^{57} -6.47718e7 q^{58} +9.37783e7 q^{59} +1.40938e8 q^{60} -7.41160e7 q^{61} -9.99705e7 q^{62} -3.12564e8 q^{63} +1.12184e8 q^{64} -1.18046e8 q^{65} +5.63137e7 q^{66} +1.55620e8 q^{67} -9.44850e7 q^{68} -9.53710e7 q^{69} +2.58272e8 q^{70} +1.76306e8 q^{71} +4.96232e8 q^{72} +2.44413e7 q^{73} +8.33010e7 q^{74} -6.54157e8 q^{75} -7.17926e7 q^{76} -1.12448e8 q^{77} -2.11347e8 q^{78} +3.64150e8 q^{79} -1.16372e8 q^{80} +4.67766e8 q^{81} +8.62930e6 q^{82} +2.62327e8 q^{83} -5.03859e8 q^{84} +7.60289e8 q^{85} +1.05412e8 q^{86} -1.01679e9 q^{87} +1.78524e8 q^{88} +7.49967e8 q^{89} -1.36854e9 q^{90} +4.22020e8 q^{91} -1.03623e8 q^{92} -1.56935e9 q^{93} +4.30781e6 q^{94} +5.77691e8 q^{95} +1.32571e9 q^{96} -1.65962e9 q^{97} -2.91675e8 q^{98} +5.95840e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 16 q^{2} + 112 q^{3} + 708 q^{4} + 1594 q^{5} + 10378 q^{6} + 8400 q^{7} + 40716 q^{8} + 74789 q^{9} + 2986 q^{10} + 73205 q^{11} + 110288 q^{12} + 47214 q^{13} - 299852 q^{14} - 559436 q^{15} - 454776 q^{16}+ \cdots + 1094985749 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −15.6530 −0.691772 −0.345886 0.938277i \(-0.612422\pi\)
−0.345886 + 0.938277i \(0.612422\pi\)
\(3\) −245.723 −1.75146 −0.875729 0.482803i \(-0.839619\pi\)
−0.875729 + 0.482803i \(0.839619\pi\)
\(4\) −266.983 −0.521452
\(5\) 2148.33 1.53722 0.768608 0.639720i \(-0.220950\pi\)
0.768608 + 0.639720i \(0.220950\pi\)
\(6\) 3846.30 1.21161
\(7\) −7680.33 −1.20903 −0.604517 0.796592i \(-0.706634\pi\)
−0.604517 + 0.796592i \(0.706634\pi\)
\(8\) 12193.4 1.05250
\(9\) 40696.7 2.06761
\(10\) −33627.8 −1.06340
\(11\) 14641.0 0.301511
\(12\) 65603.9 0.913301
\(13\) −54948.1 −0.533590 −0.266795 0.963753i \(-0.585965\pi\)
−0.266795 + 0.963753i \(0.585965\pi\)
\(14\) 120220. 0.836376
\(15\) −527892. −2.69237
\(16\) −54168.5 −0.206637
\(17\) 353899. 1.02768 0.513841 0.857885i \(-0.328222\pi\)
0.513841 + 0.857885i \(0.328222\pi\)
\(18\) −637025. −1.43031
\(19\) 268903. 0.473374 0.236687 0.971586i \(-0.423938\pi\)
0.236687 + 0.971586i \(0.423938\pi\)
\(20\) −573567. −0.801584
\(21\) 1.88723e6 2.11757
\(22\) −229176. −0.208577
\(23\) 388124. 0.289198 0.144599 0.989490i \(-0.453811\pi\)
0.144599 + 0.989490i \(0.453811\pi\)
\(24\) −2.99620e6 −1.84341
\(25\) 2.66218e6 1.36303
\(26\) 860104. 0.369123
\(27\) −5.16354e6 −1.86987
\(28\) 2.05052e6 0.630453
\(29\) 4.13797e6 1.08642 0.543209 0.839598i \(-0.317209\pi\)
0.543209 + 0.839598i \(0.317209\pi\)
\(30\) 8.26311e6 1.86251
\(31\) 6.38666e6 1.24207 0.621035 0.783783i \(-0.286712\pi\)
0.621035 + 0.783783i \(0.286712\pi\)
\(32\) −5.39514e6 −0.909552
\(33\) −3.59763e6 −0.528084
\(34\) −5.53958e6 −0.710921
\(35\) −1.64998e7 −1.85855
\(36\) −1.08653e7 −1.07816
\(37\) −5.32172e6 −0.466814 −0.233407 0.972379i \(-0.574988\pi\)
−0.233407 + 0.972379i \(0.574988\pi\)
\(38\) −4.20914e6 −0.327467
\(39\) 1.35020e7 0.934561
\(40\) 2.61955e7 1.61792
\(41\) −551287. −0.0304684 −0.0152342 0.999884i \(-0.504849\pi\)
−0.0152342 + 0.999884i \(0.504849\pi\)
\(42\) −2.95409e7 −1.46488
\(43\) −6.73430e6 −0.300389 −0.150195 0.988656i \(-0.547990\pi\)
−0.150195 + 0.988656i \(0.547990\pi\)
\(44\) −3.90890e6 −0.157224
\(45\) 8.74297e7 3.17836
\(46\) −6.07532e6 −0.200059
\(47\) −275206. −0.00822655 −0.00411328 0.999992i \(-0.501309\pi\)
−0.00411328 + 0.999992i \(0.501309\pi\)
\(48\) 1.33104e7 0.361915
\(49\) 1.86338e7 0.461764
\(50\) −4.16711e7 −0.942909
\(51\) −8.69609e7 −1.79994
\(52\) 1.46702e7 0.278242
\(53\) 5.30922e7 0.924250 0.462125 0.886815i \(-0.347087\pi\)
0.462125 + 0.886815i \(0.347087\pi\)
\(54\) 8.08249e7 1.29352
\(55\) 3.14536e7 0.463488
\(56\) −9.36496e7 −1.27251
\(57\) −6.60756e7 −0.829095
\(58\) −6.47718e7 −0.751553
\(59\) 9.37783e7 1.00755 0.503777 0.863834i \(-0.331943\pi\)
0.503777 + 0.863834i \(0.331943\pi\)
\(60\) 1.40938e8 1.40394
\(61\) −7.41160e7 −0.685374 −0.342687 0.939450i \(-0.611337\pi\)
−0.342687 + 0.939450i \(0.611337\pi\)
\(62\) −9.99705e7 −0.859230
\(63\) −3.12564e8 −2.49981
\(64\) 1.12184e8 0.835839
\(65\) −1.18046e8 −0.820244
\(66\) 5.63137e7 0.365314
\(67\) 1.55620e8 0.943470 0.471735 0.881740i \(-0.343628\pi\)
0.471735 + 0.881740i \(0.343628\pi\)
\(68\) −9.44850e7 −0.535886
\(69\) −9.53710e7 −0.506519
\(70\) 2.58272e8 1.28569
\(71\) 1.76306e8 0.823386 0.411693 0.911323i \(-0.364938\pi\)
0.411693 + 0.911323i \(0.364938\pi\)
\(72\) 4.96232e8 2.17615
\(73\) 2.44413e7 0.100733 0.0503665 0.998731i \(-0.483961\pi\)
0.0503665 + 0.998731i \(0.483961\pi\)
\(74\) 8.33010e7 0.322929
\(75\) −6.54157e8 −2.38730
\(76\) −7.17926e7 −0.246842
\(77\) −1.12448e8 −0.364538
\(78\) −2.11347e8 −0.646503
\(79\) 3.64150e8 1.05186 0.525931 0.850527i \(-0.323717\pi\)
0.525931 + 0.850527i \(0.323717\pi\)
\(80\) −1.16372e8 −0.317645
\(81\) 4.67766e8 1.20739
\(82\) 8.62930e6 0.0210772
\(83\) 2.62327e8 0.606725 0.303362 0.952875i \(-0.401891\pi\)
0.303362 + 0.952875i \(0.401891\pi\)
\(84\) −5.03859e8 −1.10421
\(85\) 7.60289e8 1.57977
\(86\) 1.05412e8 0.207801
\(87\) −1.01679e9 −1.90282
\(88\) 1.78524e8 0.317340
\(89\) 7.49967e8 1.26703 0.633515 0.773730i \(-0.281611\pi\)
0.633515 + 0.773730i \(0.281611\pi\)
\(90\) −1.36854e9 −2.19870
\(91\) 4.22020e8 0.645129
\(92\) −1.03623e8 −0.150803
\(93\) −1.56935e9 −2.17543
\(94\) 4.30781e6 0.00569090
\(95\) 5.77691e8 0.727678
\(96\) 1.32571e9 1.59304
