Properties

Label 1088.2.l.b.273.14
Level $1088$
Weight $2$
Character 1088.273
Analytic conductor $8.688$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1088,2,Mod(273,1088)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1088.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1088, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1088.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.68772373992\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(15\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 272)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 273.14
Character \(\chi\) \(=\) 1088.273
Dual form 1088.2.l.b.817.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.04684 + 2.04684i) q^{3} +(-0.112242 + 0.112242i) q^{5} +1.01296i q^{7} +5.37914i q^{9} +(4.56843 - 4.56843i) q^{11} +(3.07260 + 3.07260i) q^{13} -0.459483 q^{15} -1.00000 q^{17} +(2.65491 + 2.65491i) q^{19} +(-2.07337 + 2.07337i) q^{21} -5.91450i q^{23} +4.97480i q^{25} +(-4.86974 + 4.86974i) q^{27} +(-3.98716 - 3.98716i) q^{29} -4.31396 q^{31} +18.7017 q^{33} +(-0.113697 - 0.113697i) q^{35} +(-4.49312 + 4.49312i) q^{37} +12.5783i q^{39} +2.83552i q^{41} +(-3.25504 + 3.25504i) q^{43} +(-0.603764 - 0.603764i) q^{45} +0.815754 q^{47} +5.97391 q^{49} +(-2.04684 - 2.04684i) q^{51} +(-5.94015 + 5.94015i) q^{53} +1.02554i q^{55} +10.8684i q^{57} +(4.40078 - 4.40078i) q^{59} +(-9.70982 - 9.70982i) q^{61} -5.44887 q^{63} -0.689749 q^{65} +(-1.61155 - 1.61155i) q^{67} +(12.1061 - 12.1061i) q^{69} +0.780693i q^{71} -6.99816i q^{73} +(-10.1826 + 10.1826i) q^{75} +(4.62764 + 4.62764i) q^{77} +11.7856 q^{79} -3.79775 q^{81} +(-3.93699 - 3.93699i) q^{83} +(0.112242 - 0.112242i) q^{85} -16.3222i q^{87} -1.66274i q^{89} +(-3.11243 + 3.11243i) q^{91} +(-8.83001 - 8.83001i) q^{93} -0.595984 q^{95} -16.9653 q^{97} +(24.5742 + 24.5742i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 2 q^{3} - 2 q^{5} + 10 q^{11} - 6 q^{13} + 28 q^{15} - 30 q^{17} - 10 q^{19} - 4 q^{21} - 4 q^{27} - 18 q^{29} - 48 q^{31} - 12 q^{33} - 16 q^{35} + 6 q^{37} - 2 q^{43} + 42 q^{45} + 32 q^{47} - 38 q^{49}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1088\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.04684 + 2.04684i 1.18175 + 1.18175i 0.979292 + 0.202454i \(0.0648918\pi\)
0.202454 + 0.979292i \(0.435108\pi\)
\(4\) 0 0
\(5\) −0.112242 + 0.112242i −0.0501960 + 0.0501960i −0.731759 0.681563i \(-0.761300\pi\)
0.681563 + 0.731759i \(0.261300\pi\)
\(6\) 0 0
\(7\) 1.01296i 0.382863i 0.981506 + 0.191432i \(0.0613131\pi\)
−0.981506 + 0.191432i \(0.938687\pi\)
