Properties

Label 1098.2.d.e
Level $1098$
Weight $2$
Character orbit 1098.d
Analytic conductor $8.768$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1098,2,Mod(487,1098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1098, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1098.487");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.76757414194\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.7718676736.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} + 2x^{5} + 5x^{4} - 22x^{3} + 50x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} - q^{4} - \beta_{2} q^{5} - \beta_{7} q^{7} - \beta_{4} q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{4} q^{2} - q^{4} - \beta_{2} q^{5} - \beta_{7} q^{7} - \beta_{4} q^{8} + \beta_{5} q^{10} + (\beta_{6} + \beta_{4}) q^{11} + ( - \beta_1 + 1) q^{13} + \beta_{3} q^{14} + q^{16} - \beta_{6} q^{17} + 2 q^{19} + \beta_{2} q^{20} + ( - \beta_1 - 1) q^{22} + ( - 2 \beta_{6} + \beta_{4}) q^{23} + ( - 2 \beta_1 + 2) q^{25} + ( - \beta_{6} + \beta_{4}) q^{26} + \beta_{7} q^{28} - 2 \beta_{6} q^{29} - 2 \beta_{5} q^{31} + \beta_{4} q^{32} + \beta_1 q^{34} + ( - 3 \beta_{6} + \beta_{4}) q^{35} + ( - \beta_{7} - \beta_{5}) q^{37} + 2 \beta_{4} q^{38} - \beta_{5} q^{40} + (\beta_{3} - 2 \beta_{2}) q^{41} + ( - \beta_{7} - \beta_{5}) q^{43} + ( - \beta_{6} - \beta_{4}) q^{44} + (2 \beta_1 - 1) q^{46} + 2 \beta_{3} q^{47} + ( - 5 \beta_1 - 4) q^{49} + ( - 2 \beta_{6} + 2 \beta_{4}) q^{50} + (\beta_1 - 1) q^{52} + ( - 4 \beta_{6} - 2 \beta_{4}) q^{53} + \beta_{7} q^{55} - \beta_{3} q^{56} + 2 \beta_1 q^{58} + ( - \beta_{6} + 7 \beta_{4}) q^{59} + (\beta_{7} + \beta_{5} - 3 \beta_1 + 3) q^{61} - 2 \beta_{2} q^{62} - q^{64} + ( - \beta_{3} - 2 \beta_{2}) q^{65} + (\beta_{7} - 2 \beta_{5}) q^{67} + \beta_{6} q^{68} + (3 \beta_1 - 1) q^{70} + (\beta_{6} + 4 \beta_{4}) q^{71} + (2 \beta_1 - 3) q^{73} + (\beta_{3} - \beta_{2}) q^{74} - 2 q^{76} + (3 \beta_{3} - 2 \beta_{2}) q^{77} + ( - \beta_{7} + 2 \beta_{5}) q^{79} - \beta_{2} q^{80} + (\beta_{7} + 2 \beta_{5}) q^{82} + (\beta_{3} + 3 \beta_{2}) q^{83} + ( - \beta_{7} + \beta_{5}) q^{85} + (\beta_{3} - \beta_{2}) q^{86} + (\beta_1 + 1) q^{88} + ( - \beta_{6} + 8 \beta_{4}) q^{89} + (\beta_{7} + 2 \beta_{5}) q^{91} + (2 \beta_{6} - \beta_{4}) q^{92} + 2 \beta_{7} q^{94} - 2 \beta_{2} q^{95} + ( - 5 \beta_1 + 2) q^{97} + ( - 5 \beta_{6} - 4 \beta_{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} + 4 q^{13} + 8 q^{16} + 16 q^{19} - 12 q^{22} + 8 q^{25} + 4 q^{34} - 52 q^{49} - 4 q^{52} + 8 q^{58} + 12 q^{61} - 8 q^{64} + 4 q^{70} - 16 q^{73} - 16 q^{76} + 12 q^{88} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 8x^{6} + 2x^{5} + 5x^{4} - 22x^{3} + 50x^{2} + 20x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -8\nu^{7} + 52\nu^{6} - 194\nu^{5} + 469\nu^{4} - 566\nu^{3} + 298\nu^{2} + 148\nu + 3349 ) / 1293 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -203\nu^{7} + 673\nu^{6} - 1367\nu^{5} - 221\nu^{4} - 4988\nu^{3} + 4006\nu^{2} + 1816\nu - 13772 ) / 10344 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 727\nu^{7} - 1493\nu^{6} - 149\nu^{5} + 12817\nu^{4} + 4564\nu^{3} - 9302\nu^{2} - 3752\nu + 49780 ) / 10344 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 857\nu^{7} - 3631\nu^{6} + 7529\nu^{5} + 347\nu^{4} + 4064\nu^{3} - 23842\nu^{2} + 46856\nu + 8612 ) / 10344 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 265\nu^{7} - 1076\nu^{6} + 2224\nu^{5} + 142\nu^{4} + 2263\nu^{3} - 6962\nu^{2} + 16432\nu + 3010 ) / 2586 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 592\nu^{7} - 2555\nu^{6} + 5305\nu^{5} + 205\nu^{4} + 1801\nu^{3} - 14294\nu^{2} + 30424\nu + 5602 ) / 2586 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 