Properties

Label 1098.2.ce
Level $1098$
Weight $2$
Character orbit 1098.ce
Rep. character $\chi_{1098}(17,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $352$
Sturm bound $372$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.ce (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 183 \)
Character field: \(\Q(\zeta_{60})\)
Sturm bound: \(372\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1098, [\chi])\).

Total New Old
Modular forms 3104 352 2752
Cusp forms 2848 352 2496
Eisenstein series 256 0 256

Trace form

\( 352 q + O(q^{10}) \) \( 352 q + 8 q^{10} - 44 q^{16} + 60 q^{25} - 16 q^{31} - 4 q^{37} - 8 q^{40} - 16 q^{43} - 48 q^{46} - 32 q^{49} + 40 q^{52} + 336 q^{55} + 144 q^{58} - 48 q^{61} + 400 q^{67} + 148 q^{73} - 48 q^{76} + 176 q^{79} + 68 q^{82} - 16 q^{91} - 108 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1098, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1098, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1098, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(183, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(366, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(549, [\chi])\)\(^{\oplus 2}\)