\(8\) 0 0
\(9\) 5.37914i 1.79305i
\(10\) 0 0
\(11\) 4.56843 4.56843i 1.37743 1.37743i 0.528500 0.848934i \(-0.322755\pi\)
0.848934 0.528500i \(-0.177245\pi\)
\(12\) 0 0
\(13\) 3.07260 + 3.07260i 0.852187 + 0.852187i 0.990402 0.138215i \(-0.0441366\pi\)
−0.138215 + 0.990402i \(0.544137\pi\)
\(14\) 0 0
\(15\) −0.459483 −0.118638
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.65491 + 2.65491i 0.609078 + 0.609078i 0.942705 0.333627i \(-0.108273\pi\)
−0.333627 + 0.942705i \(0.608273\pi\)
\(20\) 0 0
\(21\) −2.07337 + 2.07337i −0.452447 + 0.452447i
\(22\) 0 0
\(23\) 5.91450i 1.23326i −0.787254 0.616629i \(-0.788498\pi\)
0.787254 0.616629i \(-0.211502\pi\)
\(24\) 0 0
\(25\) 4.97480i 0.994961i
\(26\) 0 0
\(27\) −4.86974 + 4.86974i −0.937181 + 0.937181i
\(28\) 0 0
\(29\) −3.98716 3.98716i −0.740397 0.740397i 0.232257 0.972654i \(-0.425389\pi\)
−0.972654 + 0.232257i \(0.925389\pi\)
\(30\) 0 0
\(31\) −4.31396 −0.774810 −0.387405 0.921910i \(-0.626629\pi\)
−0.387405 + 0.921910i \(0.626629\pi\)
\(32\) 0 0
\(33\) 18.7017 3.25555
\(34\) 0 0
\(35\) −0.113697 0.113697i −0.0192182 0.0192182i
\(36\) 0 0
\(37\) −4.49312 + 4.49312i −0.738665 + 0.738665i −0.972320 0.233655i \(-0.924931\pi\)
0.233655 + 0.972320i \(0.424931\pi\)
\(38\) 0 0
\(39\) 12.5783i 2.01414i
\(40\) 0 0
\(41\) 2.83552i 0.442834i 0.975179 + 0.221417i \(0.0710683\pi\)
−0.975179 + 0.221417i \(0.928932\pi\)
\(42\) 0 0
\(43\) −3.25504 + 3.25504i −0.496389 + 0.496389i −0.910312 0.413923i \(-0.864158\pi\)
0.413923 + 0.910312i \(0.364158\pi\)
\(44\) 0 0
\(45\) −0.603764 0.603764i −0.0900039 0.0900039i
\(46\) 0 0
\(47\) 0.815754 0.118990 0.0594950 0.998229i \(-0.481051\pi\)
0.0594950 + 0.998229i \(0.481051\pi\)
\(48\) 0 0
\(49\) 5.97391 0.853416
\(50\) 0 0
\(51\) −2.04684 2.04684i −0.286616 0.286616i
\(52\) 0 0
\(53\) −5.94015 + 5.94015i −0.815942 + 0.815942i −0.985517 0.169575i \(-0.945761\pi\)
0.169575 + 0.985517i \(0.445761\pi\)
\(54\) 0 0
\(55\) 1.02554i 0.138283i
\(56\) 0 0
\(57\) 10.8684i 1.43955i
\(58\) 0 0
\(59\) 4.40078 4.40078i 0.572933 0.572933i −0.360014 0.932947i \(-0.617228\pi\)
0.932947 + 0.360014i \(0.117228\pi\)
\(60\) 0 0
\(61\) −9.70982 9.70982i −1.24321 1.24321i −0.958660 0.284555i \(-0.908154\pi\)
−0.284555 0.958660i \(-0.591846\pi\)
\(62\) 0 0
\(63\) −5.44887 −0.686493
\(64\) 0 0
\(65\) −0.689749 −0.0855528
\(66\) 0 0
\(67\) −1.61155 1.61155i −0.196882 0.196882i 0.601780 0.798662i \(-0.294458\pi\)
−0.798662 + 0.601780i \(0.794458\pi\)
\(68\) 0 0
\(69\) 12.1061 12.1061i 1.45740 1.45740i
\(70\) 0 0