\(97\) −1.65962e9 −1.90343 −0.951715 0.306984i \(-0.900680\pi\)
−0.951715 + 0.306984i \(0.900680\pi\)
\(98\) −2.91675e8 −0.319435
\(99\) 5.95840e8 0.623406
\(100\) −7.10756e8 −0.710756
\(101\) −1.61386e9 −1.54319 −0.771596 0.636112i \(-0.780541\pi\)
−0.771596 + 0.636112i \(0.780541\pi\)
\(102\) 1.36120e9 1.24515
\(103\) 1.25691e9 1.10036 0.550181 0.835045i \(-0.314559\pi\)
0.550181 + 0.835045i \(0.314559\pi\)
\(104\) −6.70007e8 −0.561603
\(105\) 4.05439e9 3.25517
\(106\) −8.31053e8 −0.639370
\(107\) −2.39591e9 −1.76703 −0.883513 0.468408i \(-0.844828\pi\)
−0.883513 + 0.468408i \(0.844828\pi\)
\(108\) 1.37858e9 0.975044
\(109\) 2.32742e9 1.57927 0.789634 0.613578i \(-0.210270\pi\)
0.789634 + 0.613578i \(0.210270\pi\)
\(110\) −4.92344e8 −0.320628
\(111\) 1.30767e9 0.817606
\(112\) 4.16032e8 0.249831
\(113\) 9.18555e8 0.529971 0.264986 0.964252i \(-0.414633\pi\)
0.264986 + 0.964252i \(0.414633\pi\)
\(114\) 1.03428e9 0.573544
\(115\) 8.33817e8 0.444560
\(116\) −1.10477e9 −0.566514
\(117\) −2.23621e9 −1.10325
\(118\) −1.46791e9 −0.696998
\(119\) −2.71806e9 −1.24250
\(120\) −6.43682e9 −2.83371
\(121\) 2.14359e8 0.0909091
\(122\) 1.16014e9 0.474123
\(123\) 1.35464e8 0.0533642
\(124\) −1.70513e9 −0.647680
\(125\) 1.52327e9 0.558062
\(126\) 4.89256e9 1.72929
\(127\) −3.61865e9 −1.23432 −0.617162 0.786836i \(-0.711718\pi\)
−0.617162 + 0.786836i \(0.711718\pi\)
\(128\) 1.00629e9 0.331342
\(129\) 1.65477e9 0.526119
\(130\) 1.84778e9 0.567422
\(131\) 4.28677e9 1.27177 0.635886 0.771783i \(-0.280635\pi\)
0.635886 + 0.771783i \(0.280635\pi\)
\(132\) 9.60506e8 0.275371
\(133\) −2.06526e9 −0.572325
\(134\) −2.43592e9 −0.652666
\(135\) −1.10930e10 −2.87439
\(136\) 4.31524e9 1.08163
\(137\) 4.54711e9 1.10279 0.551396 0.834244i \(-0.314095\pi\)
0.551396 + 0.834244i \(0.314095\pi\)
\(138\) 1.49284e9 0.350395
\(139\) −5.22593e9 −1.18740 −0.593700 0.804687i \(-0.702333\pi\)
−0.593700 + 0.804687i \(0.702333\pi\)
\(140\) 4.40518e9 0.969142
\(141\) 6.76244e7 0.0144085
\(142\) −2.75971e9 −0.569595
\(143\) −8.04496e8 −0.160884
\(144\) −2.20448e9 −0.427243
\(145\) 8.88972e9 1.67006
\(146\) −3.82580e8 −0.0696842
\(147\) −4.57875e9 −0.808760
\(148\) 1.42081e9 0.243421
\(149\) −8.78579e8 −0.146030 −0.0730151 0.997331i \(-0.523262\pi\)
−0.0730151 + 0.997331i \(0.523262\pi\)
\(150\) 1.02395e10 1.65147
\(151\) −1.04463e10 −1.63518 −0.817592 0.575798i \(-0.804691\pi\)
−0.817592 + 0.575798i \(0.804691\pi\)
\(152\) 3.27885e9 0.498225
\(153\) 1.44025e10 2.12484
\(154\) 1.76014e9 0.252177
\(155\) 1.37206e10 1.90933
\(156\) −3.60481e9 −0.487328
\(157\) 2.78178e9 0.365404 0.182702 0.983168i \(-0.441516\pi\)
0.182702 + 0.983168i \(0.441516\pi\)
\(158\) −5.70005e9 −0.727649
\(159\) −1.30460e10 −1.61878
\(160\) −1.15905e10 −1.39818
\(161\) −2.98092e9 −0.349651
\(162\) −7.32195e9 −0.835235
\(163\) 1.64346e9 0.182354 0.0911768 0.995835i \(-0.470937\pi\)
0.0911768 + 0.995835i \(0.470937\pi\)
\(164\) 1.47184e8 0.0158878
\(165\) −7.72887e9 −0.811780
\(166\) −4.10621e9 −0.419715
\(167\) −8.19245e9 −0.815060 −0.407530 0.913192i \(-0.633610\pi\)
−0.407530 + 0.913192i \(0.633610\pi\)
\(168\) 2.30118e10 2.22874
\(169\) −7.58520e9 −0.715281
\(170\) −1.19008e10 −1.09284
\(171\) 1.09435e10 0.978750
\(172\) 1.79795e9 0.156639
\(173\) 1.92877e10 1.63709 0.818547 0.574439i \(-0.194780\pi\)
0.818547 + 0.574439i \(0.194780\pi\)
\(174\) 1.59159e10 1.31631
\(175\) −2.04464e10 −1.64795
\(176\) −7.93081e8 −0.0623033
\(177\) −2.30435e10 −1.76469
\(178\) −1.17392e10 −0.876496
\(179\) 1.58961e10 1.15731 0.578657 0.815571i \(-0.303577\pi\)
0.578657 + 0.815571i \(0.303577\pi\)
\(180\) −2.33423e10 −1.65736
\(181\) 1.69974e10 1.17714 0.588571 0.808445i \(-0.299691\pi\)
0.588571 + 0.808445i \(0.299691\pi\)
\(182\) −6.60588e9 −0.446282
\(183\) 1.82120e10 1.20040
\(184\) 4.73257e9 0.304380
\(185\) −1.14328e10 −0.717595
\(186\) 2.45650e10 1.50490
\(187\) 5.18143e9 0.309858
\(188\) 7.34755e7 0.00428975
\(189\) 3.96577e10 2.26073
\(190\) −9.04260e9 −0.503387
\(191\) −1.53939e10 −0.836951 −0.418475 0.908228i \(-0.637435\pi\)
−0.418475 + 0.908228i \(0.637435\pi\)
\(192\) −2.75663e10 −1.46394
\(193\) −2.53192e10 −1.31354 −0.656768 0.754093i \(-0.728077\pi\)
−0.656768 + 0.754093i \(0.728077\pi\)
\(194\) 2.59781e10 1.31674
\(195\) 2.90067e10 1.43662
\(196\) −4.97492e9 −0.240787
\(197\) 2.02470e9 0.0957775 0.0478887 0.998853i \(-0.484751\pi\)
0.0478887 + 0.998853i \(0.484751\pi\)
\(198\) −9.32669e9 −0.431255
\(199\) 2.03347e10 0.919178 0.459589 0.888132i \(-0.347997\pi\)
0.459589 + 0.888132i \(0.347997\pi\)
\(200\) 3.24611e10 1.43459
\(201\) −3.82393e10 −1.65245
\(202\) 2.52618e10 1.06754
\(203\) −3.17810e10 −1.31352
\(204\) 2.32171e10 0.938583
\(205\) −1.18434e9 −0.0468366
\(206\) −1.96744e10 −0.761200
\(207\) 1.57954e10 0.597948
\(208\) 2.97646e9 0.110259
\(209\) 3.93701e9 0.142728
\(210\) −6.34634e10 −2.25183
\(211\) 4.86974e10 1.69135 0.845677 0.533696i \(-0.179197\pi\)
0.845677 + 0.533696i \(0.179197\pi\)
\(212\) −1.41747e10 −0.481952
\(213\) −4.33223e10 −1.44213
\(214\) 3.75031e10 1.22238
\(215\) −1.44675e10 −0.461764
\(216\) −6.29612e10 −1.96803
\(217\) −4.90517e10 −1.50171
\(218\) −3.64312e10 −1.09249
\(219\) −6.00578e9 −0.176430
\(220\) −8.39759e9 −0.241687
\(221\) −1.94461e10 −0.548361
\(222\) −2.04689e10 −0.565597
\(223\) 3.67789e10 0.995926 0.497963 0.867198i \(-0.334081\pi\)