542\nu^{7} - 2230\nu^{6} + 4739\nu^{5} + 227\nu^{4} + 2789\nu^{3} - 10492\nu^{2} + 30056\nu + 5522 ) / 1293 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} - 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + 3\beta_{6} + 6\beta_{5} - 11\beta_{4} - \beta_{3} - 6\beta_{2} + 3\beta _1 - 11 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{3} - 10\beta_{2} + 9\beta _1 - 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 11\beta_{7} - 35\beta_{6} - 46\beta_{5} + 99\beta_{4} - 11\beta_{3} - 46\beta_{2} + 35\beta _1 - 99 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 23\beta_{7} - 80\beta_{6} - 90\beta_{5} + 216\beta_{4} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 103\beta_{7} - 329\beta_{6} - 386\beta_{5} + 869\beta_{4} + 103\beta_{3} + 386\beta_{2} - 329\beta _1 + 869 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1098\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
487.1
2.09084 + 2.09084i
1.18500 + 1.18500i
−0.184999 0.184999i
−1.09084 1.09084i
2.09084 2.09084i
1.18500 1.18500i
−0.184999 + 0.184999i
−1.09084 + 1.09084i
1.00000i 0 −1.00000 −3.18168 0 1.78668i 1.00000i 0 3.18168i
487.2 1.00000i 0 −1.00000 −1.37000 0 4.87932i 1.00000i 0 1.37000i
487.3 1.00000i 0 −1.00000 1.37000 0 4.87932i 1.00000i 0 1.37000i
487.4 1.00000i 0 −1.00000 3.18168 0 1.78668i 1.00000i 0 3.18168i
487.5 1.00000i 0 −1.00000 −3.18168 0 1.78668i 1.00000i 0 3.18168i
487.6 1.00000i 0 −1.00000 −1.37000 0 4.87932i 1.00000i 0 1.37000i
487.7 1.00000i 0 −1.00000 1.37000 0 4.87932i 1.00000i 0 1.37000i
487.8 1.00000i 0 −1.00000 3.18168 0 1.78668i 1.00000i 0 3.18168i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 487.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
61.b even 2 1 inner
183.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1098.2.d.e 8
3.b odd 2 1 inner 1098.2.d.e 8
61.b even 2 1 inner 1098.2.d.e 8
183.d odd 2 1 inner 1098.2.d.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1098.2.d.e 8 1.a even 1 1 trivial
1098.2.d.e 8 3.b odd 2 1 inner
1098.2.d.e 8 61.b even 2 1 inner
1098.2.d.e 8 183.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 12T_{5}^{2} + 19 \) acting on \(S_{2}^{\mathrm{new}}(1098, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 12 T^{2} + 19)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 27 T^{2} + 76)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 13 T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - T - 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 9 T^{2} + 16)^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{8} \) Copy content Toggle raw display
$23$ \( (T^{2} + 17)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 36 T^{2} + 256)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 48 T^{2} + 304)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 41 T^{2} + 76)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 79 T^{2} + 1216)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 41 T^{2} + 76)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 108 T^{2} + 1216)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 168 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 93 T^{2} + 1444)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 6 T^{3} + \cdots + 3721)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 71 T^{2} + 304)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 49 T^{2} + 256)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 13)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 71 T^{2} + 304)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 129 T^{2} + 76)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 121 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + T - 106)^{4} \) Copy content Toggle raw display
show more
show less