\(71\) 0.780693i 0.0926512i 0.998926 + 0.0463256i \(0.0147512\pi\)
−0.998926 + 0.0463256i \(0.985249\pi\)
\(72\) 0 0
\(73\) 6.99816i 0.819072i −0.912294 0.409536i \(-0.865691\pi\)
0.912294 0.409536i \(-0.134309\pi\)
\(74\) 0 0
\(75\) −10.1826 + 10.1826i −1.17579 + 1.17579i
\(76\) 0 0
\(77\) 4.62764 + 4.62764i 0.527369 + 0.527369i
\(78\) 0 0
\(79\) 11.7856 1.32598 0.662992 0.748627i \(-0.269286\pi\)
0.662992 + 0.748627i \(0.269286\pi\)
\(80\) 0 0
\(81\) −3.79775 −0.421973
\(82\) 0 0
\(83\) −3.93699 3.93699i −0.432140 0.432140i 0.457216 0.889356i \(-0.348847\pi\)
−0.889356 + 0.457216i \(0.848847\pi\)
\(84\) 0 0
\(85\) 0.112242 0.112242i 0.0121743 0.0121743i
\(86\) 0 0
\(87\) 16.3222i 1.74992i
\(88\) 0 0
\(89\) 1.66274i 0.176250i −0.996109 0.0881251i \(-0.971912\pi\)
0.996109 0.0881251i \(-0.0280875\pi\)
\(90\) 0 0
\(91\) −3.11243 + 3.11243i −0.326271 + 0.326271i
\(92\) 0 0
\(93\) −8.83001 8.83001i −0.915629 0.915629i
\(94\) 0 0
\(95\) −0.595984 −0.0611466
\(96\) 0 0
\(97\) −16.9653 −1.72257 −0.861285 0.508123i \(-0.830340\pi\)
−0.861285 + 0.508123i \(0.830340\pi\)
\(98\) 0 0
\(99\) 24.5742 + 24.5742i 2.46980 + 2.46980i
\(100\) 0 0
\(101\) −2.09654 + 2.09654i −0.208614 + 0.208614i −0.803678 0.595064i \(-0.797127\pi\)
0.595064 + 0.803678i \(0.297127\pi\)
\(102\) 0 0
\(103\) 11.6252i 1.14547i −0.819742 0.572733i \(-0.805883\pi\)
0.819742 0.572733i \(-0.194117\pi\)
\(104\) 0 0
\(105\) 0.465438i 0.0454221i
\(106\) 0 0
\(107\) 0.709693 0.709693i 0.0686086 0.0686086i −0.671970 0.740578i \(-0.734552\pi\)
0.740578 + 0.671970i \(0.234552\pi\)
\(108\) 0 0
\(109\) −1.02443 1.02443i −0.0981229 0.0981229i 0.656341 0.754464i \(-0.272103\pi\)
−0.754464 + 0.656341i \(0.772103\pi\)
\(110\) 0 0
\(111\) −18.3934 −1.74583
\(112\) 0 0
\(113\) 8.75234 0.823351 0.411675 0.911331i \(-0.364944\pi\)
0.411675 + 0.911331i \(0.364944\pi\)
\(114\) 0 0
\(115\) 0.663854 + 0.663854i 0.0619047 + 0.0619047i
\(116\) 0 0
\(117\) −16.5280 + 16.5280i −1.52801 + 1.52801i
\(118\) 0 0
\(119\) 1.01296i 0.0928580i
\(120\) 0 0
\(121\) 30.7411i 2.79464i
\(122\) 0 0
\(123\) −5.80388 + 5.80388i −0.523318 + 0.523318i
\(124\) 0 0
\(125\) −1.11959 1.11959i −0.100139 0.100139i
\(126\) 0 0
\(127\) 15.8565 1.40703 0.703517 0.710678i \(-0.251612\pi\)
0.703517 + 0.710678i \(0.251612\pi\)
\(128\) 0 0
\(129\) −13.3251 −1.17321
\(130\) 0 0
\(131\) −2.93671 2.93671i −0.256582 0.256582i 0.567081 0.823662i \(-0.308073\pi\)
−0.823662 + 0.567081i \(0.808073\pi\)
\(132\) 0 0
\(133\) −2.68932 + 2.68932i −0.233194 + 0.233194i
\(134\) 0 0
\(135\) 1.09318i 0.0940855i
\(136\) 0 0