0.497963 + 0.867198i \(0.334081\pi\)
\(224\) 4.14364e10 1.09968
\(225\) 1.08342e11 2.81822
\(226\) −1.43782e10 −0.366619
\(227\) 5.59603e9 0.139883 0.0699413 0.997551i \(-0.477719\pi\)
0.0699413 + 0.997551i \(0.477719\pi\)
\(228\) 1.76411e10 0.432333
\(229\) 6.52333e10 1.56751 0.783754 0.621071i \(-0.213302\pi\)
0.783754 + 0.621071i \(0.213302\pi\)
\(230\) −1.30518e10 −0.307534
\(231\) 2.76310e10 0.638472
\(232\) 5.04561e10 1.14345
\(233\) −8.93197e9 −0.198539 −0.0992694 0.995061i \(-0.531651\pi\)
−0.0992694 + 0.995061i \(0.531651\pi\)
\(234\) 3.50034e10 0.763200
\(235\) −5.91233e8 −0.0126460
\(236\) −2.50372e10 −0.525391
\(237\) −8.94800e10 −1.84229
\(238\) 4.25458e10 0.859528
\(239\) −8.67116e10 −1.71904 −0.859521 0.511100i \(-0.829238\pi\)
−0.859521 + 0.511100i \(0.829238\pi\)
\(240\) 2.85952e10 0.556342
\(241\) −1.29986e10 −0.248210 −0.124105 0.992269i \(-0.539606\pi\)
−0.124105 + 0.992269i \(0.539606\pi\)
\(242\) −3.35536e9 −0.0628884
\(243\) −1.33068e10 −0.244820
\(244\) 1.97877e10 0.357389
\(245\) 4.00315e10 0.709831
\(246\) −2.12041e9 −0.0369158
\(247\) −1.47757e10 −0.252588
\(248\) 7.78753e10 1.30728
\(249\) −6.44597e10 −1.06265
\(250\) −2.38438e10 −0.386052
\(251\) −2.00599e10 −0.319005 −0.159503 0.987197i \(-0.550989\pi\)
−0.159503 + 0.987197i \(0.550989\pi\)
\(252\) 8.34493e10 1.30353
\(253\) 5.68253e9 0.0871966
\(254\) 5.66427e10 0.853871
\(255\) −1.86820e11 −2.76690
\(256\) −7.31898e10 −1.06505
\(257\) 3.78901e10 0.541784 0.270892 0.962610i \(-0.412681\pi\)
0.270892 + 0.962610i \(0.412681\pi\)
\(258\) −2.59022e10 −0.363955
\(259\) 4.08726e10 0.564395
\(260\) 3.15164e10 0.427718
\(261\) 1.68402e11 2.24628
\(262\) −6.71008e10 −0.879776
\(263\) −2.13394e8 −0.00275031 −0.00137516 0.999999i \(-0.500438\pi\)
−0.00137516 + 0.999999i \(0.500438\pi\)
\(264\) −4.38674e10 −0.555808
\(265\) 1.14059e11 1.42077
\(266\) 3.23276e10 0.395919
\(267\) −1.84284e11 −2.21915
\(268\) −4.15478e10 −0.491974
\(269\) −1.19091e11 −1.38673 −0.693366 0.720585i \(-0.743873\pi\)
−0.693366 + 0.720585i \(0.743873\pi\)
\(270\) 1.73638e11 1.98842
\(271\) −2.63842e10 −0.297154 −0.148577 0.988901i \(-0.547469\pi\)
−0.148577 + 0.988901i \(0.547469\pi\)
\(272\) −1.91702e10 −0.212357
\(273\) −1.03700e11 −1.12992
\(274\) −7.11760e10 −0.762880
\(275\) 3.89769e10 0.410970
\(276\) 2.54625e10 0.264125
\(277\) −7.60197e10 −0.775831 −0.387916 0.921695i \(-0.626805\pi\)
−0.387916 + 0.921695i \(0.626805\pi\)
\(278\) 8.18015e10 0.821410
\(279\) 2.59916e11 2.56811
\(280\) −2.01190e11 −1.95612
\(281\) −1.09769e11 −1.05027 −0.525136 0.851018i \(-0.675985\pi\)
−0.525136 + 0.851018i \(0.675985\pi\)
\(282\) −1.05853e9 −0.00996737
\(283\) 1.85495e11 1.71907 0.859536 0.511075i \(-0.170752\pi\)
0.859536 + 0.511075i \(0.170752\pi\)
\(284\) −4.70706e10 −0.429356
\(285\) −1.41952e11 −1.27450
\(286\) 1.25928e10 0.111295
\(287\) 4.23406e9 0.0368374
\(288\) −2.19564e11 −1.88059
\(289\) 6.65635e9 0.0561301
\(290\) −1.39151e11 −1.15530
\(291\) 4.07807e11 3.33378
\(292\) −6.52542e9 −0.0525274
\(293\) 1.89754e11 1.50414 0.752069 0.659084i \(-0.229056\pi\)
0.752069 + 0.659084i \(0.229056\pi\)
\(294\) 7.16713e10 0.559477
\(295\) 2.01466e11 1.54883
\(296\) −6.48900e10 −0.491321
\(297\) −7.55993e10 −0.563786
\(298\) 1.37524e10 0.101020
\(299\) −2.13267e10 −0.154313
\(300\) 1.74649e11 1.24486
\(301\) 5.17217e10 0.363181
\(302\) 1.63516e11 1.13117
\(303\) 3.96563e11 2.70284
\(304\) −1.45661e10 −0.0978164
\(305\) −1.59225e11 −1.05357
\(306\) −2.25442e11 −1.46990
\(307\) −2.52119e9 −0.0161988 −0.00809941 0.999967i \(-0.502578\pi\)
−0.00809941 + 0.999967i \(0.502578\pi\)
\(308\) 3.00216e10 0.190089
\(309\) −3.08851e11 −1.92724
\(310\) −2.14769e11 −1.32082
\(311\) −2.21193e10 −0.134076 −0.0670379 0.997750i \(-0.521355\pi\)
−0.0670379 + 0.997750i \(0.521355\pi\)
\(312\) 1.64636e11 0.983623
\(313\) −2.93908e11 −1.73086 −0.865429 0.501032i \(-0.832954\pi\)
−0.865429 + 0.501032i \(0.832954\pi\)
\(314\) −4.35432e10 −0.252776
\(315\) −6.71489e11 −3.84274
\(316\) −9.72220e10 −0.548495
\(317\) 6.46979e10 0.359852 0.179926 0.983680i \(-0.442414\pi\)
0.179926 + 0.983680i \(0.442414\pi\)
\(318\) 2.04209e11 1.11983
\(319\) 6.05841e10 0.327567
\(320\) 2.41009e11 1.28487
\(321\) 5.88729e11 3.09487
\(322\) 4.66604e10 0.241878
\(323\) 9.51644e10 0.486478
\(324\) −1.24886e11 −0.629593
\(325\) −1.46282e11 −0.727302
\(326\) −2.57251e10 −0.126147
\(327\) −5.71900e11 −2.76602
\(328\) −6.72208e9 −0.0320680
\(329\) 2.11367e9 0.00994618
\(330\) 1.20980e11 0.561567
\(331\) 7.03322e10 0.322054 0.161027 0.986950i \(-0.448519\pi\)
0.161027 + 0.986950i \(0.448519\pi\)
\(332\) −7.00369e10 −0.316378
\(333\) −2.16576e11 −0.965188
\(334\) 1.28236e11 0.563835
\(335\) 3.34322e11 1.45032
\(336\) −1.02229e11 −0.437568
\(337\) 2.26055e11 0.954729 0.477364 0.878705i \(-0.341592\pi\)
0.477364 + 0.878705i \(0.341592\pi\)
\(338\) 1.18731e11 0.494812
\(339\) −2.25710e11 −0.928222
\(340\) −2.02985e11 −0.823773
\(341\) 9.35071e10 0.374498
\(342\) −1.71298e11 −0.677072
\(343\) 1.66815e11 0.650746
\(344\) −8.21143e10 −0.316159
\(345\) −2.04888e11 −0.778629
\(346\) −3.01911e11 −1.13250
\(347\) −9.43951e10 −0.349516 −0.174758 0.984611i \(-0.555914\pi\)
−0.174758 + 0.984611i \(0.555914\pi\)
\(348\) 2.71467e11 0.992226
\(349\) −2.92610e10 −0.105578 −0.0527892 0.998606i \(-0.516811\pi\)