\(137\) 2.84052i 0.242682i 0.992611 + 0.121341i \(0.0387194\pi\)
−0.992611 + 0.121341i \(0.961281\pi\)
\(138\) 0 0
\(139\) −0.172689 + 0.172689i −0.0146473 + 0.0146473i −0.714392 0.699745i \(-0.753297\pi\)
0.699745 + 0.714392i \(0.253297\pi\)
\(140\) 0 0
\(141\) 1.66972 + 1.66972i 0.140616 + 0.140616i
\(142\) 0 0
\(143\) 28.0739 2.34766
\(144\) 0 0
\(145\) 0.895052 0.0743300
\(146\) 0 0
\(147\) 12.2277 + 12.2277i 1.00852 + 1.00852i
\(148\) 0 0
\(149\) −2.90961 + 2.90961i −0.238365 + 0.238365i −0.816173 0.577808i \(-0.803908\pi\)
0.577808 + 0.816173i \(0.303908\pi\)
\(150\) 0 0
\(151\) 12.1378i 0.987757i 0.869531 + 0.493878i \(0.164421\pi\)
−0.869531 + 0.493878i \(0.835579\pi\)
\(152\) 0 0
\(153\) 5.37914i 0.434878i
\(154\) 0 0
\(155\) 0.484207 0.484207i 0.0388924 0.0388924i
\(156\) 0 0
\(157\) 17.2062 + 17.2062i 1.37321 + 1.37321i 0.855646 + 0.517562i \(0.173160\pi\)
0.517562 + 0.855646i \(0.326840\pi\)
\(158\) 0 0
\(159\) −24.3171 −1.92847
\(160\) 0 0
\(161\) 5.99116 0.472170
\(162\) 0 0
\(163\) −6.71572 6.71572i −0.526016 0.526016i 0.393366 0.919382i \(-0.371311\pi\)
−0.919382 + 0.393366i \(0.871311\pi\)
\(164\) 0 0
\(165\) −2.09911 + 2.09911i −0.163416 + 0.163416i
\(166\) 0 0
\(167\) 2.25312i 0.174352i −0.996193 0.0871760i \(-0.972216\pi\)
0.996193 0.0871760i \(-0.0277842\pi\)
\(168\) 0 0
\(169\) 5.88179i 0.452445i
\(170\) 0 0
\(171\) −14.2811 + 14.2811i −1.09211 + 1.09211i
\(172\) 0 0
\(173\) 4.38630 + 4.38630i 0.333484 + 0.333484i 0.853908 0.520424i \(-0.174226\pi\)
−0.520424 + 0.853908i \(0.674226\pi\)
\(174\) 0 0
\(175\) −5.03928 −0.380934
\(176\) 0 0
\(177\) 18.0154 1.35412
\(178\) 0 0
\(179\) −4.10787 4.10787i −0.307037 0.307037i 0.536722 0.843759i \(-0.319662\pi\)
−0.843759 + 0.536722i \(0.819662\pi\)
\(180\) 0 0
\(181\) 8.94790 8.94790i 0.665092 0.665092i −0.291484 0.956576i \(-0.594149\pi\)
0.956576 + 0.291484i \(0.0941489\pi\)
\(182\) 0 0
\(183\) 39.7490i 2.93833i
\(184\) 0 0
\(185\) 1.00863i 0.0741561i
\(186\) 0 0
\(187\) −4.56843 + 4.56843i −0.334077 + 0.334077i
\(188\) 0 0
\(189\) −4.93286 4.93286i −0.358812 0.358812i
\(190\) 0 0
\(191\) 26.6573 1.92885 0.964427 0.264351i \(-0.0851576\pi\)
0.964427 + 0.264351i \(0.0851576\pi\)
\(192\) 0 0
\(193\) 13.4602 0.968888 0.484444 0.874822i \(-0.339022\pi\)
0.484444 + 0.874822i \(0.339022\pi\)
\(194\) 0 0
\(195\) −1.41181 1.41181i −0.101102 0.101102i
\(196\) 0 0
\(197\) 17.3025 17.3025i 1.23275 1.23275i 0.269847 0.962903i \(-0.413027\pi\)
0.962903 0.269847i \(-0.0869732\pi\)
\(198\) 0 0
\(199\) 14.3832i 1.01959i −0.860295 0.509797i \(-0.829720\pi\)
0.860295 0.509797i \(-0.170280\pi\)