−0.0527892 + 0.998606i \(0.516811\pi\)
\(350\) 3.20048e11 1.14001
\(351\) 2.83727e11 0.997742
\(352\) −7.89902e10 −0.274240
\(353\) −1.37893e10 −0.0472669 −0.0236335 0.999721i \(-0.507523\pi\)
−0.0236335 + 0.999721i \(0.507523\pi\)
\(354\) 3.60700e11 1.22076
\(355\) 3.78762e11 1.26572
\(356\) −2.00229e11 −0.660695
\(357\) 6.67889e11 2.17619
\(358\) −2.48821e11 −0.800598
\(359\) −3.12880e11 −0.994153 −0.497077 0.867707i \(-0.665593\pi\)
−0.497077 + 0.867707i \(0.665593\pi\)
\(360\) 1.06607e12 3.34521
\(361\) −2.50379e11 −0.775917
\(362\) −2.66061e11 −0.814314
\(363\) −5.26729e10 −0.159223
\(364\) −1.12672e11 −0.336404
\(365\) 5.25079e10 0.154848
\(366\) −2.85072e11 −0.830406
\(367\) 1.08747e11 0.312911 0.156455 0.987685i \(-0.449993\pi\)
0.156455 + 0.987685i \(0.449993\pi\)
\(368\) −2.10241e10 −0.0597589
\(369\) −2.24355e10 −0.0629967
\(370\) 1.78958e11 0.496412
\(371\) −4.07766e11 −1.11745
\(372\) 4.18990e11 1.13438
\(373\) −2.90313e11 −0.776562 −0.388281 0.921541i \(-0.626931\pi\)
−0.388281 + 0.921541i \(0.626931\pi\)
\(374\) −8.11050e10 −0.214351
\(375\) −3.74303e11 −0.977423
\(376\) −3.35571e9 −0.00865843
\(377\) −2.27374e11 −0.579702
\(378\) −6.20762e11 −1.56391
\(379\) −5.65217e11 −1.40715 −0.703573 0.710623i \(-0.748413\pi\)
−0.703573 + 0.710623i \(0.748413\pi\)
\(380\) −1.54234e11 −0.379449
\(381\) 8.89184e11 2.16187
\(382\) 2.40962e11 0.578979
\(383\) −3.54899e11 −0.842772 −0.421386 0.906881i \(-0.638456\pi\)
−0.421386 + 0.906881i \(0.638456\pi\)
\(384\) −2.47267e11 −0.580332
\(385\) −2.41574e11 −0.560373
\(386\) 3.96322e11 0.908667
\(387\) −2.74064e11 −0.621087
\(388\) 4.43092e11 0.992546
\(389\) 1.54025e11 0.341051 0.170525 0.985353i \(-0.445453\pi\)
0.170525 + 0.985353i \(0.445453\pi\)
\(390\) −4.54042e11 −0.993815
\(391\) 1.37357e11 0.297204
\(392\) 2.27210e11 0.486005
\(393\) −1.05336e12 −2.22745
\(394\) −3.16927e10 −0.0662562
\(395\) 7.82313e11 1.61694
\(396\) −1.59079e11 −0.325076
\(397\) 5.26364e11 1.06348 0.531740 0.846908i \(-0.321539\pi\)
0.531740 + 0.846908i \(0.321539\pi\)
\(398\) −3.18300e11 −0.635862
\(399\) 5.07482e11 1.00240
\(400\) −1.44206e11 −0.281653
\(401\) −2.95496e11 −0.570692 −0.285346 0.958425i \(-0.592108\pi\)
−0.285346 + 0.958425i \(0.592108\pi\)
\(402\) 5.98560e11 1.14312
\(403\) −3.50935e11 −0.662757
\(404\) 4.30874e11 0.804700
\(405\) 1.00491e12 1.85601
\(406\) 4.97468e11 0.908654
\(407\) −7.79153e10 −0.140750
\(408\) −1.06035e12 −1.89443
\(409\) 7.45480e11 1.31729 0.658645 0.752454i \(-0.271130\pi\)
0.658645 + 0.752454i \(0.271130\pi\)
\(410\) 1.85385e10 0.0324002
\(411\) −1.11733e12 −1.93149
\(412\) −3.35573e11 −0.573786
\(413\) −7.20248e11 −1.21817
\(414\) −2.47245e11 −0.413643
\(415\) 5.63564e11 0.932667
\(416\) 2.96453e11 0.485328
\(417\) 1.28413e12 2.07968
\(418\) −6.16260e10 −0.0987350
\(419\) −1.04045e11 −0.164915 −0.0824574 0.996595i \(-0.526277\pi\)
−0.0824574 + 0.996595i \(0.526277\pi\)
\(420\) −1.08245e12 −1.69741
\(421\) −9.39130e11 −1.45699 −0.728495 0.685052i \(-0.759780\pi\)
−0.728495 + 0.685052i \(0.759780\pi\)
\(422\) −7.62260e11 −1.17003
\(423\) −1.12000e10 −0.0170093
\(424\) 6.47376e11 0.972771
\(425\) 9.42141e11 1.40077
\(426\) 6.78124e11 0.997622
\(427\) 5.69235e11 0.828641
\(428\) 6.39667e11 0.921418
\(429\) 1.97683e11 0.281781
\(430\) 2.26460e11 0.319435
\(431\) −3.61080e11 −0.504029 −0.252015 0.967723i \(-0.581093\pi\)
−0.252015 + 0.967723i \(0.581093\pi\)
\(432\) 2.79701e11 0.386383
\(433\) 4.69247e11 0.641514 0.320757 0.947162i \(-0.396063\pi\)
0.320757 + 0.947162i \(0.396063\pi\)
\(434\) 7.67806e11 1.03884
\(435\) −2.18441e12 −2.92504
\(436\) −6.21383e11 −0.823512
\(437\) 1.04368e11 0.136899
\(438\) 9.40086e10 0.122049
\(439\) −7.12546e11 −0.915636 −0.457818 0.889046i \(-0.651369\pi\)
−0.457818 + 0.889046i \(0.651369\pi\)
\(440\) 3.83528e11 0.487820
\(441\) 7.58335e11 0.954745
\(442\) 3.04390e11 0.379341
\(443\) 1.02429e12 1.26359 0.631795 0.775135i \(-0.282318\pi\)
0.631795 + 0.775135i \(0.282318\pi\)
\(444\) −3.49125e11 −0.426342
\(445\) 1.61117e12 1.94770
\(446\) −5.75701e11 −0.688954
\(447\) 2.15887e11 0.255766
\(448\) −8.61613e11 −1.01056
\(449\) −1.05516e12 −1.22521 −0.612605 0.790389i \(-0.709878\pi\)
−0.612605 + 0.790389i \(0.709878\pi\)
\(450\) −1.69587e12 −1.94956
\(451\) −8.07139e9 −0.00918658
\(452\) −2.45239e11 −0.276354
\(453\) 2.56690e12 2.86396
\(454\) −8.75948e10 −0.0967669
\(455\) 9.06636e11 0.991703
\(456\) −8.05688e11 −0.872620
\(457\) 5.58535e10 0.0599001 0.0299501 0.999551i \(-0.490465\pi\)
0.0299501 + 0.999551i \(0.490465\pi\)
\(458\) −1.02110e12 −1.08436
\(459\) −1.82737e12 −1.92163
\(460\) −2.22615e11 −0.231817
\(461\) −1.26794e12 −1.30751 −0.653754 0.756707i \(-0.726807\pi\)
−0.653754 + 0.756707i \(0.726807\pi\)
\(462\) −4.32508e11 −0.441677
\(463\) 4.38622e11 0.443584 0.221792 0.975094i \(-0.428809\pi\)
0.221792 + 0.975094i \(0.428809\pi\)
\(464\) −2.24148e11 −0.224494
\(465\) −3.37147e12 −3.34411
\(466\) 1.39812e11 0.137344
\(467\) 1.14940e10 0.0111826 0.00559131 0.999984i \(-0.498220\pi\)
0.00559131 + 0.999984i \(0.498220\pi\)
\(468\) 5.97030e11 0.575294
\(469\) −1.19521e12 −1.14069
\(470\) 9.25457e9 0.00874814
\(471\) −6.83546e11 −0.639990
\(472\) 1.14348e12 1.06045
\(473\) −9.85969e10 −0.0905708
\(474\) 1.40063e12 1.27445
\(475\) 7.15867e11 0.645225
\(476\) 7.25676e11 0.647905
\(477\) 2.16068e12 1.91098