\(200\) 0 0
\(201\) 6.59718i 0.465330i
\(202\) 0 0
\(203\) 4.03884 4.03884i 0.283471 0.283471i
\(204\) 0 0
\(205\) −0.318264 0.318264i −0.0222285 0.0222285i
\(206\) 0 0
\(207\) 31.8149 2.21129
\(208\) 0 0
\(209\) 24.2575 1.67793
\(210\) 0 0
\(211\) −10.4119 10.4119i −0.716788 0.716788i 0.251158 0.967946i \(-0.419189\pi\)
−0.967946 + 0.251158i \(0.919189\pi\)
\(212\) 0 0
\(213\) −1.59796 + 1.59796i −0.109490 + 0.109490i
\(214\) 0 0
\(215\) 0.730702i 0.0498335i
\(216\) 0 0
\(217\) 4.36988i 0.296647i
\(218\) 0 0
\(219\) 14.3241 14.3241i 0.967935 0.967935i
\(220\) 0 0
\(221\) −3.07260 3.07260i −0.206686 0.206686i
\(222\) 0 0
\(223\) −18.2677 −1.22329 −0.611647 0.791131i \(-0.709493\pi\)
−0.611647 + 0.791131i \(0.709493\pi\)
\(224\) 0 0
\(225\) −26.7602 −1.78401
\(226\) 0 0
\(227\) −19.9826 19.9826i −1.32629 1.32629i −0.908582 0.417707i \(-0.862834\pi\)
−0.417707 0.908582i \(-0.637166\pi\)
\(228\) 0 0
\(229\) −6.83533 + 6.83533i −0.451691 + 0.451691i −0.895916 0.444224i \(-0.853479\pi\)
0.444224 + 0.895916i \(0.353479\pi\)
\(230\) 0 0
\(231\) 18.9441i 1.24643i
\(232\) 0 0
\(233\) 22.3112i 1.46166i 0.682561 + 0.730829i \(0.260866\pi\)
−0.682561 + 0.730829i \(0.739134\pi\)
\(234\) 0 0
\(235\) −0.0915616 + 0.0915616i −0.00597282 + 0.00597282i
\(236\) 0 0
\(237\) 24.1233 + 24.1233i 1.56698 + 1.56698i
\(238\) 0 0
\(239\) 3.45658 0.223587 0.111794 0.993731i \(-0.464340\pi\)
0.111794 + 0.993731i \(0.464340\pi\)
\(240\) 0 0
\(241\) −3.87048 −0.249320 −0.124660 0.992200i \(-0.539784\pi\)
−0.124660 + 0.992200i \(0.539784\pi\)
\(242\) 0 0
\(243\) 6.83580 + 6.83580i 0.438517 + 0.438517i
\(244\) 0 0
\(245\) −0.670522 + 0.670522i −0.0428381 + 0.0428381i
\(246\) 0 0
\(247\) 16.3150i 1.03810i
\(248\) 0 0
\(249\) 16.1168i 1.02136i
\(250\) 0 0
\(251\) −5.53871 + 5.53871i −0.349600 + 0.349600i −0.859961 0.510360i \(-0.829512\pi\)
0.510360 + 0.859961i \(0.329512\pi\)
\(252\) 0 0
\(253\) −27.0200 27.0200i −1.69873 1.69873i
\(254\) 0 0
\(255\) 0.459483 0.0287739
\(256\) 0 0
\(257\) −25.7212 −1.60445 −0.802223 0.597024i \(-0.796350\pi\)
−0.802223 + 0.597024i \(0.796350\pi\)
\(258\) 0 0
\(259\) −4.55136 4.55136i −0.282808 0.282808i
\(260\) 0 0
\(261\) 21.4475 21.4475i 1.32757 1.32757i
\(262\) 0 0
\(263\) 17.3559i 1.07021i 0.844785 + 0.535105i \(0.179728\pi\)
−0.844785 + 0.535105i \(0.820272\pi\)
\(264\) 0 0
\(265\) 1.33347i 0.0819141i
\(266\) 0 0
\(267\) 3.40337 3.40337i 0.208283 0.208283i
\(268\) 0 0
\(269\) −4.90641 4.90641i −0.299149 0.299149i 0.541531 0.840681i \(-0.317845\pi\)
−0.840681 + 0.541531i \(0.817845\pi\)