\(478\) 1.35730e12 1.18919
\(479\) 1.54682e12 1.34255 0.671273 0.741210i \(-0.265748\pi\)
0.671273 + 0.741210i \(0.265748\pi\)
\(480\) 2.84805e12 2.44885
\(481\) 2.92419e11 0.249088
\(482\) 2.03467e11 0.171705
\(483\) 7.32480e11 0.612398
\(484\) −5.72302e10 −0.0474047
\(485\) −3.56541e12 −2.92598
\(486\) 2.08292e11 0.169359
\(487\) 1.92206e11 0.154841 0.0774207 0.996999i \(-0.475332\pi\)
0.0774207 + 0.996999i \(0.475332\pi\)
\(488\) −9.03728e11 −0.721355
\(489\) −4.03835e11 −0.319385
\(490\) −6.26614e11 −0.491041
\(491\) −5.09058e11 −0.395276 −0.197638 0.980275i \(-0.563327\pi\)
−0.197638 + 0.980275i \(0.563327\pi\)
\(492\) −3.61665e10 −0.0278268
\(493\) 1.46442e12 1.11649
\(494\) 2.31285e11 0.174733
\(495\) 1.28006e12 0.958311
\(496\) −3.45956e11 −0.256657
\(497\) −1.35408e12 −0.995502
\(498\) 1.00899e12 0.735113
\(499\) 7.55851e11 0.545738 0.272869 0.962051i \(-0.412027\pi\)
0.272869 + 0.962051i \(0.412027\pi\)
\(500\) −4.06688e11 −0.291002
\(501\) 2.01307e12 1.42754
\(502\) 3.13999e11 0.220679
\(503\) −6.11582e11 −0.425989 −0.212995 0.977053i \(-0.568322\pi\)
−0.212995 + 0.977053i \(0.568322\pi\)
\(504\) −3.81123e12 −2.63104
\(505\) −3.46710e12 −2.37222
\(506\) −8.89487e10 −0.0603201
\(507\) 1.86386e12 1.25279
\(508\) 9.66118e11 0.643641
\(509\) 1.75245e12 1.15722 0.578610 0.815604i \(-0.303595\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(510\) 2.92430e12 1.91406
\(511\) −1.87717e11 −0.121790
\(512\) 6.30423e11 0.405431
\(513\) −1.38849e12 −0.885146
\(514\) −5.93094e11 −0.374791
\(515\) 2.70025e12 1.69149
\(516\) −4.41796e11 −0.274346
\(517\) −4.02929e9 −0.00248040
\(518\) −6.39779e11 −0.390432
\(519\) −4.73944e12 −2.86730
\(520\) −1.43939e12 −0.863305
\(521\) −1.39631e12 −0.830256 −0.415128 0.909763i \(-0.636263\pi\)
−0.415128 + 0.909763i \(0.636263\pi\)
\(522\) −2.63600e12 −1.55392
\(523\) −2.28933e12 −1.33799 −0.668993 0.743269i \(-0.733274\pi\)
−0.668993 + 0.743269i \(0.733274\pi\)
\(524\) −1.14449e12 −0.663167
\(525\) 5.02414e12 2.88632
\(526\) 3.34027e9 0.00190259
\(527\) 2.26023e12 1.27645
\(528\) 1.94878e11 0.109122
\(529\) −1.65051e12 −0.916364
\(530\) −1.78537e12 −0.982850
\(531\) 3.81647e12 2.08322
\(532\) 5.51391e11 0.298440
\(533\) 3.02922e10 0.0162577
\(534\) 2.88460e12 1.53515
\(535\) −5.14718e12 −2.71630
\(536\) 1.89754e12 0.992999
\(537\) −3.90603e12 −2.02699
\(538\) 1.86413e12 0.959303
\(539\) 2.72818e11 0.139227
\(540\) 2.96163e12 1.49885
\(541\) −9.52669e11 −0.478139 −0.239070 0.971002i \(-0.576842\pi\)
−0.239070 + 0.971002i \(0.576842\pi\)
\(542\) 4.12992e11 0.205563
\(543\) −4.17665e12 −2.06172
\(544\) −1.90933e12 −0.934730
\(545\) 5.00006e12 2.42768
\(546\) 1.62322e12 0.781644
\(547\) 9.62712e11 0.459783 0.229892 0.973216i \(-0.426163\pi\)
0.229892 + 0.973216i \(0.426163\pi\)
\(548\) −1.21400e12 −0.575052
\(549\) −3.01627e12 −1.41708
\(550\) −6.10106e11 −0.284298
\(551\) 1.11271e12 0.514282
\(552\) −1.16290e12 −0.533110
\(553\) −2.79679e12 −1.27174
\(554\) 1.18994e12 0.536698
\(555\) 2.80930e12 1.25684
\(556\) 1.39524e12 0.619171
\(557\) 6.11109e11 0.269011 0.134506 0.990913i \(-0.457055\pi\)
0.134506 + 0.990913i \(0.457055\pi\)
\(558\) −4.06847e12 −1.77655
\(559\) 3.70038e11 0.160285
\(560\) 8.93772e11 0.384044
\(561\) −1.27320e12 −0.542703
\(562\) 1.71822e12 0.726548
\(563\) 3.64977e12 1.53101 0.765505 0.643429i \(-0.222489\pi\)
0.765505 + 0.643429i \(0.222489\pi\)
\(564\) −1.80546e10 −0.00751332
\(565\) 1.97336e12 0.814680
\(566\) −2.90356e12 −1.18921
\(567\) −3.59260e12 −1.45977
\(568\) 2.14977e12 0.866612
\(569\) 4.84961e11 0.193955 0.0969776 0.995287i \(-0.469082\pi\)
0.0969776 + 0.995287i \(0.469082\pi\)
\(570\) 2.22197e12 0.881662
\(571\) 5.45393e11 0.214708 0.107354 0.994221i \(-0.465762\pi\)
0.107354 + 0.994221i \(0.465762\pi\)
\(572\) 2.14787e11 0.0838930
\(573\) 3.78264e12 1.46588
\(574\) −6.62758e10 −0.0254831
\(575\) 1.03326e12 0.394187
\(576\) 4.56553e12 1.72819
\(577\) 2.63251e12 0.988733 0.494367 0.869253i \(-0.335400\pi\)
0.494367 + 0.869253i \(0.335400\pi\)
\(578\) −1.04192e11 −0.0388293
\(579\) 6.22150e12 2.30060
\(580\) −2.37341e12 −0.870855
\(581\) −2.01476e12 −0.733551
\(582\) −6.38341e12 −2.30621
\(583\) 7.77323e11 0.278672
\(584\) 2.98023e11 0.106021
\(585\) −4.80410e12 −1.69594
\(586\) −2.97023e12 −1.04052
\(587\) −2.59718e12 −0.902880 −0.451440 0.892302i \(-0.649089\pi\)
−0.451440 + 0.892302i \(0.649089\pi\)
\(588\) 1.22245e12 0.421729
\(589\) 1.71739e12 0.587964
\(590\) −3.15355e12 −1.07144
\(591\) −4.97516e11 −0.167750
\(592\) 2.88270e11 0.0964609
\(593\) 1.31351e12 0.436200 0.218100 0.975926i \(-0.430014\pi\)
0.218100 + 0.975926i \(0.430014\pi\)
\(594\) 1.18336e12 0.390011
\(595\) −5.83927e12 −1.91000
\(596\) 2.34566e11 0.0761476
\(597\) −4.99671e12 −1.60990
\(598\) 3.33827e11 0.106750
\(599\) 3.07199e12 0.974988 0.487494 0.873126i \(-0.337911\pi\)
0.487494 + 0.873126i \(0.337911\pi\)
\(600\) −7.97642e12 −2.51262
\(601\) 3.06955e12 0.959709 0.479855 0.877348i \(-0.340689\pi\)
0.479855 + 0.877348i \(0.340689\pi\)
\(602\) −8.09600e11 −0.251238
\(603\) 6.33320e12 1.95072
\(604\) 2.78899e12 0.852669
\(605\) 4.60513e11 0.139747
\(606\) −6.20740e12 −1.86975
\(607\) 1.83982e12 0.550082 0.275041 0.961433i \(-0.411309\pi\)
0.275041 + 0.961433i \(0.411309\pi\)
\(608\) −1.45077e12 −0.430558
\(609\) 7.80932e12 2.30057