\(270\) 0 0
\(271\) −20.2369 −1.22930 −0.614652 0.788798i \(-0.710704\pi\)
−0.614652 + 0.788798i \(0.710704\pi\)
\(272\) 0 0
\(273\) −12.7413 −0.771140
\(274\) 0 0
\(275\) 22.7270 + 22.7270i 1.37049 + 1.37049i
\(276\) 0 0
\(277\) −7.38744 + 7.38744i −0.443868 + 0.443868i −0.893310 0.449442i \(-0.851623\pi\)
0.449442 + 0.893310i \(0.351623\pi\)
\(278\) 0 0
\(279\) 23.2054i 1.38927i
\(280\) 0 0
\(281\) 23.2693i 1.38813i −0.719912 0.694066i \(-0.755818\pi\)
0.719912 0.694066i \(-0.244182\pi\)
\(282\) 0 0
\(283\) −6.08235 + 6.08235i −0.361558 + 0.361558i −0.864386 0.502828i \(-0.832293\pi\)
0.502828 + 0.864386i \(0.332293\pi\)
\(284\) 0 0
\(285\) −1.21989 1.21989i −0.0722598 0.0722598i
\(286\) 0 0
\(287\) −2.87228 −0.169545
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −34.7254 34.7254i −2.03564 2.03564i
\(292\) 0 0
\(293\) 2.93453 2.93453i 0.171437 0.171437i −0.616173 0.787611i \(-0.711318\pi\)
0.787611 + 0.616173i \(0.211318\pi\)
\(294\) 0 0
\(295\) 0.987903i 0.0575180i
\(296\) 0 0
\(297\) 44.4941i 2.58181i
\(298\) 0 0
\(299\) 18.1729 18.1729i 1.05097 1.05097i
\(300\) 0 0
\(301\) −3.29723 3.29723i −0.190049 0.190049i
\(302\) 0 0
\(303\) −8.58259 −0.493057
\(304\) 0 0
\(305\) 2.17969 0.124809
\(306\) 0 0
\(307\) −0.197517 0.197517i −0.0112729 0.0112729i 0.701448 0.712721i \(-0.252537\pi\)
−0.712721 + 0.701448i \(0.752537\pi\)
\(308\) 0 0
\(309\) 23.7950 23.7950i 1.35365 1.35365i
\(310\) 0 0
\(311\) 10.3125i 0.584767i −0.956301 0.292383i \(-0.905552\pi\)
0.956301 0.292383i \(-0.0944484\pi\)
\(312\) 0 0
\(313\) 2.95932i 0.167270i 0.996496 + 0.0836352i \(0.0266531\pi\)
−0.996496 + 0.0836352i \(0.973347\pi\)
\(314\) 0 0
\(315\) 0.611590 0.611590i 0.0344592 0.0344592i
\(316\) 0 0
\(317\) −12.4351 12.4351i −0.698424 0.698424i 0.265647 0.964070i \(-0.414415\pi\)
−0.964070 + 0.265647i \(0.914415\pi\)
\(318\) 0 0
\(319\) −36.4301 −2.03970
\(320\) 0 0
\(321\) 2.90526 0.162156
\(322\) 0 0
\(323\) −2.65491 2.65491i −0.147723 0.147723i
\(324\) 0 0
\(325\) −15.2856 + 15.2856i −0.847893 + 0.847893i
\(326\) 0 0
\(327\) 4.19371i 0.231913i
\(328\) 0 0
\(329\) 0.826327i 0.0455569i
\(330\) 0 0
\(331\) 6.77696 6.77696i 0.372495 0.372495i −0.495890 0.868385i \(-0.665158\pi\)
0.868385 + 0.495890i \(0.165158\pi\)
\(332\) 0 0
\(333\) −24.1692 24.1692i −1.32446 1.32446i
\(334\) 0 0
\(335\) 0.361766 0.0197654
\(336\) 0 0
\(337\) 1.53987 0.0838823 0.0419412 0.999120i \(-0.486646\pi\)
0.0419412 + 0.999120i \(0.486646\pi\)
\(338\) 0 0
\(339\) 17.9147 + 17.9147i 0.972991 + 0.972991i
\(340\) 0 0
\(341\) −19.7080 + 19.7080i −1.06725 + 1.06725i