\(610\) 2.49235e12 0.728829
\(611\) 1.51221e10 0.00438961
\(612\) −3.84522e12 −1.10800
\(613\) 2.60106e12 0.744010 0.372005 0.928231i \(-0.378670\pi\)
0.372005 + 0.928231i \(0.378670\pi\)
\(614\) 3.94642e10 0.0112059
\(615\) 2.91020e11 0.0820323
\(616\) −1.37112e12 −0.383675
\(617\) 4.22433e12 1.17348 0.586738 0.809777i \(-0.300412\pi\)
0.586738 + 0.809777i \(0.300412\pi\)
\(618\) 4.83444e12 1.33321
\(619\) −4.28266e12 −1.17248 −0.586240 0.810137i \(-0.699393\pi\)
−0.586240 + 0.810137i \(0.699393\pi\)
\(620\) −3.66318e12 −0.995624
\(621\) −2.00409e12 −0.540762
\(622\) 3.46234e11 0.0927499
\(623\) −5.75999e12 −1.53188
\(624\) −7.31384e11 −0.193114
\(625\) −1.92708e12 −0.505172
\(626\) 4.60054e12 1.19736
\(627\) −9.67413e11 −0.249981
\(628\) −7.42688e11 −0.190541
\(629\) −1.88335e12 −0.479737
\(630\) 1.05108e13 2.65830
\(631\) −2.27266e12 −0.570692 −0.285346 0.958425i \(-0.592109\pi\)
−0.285346 + 0.958425i \(0.592109\pi\)
\(632\) 4.44024e12 1.10708
\(633\) −1.19660e13 −2.96233
\(634\) −1.01272e12 −0.248935
\(635\) −7.77403e12 −1.89742
\(636\) 3.48305e12 0.844118
\(637\) −1.02389e12 −0.246393
\(638\) −9.48323e11 −0.226602
\(639\) 7.17505e12 1.70244
\(640\) 2.16183e12 0.509345
\(641\) −2.28220e11 −0.0533940 −0.0266970 0.999644i \(-0.508499\pi\)
−0.0266970 + 0.999644i \(0.508499\pi\)
\(642\) −9.21537e12 −2.14094
\(643\) −7.48389e12 −1.72654 −0.863272 0.504739i \(-0.831589\pi\)
−0.863272 + 0.504739i \(0.831589\pi\)
\(644\) 7.95856e11 0.182326
\(645\) 3.55499e12 0.808760
\(646\) −1.48961e12 −0.336532
\(647\) −2.80052e11 −0.0628303 −0.0314152 0.999506i \(-0.510001\pi\)
−0.0314152 + 0.999506i \(0.510001\pi\)
\(648\) 5.70367e12 1.27077
\(649\) 1.37301e12 0.303789
\(650\) 2.28975e12 0.503127
\(651\) 1.20531e13 2.63017
\(652\) −4.38776e11 −0.0950886
\(653\) −4.25977e12 −0.916804 −0.458402 0.888745i \(-0.651578\pi\)
−0.458402 + 0.888745i \(0.651578\pi\)
\(654\) 8.95196e12 1.91346
\(655\) 9.20937e12 1.95499
\(656\) 2.98624e10 0.00629589
\(657\) 9.94680e11 0.208276
\(658\) −3.30854e10 −0.00688049
\(659\) 6.25498e12 1.29194 0.645969 0.763364i \(-0.276454\pi\)
0.645969 + 0.763364i \(0.276454\pi\)
\(660\) 2.06348e12 0.423304
\(661\) −2.38132e12 −0.485189 −0.242594 0.970128i \(-0.577998\pi\)
−0.242594 + 0.970128i \(0.577998\pi\)
\(662\) −1.10091e12 −0.222788
\(663\) 4.77834e12 0.960432
\(664\) 3.19867e12 0.638576
\(665\) −4.43686e12 −0.879788
\(666\) 3.39007e12 0.667690
\(667\) 1.60605e12 0.314190
\(668\) 2.18725e12 0.425014
\(669\) −9.03742e12 −1.74432
\(670\) −5.23314e12 −1.00329
\(671\) −1.08513e12 −0.206648
\(672\) −1.01819e13 −1.92604
\(673\) 2.81014e11 0.0528032 0.0264016 0.999651i \(-0.491595\pi\)
0.0264016 + 0.999651i \(0.491595\pi\)
\(674\) −3.53844e12 −0.660454
\(675\) −1.37462e13 −2.54869
\(676\) 2.02512e12 0.372985
\(677\) −1.45117e12 −0.265503 −0.132751 0.991149i \(-0.542381\pi\)
−0.132751 + 0.991149i \(0.542381\pi\)
\(678\) 3.53304e12 0.642118
\(679\) 1.27464e13 2.30131
\(680\) 9.27054e12 1.66270
\(681\) −1.37507e12 −0.244999
\(682\) −1.46367e12 −0.259067
\(683\) −7.93030e12 −1.39443 −0.697215 0.716863i \(-0.745578\pi\)
−0.697215 + 0.716863i \(0.745578\pi\)
\(684\) −2.92172e12 −0.510371
\(685\) 9.76868e12 1.69523
\(686\) −2.61116e12 −0.450168
\(687\) −1.60293e13 −2.74543
\(688\) 3.64787e11 0.0620714
\(689\) −2.91732e12 −0.493171
\(690\) 3.20711e12 0.538633
\(691\) 8.55555e12 1.42757 0.713784 0.700366i \(-0.246980\pi\)
0.713784 + 0.700366i \(0.246980\pi\)
\(692\) −5.14950e12 −0.853666
\(693\) −4.57625e12 −0.753720
\(694\) 1.47757e12 0.241785
\(695\) −1.12270e13 −1.82529
\(696\) −1.23982e13 −2.00271
\(697\) −1.95100e11 −0.0313119
\(698\) 4.58023e11 0.0730362
\(699\) 2.19479e12 0.347733
\(700\) 5.45884e12 0.859329
\(701\) −9.03988e12 −1.41394 −0.706971 0.707243i \(-0.749939\pi\)
−0.706971 + 0.707243i \(0.749939\pi\)
\(702\) −4.44118e12 −0.690210
\(703\) −1.43103e12 −0.220978
\(704\) 1.64249e12 0.252015
\(705\) 1.45279e11 0.0221489
\(706\) 2.15845e11 0.0326979
\(707\) 1.23950e13 1.86577
\(708\) 6.15222e12 0.920200
\(709\) −6.71158e12 −0.997509 −0.498754 0.866743i \(-0.666209\pi\)
−0.498754 + 0.866743i \(0.666209\pi\)
\(710\) −5.92876e12 −0.875591
\(711\) 1.48197e13 2.17484
\(712\) 9.14467e12 1.33355
\(713\) 2.47882e12 0.359205
\(714\) −1.04545e13 −1.50543
\(715\) −1.72832e12 −0.247313
\(716\) −4.24399e12 −0.603483
\(717\) 2.13070e13 3.01083
\(718\) 4.89752e12 0.687727
\(719\) 8.62374e12 1.20342 0.601708 0.798716i \(-0.294487\pi\)
0.601708 + 0.798716i \(0.294487\pi\)
\(720\) −4.73594e12 −0.656765
\(721\) −9.65346e12 −1.33038
\(722\) 3.91918e12 0.536758
\(723\) 3.19405e12 0.434730
\(724\) −4.53802e12 −0.613823
\(725\) 1.10160e13 1.48082
\(726\) 8.24489e11 0.110146
\(727\) −2.25456e12 −0.299335 −0.149667 0.988736i \(-0.547820\pi\)
−0.149667 + 0.988736i \(0.547820\pi\)
\(728\) 5.14587e12 0.678997
\(729\) −5.93724e12 −0.778594
\(730\) −8.21906e11 −0.107120
\(731\) −2.38326e12 −0.308705
\(732\) −4.86230e12 −0.625953
\(733\) 1.36664e13 1.74858 0.874289 0.485406i \(-0.161328\pi\)
0.874289 + 0.485406i \(0.161328\pi\)
\(734\) −1.70222e12 −0.216463
\(735\) −9.83665e12 −1.24324
\(736\) −2.09398e12 −0.263041
\(737\) 2.27843e12 0.284467
\(738\) 3.51184e11 0.0435793
\(739\) −1.41824e13 −1.74924 −0.874622 0.484806i \(-0.838890\pi\)
−0.874622 + 0.484806i \(0.838890\pi\)
\(740\) 3.05236e12 0.374191