\(342\) 0 0
\(343\) 13.1421i 0.709605i
\(344\) 0 0
\(345\) 2.71761i 0.146311i
\(346\) 0 0
\(347\) −18.7405 + 18.7405i −1.00604 + 1.00604i −0.00605993 + 0.999982i \(0.501929\pi\)
−0.999982 + 0.00605993i \(0.998071\pi\)
\(348\) 0 0
\(349\) 10.6170 + 10.6170i 0.568313 + 0.568313i 0.931656 0.363343i \(-0.118365\pi\)
−0.363343 + 0.931656i \(0.618365\pi\)
\(350\) 0 0
\(351\) −29.9255 −1.59731
\(352\) 0 0
\(353\) 9.14327 0.486647 0.243323 0.969945i \(-0.421762\pi\)
0.243323 + 0.969945i \(0.421762\pi\)
\(354\) 0 0
\(355\) −0.0876263 0.0876263i −0.00465072 0.00465072i
\(356\) 0 0
\(357\) 2.07337 2.07337i 0.109735 0.109735i
\(358\) 0 0
\(359\) 14.0524i 0.741658i −0.928701 0.370829i \(-0.879074\pi\)
0.928701 0.370829i \(-0.120926\pi\)
\(360\) 0 0
\(361\) 4.90289i 0.258047i
\(362\) 0 0
\(363\) 62.9222 62.9222i 3.30256 3.30256i
\(364\) 0 0
\(365\) 0.785485 + 0.785485i 0.0411142 + 0.0411142i
\(366\) 0 0
\(367\) −26.4894 −1.38274 −0.691369 0.722502i \(-0.742992\pi\)
−0.691369 + 0.722502i \(0.742992\pi\)
\(368\) 0 0
\(369\) −15.2527 −0.794023
\(370\) 0 0
\(371\) −6.01714 6.01714i −0.312395 0.312395i
\(372\) 0 0
\(373\) −6.93682 + 6.93682i −0.359175 + 0.359175i −0.863509 0.504334i \(-0.831738\pi\)
0.504334 + 0.863509i \(0.331738\pi\)
\(374\) 0 0
\(375\) 4.58325i 0.236678i
\(376\) 0 0
\(377\) 24.5019i 1.26191i
\(378\) 0 0
\(379\) 26.0497 26.0497i 1.33808 1.33808i 0.440171 0.897914i \(-0.354918\pi\)
0.897914 0.440171i \(-0.145082\pi\)
\(380\) 0 0
\(381\) 32.4557 + 32.4557i 1.66276 + 1.66276i
\(382\) 0 0
\(383\) 21.8850 1.11827 0.559136 0.829076i \(-0.311133\pi\)
0.559136 + 0.829076i \(0.311133\pi\)
\(384\) 0 0
\(385\) −1.03883 −0.0529436
\(386\) 0 0
\(387\) −17.5093 17.5093i −0.890049 0.890049i
\(388\) 0 0
\(389\) 11.3552 11.3552i 0.575732 0.575732i −0.357993 0.933724i \(-0.616539\pi\)
0.933724 + 0.357993i \(0.116539\pi\)
\(390\) 0 0
\(391\) 5.91450i 0.299109i
\(392\) 0 0
\(393\) 12.0220i 0.606429i
\(394\) 0 0
\(395\) −1.32284 + 1.32284i −0.0665591 + 0.0665591i
\(396\) 0 0
\(397\) −18.5828 18.5828i −0.932642 0.932642i 0.0652287 0.997870i \(-0.479222\pi\)
−0.997870 + 0.0652287i \(0.979222\pi\)
\(398\) 0 0
\(399\) −11.0093 −0.551152
\(400\) 0 0
\(401\) 15.9357 0.795792 0.397896 0.917431i \(-0.369741\pi\)
0.397896 + 0.917431i \(0.369741\pi\)
\(402\) 0 0
\(403\) −13.2551 13.2551i −0.660283 0.660283i
\(404\) 0 0
\(405\) 0.426266 0.426266i 0.0211814 0.0211814i
\(406\) 0 0
\(407\) 41.0530i 2.03492i
\(408\) 0 0
\(409\) 1.11106i 0.0549385i 0.999623 + 0.0274693i \(0.00874484\pi\)
−0.999623 + 0.0274693i \(0.991255\pi\)