\(741\) 3.63073e12 0.442397
\(742\) 6.38276e12 0.773020
\(743\) 5.11027e12 0.615168 0.307584 0.951521i \(-0.400479\pi\)
0.307584 + 0.951521i \(0.400479\pi\)
\(744\) −1.91357e13 −2.28964
\(745\) −1.88747e12 −0.224480
\(746\) 4.54427e12 0.537204
\(747\) 1.06758e13 1.25447
\(748\) −1.38335e12 −0.161576
\(749\) 1.84013e13 2.13639
\(750\) 5.85897e12 0.676153
\(751\) −2.93643e12 −0.336853 −0.168426 0.985714i \(-0.553869\pi\)
−0.168426 + 0.985714i \(0.553869\pi\)
\(752\) 1.49075e10 0.00169991
\(753\) 4.92918e12 0.558724
\(754\) 3.55909e12 0.401022
\(755\) −2.24421e13 −2.51363
\(756\) −1.05879e13 −1.17886
\(757\) −1.56994e13 −1.73760 −0.868801 0.495162i \(-0.835109\pi\)
−0.868801 + 0.495162i \(0.835109\pi\)
\(758\) 8.84735e12 0.973424
\(759\) −1.39633e12 −0.152721
\(760\) 7.04404e12 0.765880
\(761\) 1.11983e11 0.0121038 0.00605190 0.999982i \(-0.498074\pi\)
0.00605190 + 0.999982i \(0.498074\pi\)
\(762\) −1.39184e13 −1.49552
\(763\) −1.78754e13 −1.90939
\(764\) 4.10993e12 0.436429
\(765\) 3.09412e13 3.26634
\(766\) 5.55523e12 0.583006
\(767\) −5.15294e12 −0.537621
\(768\) 1.79844e13 1.86539
\(769\) −1.24501e13 −1.28382 −0.641908 0.766781i \(-0.721857\pi\)
−0.641908 + 0.766781i \(0.721857\pi\)
\(770\) 3.78136e12 0.387650
\(771\) −9.31045e12 −0.948912
\(772\) 6.75980e12 0.684945
\(773\) 1.52002e13 1.53123 0.765616 0.643298i \(-0.222434\pi\)
0.765616 + 0.643298i \(0.222434\pi\)
\(774\) 4.28992e12 0.429650
\(775\) 1.70024e13 1.69298
\(776\) −2.02365e13 −2.00335
\(777\) −1.00433e13 −0.988514
\(778\) −2.41096e12 −0.235929
\(779\) −1.48243e11 −0.0144230
\(780\) −7.74431e12 −0.749129
\(781\) 2.58129e12 0.248260
\(782\) −2.15005e12 −0.205597
\(783\) −2.13666e13 −2.03146
\(784\) −1.00937e12 −0.0954172
\(785\) 5.97616e12 0.561706
\(786\) 1.64882e13 1.54089
\(787\) −7.52186e12 −0.698938 −0.349469 0.936948i \(-0.613638\pi\)
−0.349469 + 0.936948i \(0.613638\pi\)
\(788\) −5.40562e11 −0.0499433
\(789\) 5.24359e10 0.00481706
\(790\) −1.22456e13 −1.11855
\(791\) −7.05480e12 −0.640753
\(792\) 7.26533e12 0.656134
\(793\) 4.07254e12 0.365709
\(794\) −8.23918e12 −0.735685
\(795\) −2.80270e13 −2.48842
\(796\) −5.42903e12 −0.479307
\(797\) 2.24661e12 0.197226 0.0986131 0.995126i \(-0.468559\pi\)
0.0986131 + 0.995126i \(0.468559\pi\)
\(798\) −7.94362e12 −0.693435
\(799\) −9.73951e10 −0.00845428
\(800\) −1.43628e13 −1.23975
\(801\) 3.05212e13 2.61972
\(802\) 4.62540e12 0.394788
\(803\) 3.57845e11 0.0303721
\(804\) 1.02093e13 0.861671
\(805\) −6.40399e12 −0.537489
\(806\) 5.49319e12 0.458477
\(807\) 2.92633e13 2.42880
\(808\) −1.96785e13 −1.62421
\(809\) 4.86941e11 0.0399676 0.0199838 0.999800i \(-0.493639\pi\)
0.0199838 + 0.999800i \(0.493639\pi\)
\(810\) −1.57299e13 −1.28394
\(811\) −2.42320e12 −0.196696 −0.0983481 0.995152i \(-0.531356\pi\)
−0.0983481 + 0.995152i \(0.531356\pi\)
\(812\) 8.48500e12 0.684935
\(813\) 6.48319e12 0.520453
\(814\) 1.21961e12 0.0973668
\(815\) 3.53068e12 0.280317
\(816\) 4.71055e12 0.371934
\(817\) −1.81087e12 −0.142197
\(818\) −1.16690e13 −0.911264
\(819\) 1.71748e13 1.33387
\(820\) 3.16200e11 0.0244230
\(821\) −6.21539e12 −0.477446 −0.238723 0.971088i \(-0.576729\pi\)
−0.238723 + 0.971088i \(0.576729\pi\)
\(822\) 1.74896e13 1.33615
\(823\) −8.91410e12 −0.677295 −0.338648 0.940913i \(-0.609969\pi\)
−0.338648 + 0.940913i \(0.609969\pi\)
\(824\) 1.53260e13 1.15813
\(825\) −9.57752e12 −0.719797
\(826\) 1.12741e13 0.842694
\(827\) 7.37630e12 0.548358 0.274179 0.961679i \(-0.411594\pi\)
0.274179 + 0.961679i \(0.411594\pi\)
\(828\) −4.21710e12 −0.311801
\(829\) 2.13119e13 1.56721 0.783603 0.621261i \(-0.213379\pi\)
0.783603 + 0.621261i \(0.213379\pi\)
\(830\) −8.82147e12 −0.645193
\(831\) 1.86798e13 1.35884
\(832\) −6.16433e12 −0.445996
\(833\) 6.59449e12 0.474546
\(834\) −2.01005e13 −1.43866
\(835\) −1.76000e13 −1.25292
\(836\) −1.05112e12 −0.0744256
\(837\) −3.29778e13 −2.32250
\(838\) 1.62862e12 0.114083
\(839\) 9.15096e12 0.637585 0.318792 0.947825i \(-0.396723\pi\)
0.318792 + 0.947825i \(0.396723\pi\)
\(840\) 4.94369e13 3.42606
\(841\) 2.61569e12 0.180304
\(842\) 1.47002e13 1.00790
\(843\) 2.69728e13 1.83951
\(844\) −1.30014e13 −0.881959
\(845\) −1.62955e13 −1.09954
\(846\) 1.75313e11 0.0117665
\(847\) −1.64635e12 −0.109912
\(848\) −2.87593e12 −0.190984
\(849\) −4.55804e13 −3.01088
\(850\) −1.47473e13 −0.969010
\(851\) −2.06549e12 −0.135002
\(852\) 1.15663e13 0.751999
\(853\) 5.05835e12 0.327143 0.163572 0.986531i \(-0.447698\pi\)
0.163572 + 0.986531i \(0.447698\pi\)
\(854\) −8.91024e12 −0.573230
\(855\) 2.35101e13 1.50455
\(856\) −2.92143e13 −1.85979
\(857\) −1.35574e12 −0.0858544 −0.0429272 0.999078i \(-0.513668\pi\)
−0.0429272 + 0.999078i \(0.513668\pi\)
\(858\) −3.09433e12 −0.194928
\(859\) 4.25759e12 0.266805 0.133403 0.991062i \(-0.457410\pi\)
0.133403 + 0.991062i \(0.457410\pi\)
\(860\) 3.86257e12 0.240787
\(861\) −1.04041e12 −0.0645191
\(862\) 5.65199e12 0.348673
\(863\) −2.58603e13 −1.58703 −0.793514 0.608552i \(-0.791751\pi\)
−0.793514 + 0.608552i \(0.791751\pi\)
\(864\) 2.78580e13 1.70074
\(865\) 4.14363e13 2.51657
\(866\) −7.34513e12 −0.443781
\(867\) −1.63562e12 −0.0983096
\(868\) 1.30960e13 0.783067
\(869\) 5.33152e12 0.317148
\(870\) 3.41925e13 2.02346
\(871\) −8.55101e12 −0.503426
\(872\) 2.83793e13 1.66218
\(873\) −6.75411e13 −3.93554
\(874\) −1.63367e12 −0.0947028
\(875\) −1.16992e13 −0.674716
\(876\) 1.60344e12 0.0919995
\(877\) 5.89456e11 0.0336475 0.0168238 0.999858i \(-0.494645\pi\)
0.0168238 + 0.999858i \(0.494645\pi\)
\(878\) 1.11535e13 0.633411
\(879\) −4.66270e13 −2.63443
\(880\) −1.70380e12 −0.0957736
\(881\) 2.09056e13 1.16915 0.584575 0.811340i \(-0.301261\pi\)
0.584575 + 0.811340i \(0.301261\pi\)
\(882\) −1.18702e13 −0.660466
\(883\) −1.58306e13 −0.876344 −0.438172 0.898891i \(-0.644374\pi\)
−0.438172 + 0.898891i \(0.644374\pi\)
\(884\) 5.19178e12 0.285944
\(885\) −4.95049e13 −2.71271
\(886\) −1.60332e13 −0.874117
\(887\) −1.59297e13 −0.864075 −0.432037 0.901856i \(-0.642205\pi\)
−0.432037 + 0.901856i \(0.642205\pi\)
\(888\) 1.59450e13 0.860528
\(889\) 2.77924e13 1.49234
\(890\) −2.52197e13 −1.34736
\(891\) 6.84856e12 0.364040
\(892\) −9.81936e12 −0.519327
\(893\) −7.40038e10 −0.00389424
\(894\) −3.37928e12 −0.176931
\(895\) 3.41499e13 1.77904
\(896\) −7.72861e12 −0.400604
\(897\) 5.24046e12 0.270273
\(898\) 1.65165e13 0.847566
\(899\) 2.64278e13 1.34941
\(900\) −2.89254e13 −1.46956
\(901\) 1.87893e13 0.949835
\(902\) 1.26342e11 0.00635502
\(903\) −1.27092e13 −0.636096
\(904\) 1.12003e13 0.557793
\(905\) 3.65160e13 1.80952
\(906\) −4.01797e13 −1.98120
\(907\) 2.53311e13 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(908\) −1.49405e12 −0.0729420
\(909\) −6.56788e13 −3.19071
\(910\) −1.41916e13 −0.686032
\(911\) 1.93496e13 0.930765 0.465382 0.885110i \(-0.345917\pi\)
0.465382 + 0.885110i \(0.345917\pi\)
\(912\) 3.57922e12 0.171321
\(913\) 3.84073e12 0.182934
\(914\) −8.74276e11 −0.0414372
\(915\) 3.91253e13 1.84528
\(916\) −1.74162e13 −0.817380
\(917\) −3.29238e13 −1.53761
\(918\) 2.86038e13 1.32933
\(919\) −2.91803e12 −0.134949 −0.0674746 0.997721i \(-0.521494\pi\)
−0.0674746 + 0.997721i \(0.521494\pi\)
\(920\) 1.01671e13 0.467899
\(921\) 6.19514e11 0.0283715
\(922\) 1.98471e13 0.904498
\(923\) −9.68766e12 −0.439351
\(924\) −7.37700e12 −0.332932
\(925\) −1.41674e13 −0.636284
\(926\) −6.86576e12 −0.306859
\(927\) 5.11519e13 2.27511
\(928\) −2.23249e13 −0.988154
\(929\) −1.62530e13 −0.715915 −0.357958 0.933738i \(-0.616527\pi\)
−0.357958 + 0.933738i \(0.616527\pi\)
\(930\) 5.27737e13 2.31336
\(931\) 5.01069e12 0.218587
\(932\) 2.38469e12 0.103528
\(933\) 5.43523e12 0.234828
\(934\) −1.79915e11 −0.00773582
\(935\) 1.11314e13 0.476318
\(936\) −2.72670e13 −1.16117
\(937\) −2.33363e12 −0.0989015 −0.0494508 0.998777i \(-0.515747\pi\)
−0.0494508 + 0.998777i \(0.515747\pi\)
\(938\) 1.87086e13 0.789095
\(939\) 7.22198e13 3.03152
\(940\) 1.57849e11 0.00659427
\(941\) −4.28151e12 −0.178010 −0.0890049 0.996031i \(-0.528369\pi\)
−0.0890049 + 0.996031i \(0.528369\pi\)
\(942\) 1.06995e13 0.442727
\(943\) −2.13968e11 −0.00881142
\(944\) −5.07983e12 −0.208197
\(945\) 8.51975e13 3.47523
\(946\) 1.54334e12 0.0626544
\(947\) 2.80221e13 1.13221 0.566104 0.824334i \(-0.308450\pi\)
0.566104 + 0.824334i \(0.308450\pi\)
\(948\) 2.38897e13 0.960666
\(949\) −1.34300e12 −0.0537501
\(950\) −1.12055e13 −0.446349
\(951\) −1.58977e13 −0.630265
\(952\) −3.31425e13 −1.30773
\(953\) −1.20996e13 −0.475176 −0.237588 0.971366i \(-0.576357\pi\)
−0.237588 + 0.971366i \(0.576357\pi\)
\(954\) −3.38211e13 −1.32196
\(955\) −3.30712e13 −1.28657
\(956\) 2.31505e13 0.896398
\(957\) −1.48869e13 −0.573720
\(958\) −2.42124e13 −0.928736
\(959\) −3.49233e13 −1.33331
\(960\) −5.92213e13 −2.25039
\(961\) 1.43498e13 0.542739
\(962\) −4.57723e12 −0.172312
\(963\) −9.75054e13 −3.65351
\(964\) 3.47041e12 0.129430
\(965\) −5.43939e13 −2.01919
\(966\) −1.14655e13 −0.423640
\(967\) −4.40787e13 −1.62110 −0.810549 0.585671i \(-0.800831\pi\)
−0.810549 + 0.585671i \(0.800831\pi\)
\(968\) 2.61377e12 0.0956816
\(969\) −2.33841e13 −0.852046
\(970\) 5.58094e13 2.02411
\(971\) −1.79676e13 −0.648641 −0.324320 0.945947i \(-0.605136\pi\)
−0.324320 + 0.945947i \(0.605136\pi\)
\(972\) 3.55270e12 0.127662
\(973\) 4.01368e13 1.43561
\(974\) −3.00861e12 −0.107115
\(975\) 3.59447e13 1.27384
\(976\) 4.01475e12 0.141623
\(977\) 1.45335e13 0.510322 0.255161 0.966899i \(-0.417872\pi\)
0.255161 + 0.966899i \(0.417872\pi\)
\(978\) 6.32123e12 0.220941
\(979\) 1.09803e13 0.382024
\(980\) −1.06877e13 −0.370142
\(981\) 9.47183e13 3.26530
\(982\) 7.96828e12 0.273441
\(983\) −1.21016e13 −0.413382 −0.206691 0.978406i \(-0.566269\pi\)
−0.206691 + 0.978406i \(0.566269\pi\)
\(984\) 1.65177e12 0.0561657
\(985\) 4.34972e12 0.147231
\(986\) −2.29226e13 −0.772358
\(987\) −5.19378e11 −0.0174203
\(988\) 3.94487e12 0.131712
\(989\) −2.61375e12 −0.0868721
\(990\) −2.00368e13 −0.662932
\(991\) 3.67306e12 0.120975 0.0604877 0.998169i \(-0.480734\pi\)
0.0604877 + 0.998169i \(0.480734\pi\)
\(992\) −3.44569e13 −1.12973
\(993\) −1.72822e13 −0.564064
\(994\) 2.11955e13 0.688660
\(995\) 4.36856e13 1.41298
\(996\) 1.72097e13 0.554122
\(997\) 1.95902e13 0.627930 0.313965 0.949435i \(-0.398343\pi\)
0.313965 + 0.949435i \(0.398343\pi\)
\(998\) −1.18313e13 −0.377526
\(999\) 2.74789e13 0.872880
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 11.10.a.b.1.2 5
3.2 odd 2 99.10.a.f.1.4 5
4.3 odd 2 176.10.a.j.1.5 5
5.4 even 2 275.10.a.b.1.4 5
11.10 odd 2 121.10.a.c.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.10.a.b.1.2 5 1.1 even 1 trivial
99.10.a.f.1.4 5 3.2 odd 2
121.10.a.c.1.4 5 11.10 odd 2
176.10.a.j.1.5 5 4.3 odd 2
275.10.a.b.1.4 5 5.4 even 2