\(410\) 0 0
\(411\) −5.81409 + 5.81409i −0.286788 + 0.286788i
\(412\) 0 0
\(413\) 4.45783 + 4.45783i 0.219355 + 0.219355i
\(414\) 0 0
\(415\) 0.883788 0.0433835
\(416\) 0 0
\(417\) −0.706934 −0.0346187
\(418\) 0 0
\(419\) −3.75339 3.75339i −0.183365 0.183365i 0.609455 0.792820i \(-0.291388\pi\)
−0.792820 + 0.609455i \(0.791388\pi\)
\(420\) 0 0
\(421\) 1.64504 1.64504i 0.0801743 0.0801743i −0.665882 0.746057i \(-0.731945\pi\)
0.746057 + 0.665882i \(0.231945\pi\)
\(422\) 0 0
\(423\) 4.38806i 0.213355i
\(424\) 0 0
\(425\) 4.97480i 0.241313i
\(426\) 0 0
\(427\) 9.83567 9.83567i 0.475982 0.475982i
\(428\) 0 0
\(429\) 57.4630 + 57.4630i 2.77434 + 2.77434i
\(430\) 0 0
\(431\) 14.3879 0.693043 0.346522 0.938042i \(-0.387363\pi\)
0.346522 + 0.938042i \(0.387363\pi\)
\(432\) 0 0
\(433\) 27.4224 1.31783 0.658917 0.752215i \(-0.271015\pi\)
0.658917 + 0.752215i \(0.271015\pi\)
\(434\) 0 0
\(435\) 1.83203 + 1.83203i 0.0878392 + 0.0878392i
\(436\) 0 0
\(437\) 15.7025 15.7025i 0.751151 0.751151i
\(438\) 0 0
\(439\) 21.1786i 1.01080i 0.862885 + 0.505401i \(0.168655\pi\)
−0.862885 + 0.505401i \(0.831345\pi\)
\(440\) 0 0
\(441\) 32.1345i 1.53021i
\(442\) 0 0
\(443\) −19.9521 + 19.9521i −0.947951 + 0.947951i −0.998711 0.0507595i \(-0.983836\pi\)
0.0507595 + 0.998711i \(0.483836\pi\)
\(444\) 0 0
\(445\) 0.186629 + 0.186629i 0.00884706 + 0.00884706i
\(446\) 0 0
\(447\) −11.9111 −0.563374
\(448\) 0 0
\(449\) −34.6939 −1.63730 −0.818652 0.574290i \(-0.805278\pi\)
−0.818652 + 0.574290i \(0.805278\pi\)
\(450\) 0 0
\(451\) 12.9539 + 12.9539i 0.609975 + 0.609975i
\(452\) 0 0
\(453\) −24.8441 + 24.8441i −1.16728 + 1.16728i
\(454\) 0 0
\(455\) 0.698689i 0.0327550i
\(456\) 0 0
\(457\) 17.8288i 0.833995i 0.908908 + 0.416998i \(0.136918\pi\)
−0.908908 + 0.416998i \(0.863082\pi\)
\(458\) 0 0
\(459\) 4.86974 4.86974i 0.227300 0.227300i
\(460\) 0 0
\(461\) −23.9602 23.9602i −1.11594 1.11594i −0.992331 0.123609i \(-0.960553\pi\)
−0.123609 0.992331i \(-0.539447\pi\)
\(462\) 0 0
\(463\) 25.6632 1.19267 0.596334 0.802736i \(-0.296623\pi\)
0.596334 + 0.802736i \(0.296623\pi\)
\(464\) 0 0
\(465\) 1.98219 0.0919219
\(466\) 0 0
\(467\) −9.87622 9.87622i −0.457017 0.457017i 0.440658 0.897675i \(-0.354745\pi\)
−0.897675 + 0.440658i \(0.854745\pi\)
\(468\) 0 0
\(469\) 1.63244 1.63244i 0.0753790 0.0753790i
\(470\) 0 0
\(471\) 70.4370i 3.24557i
\(472\) 0 0
\(473\) 29.7408i 1.36748i
\(474\) 0 0
\(475\) −13.2077 + 13.2077i −0.606009 + 0.606009i
\(476\) 0 0
\(477\) −31.9529 31.9529i −1.46302 1.46302i
\(478\) 0 0
\(479\) 27.3534 1.24981 0.624905 0.780701i \(-0.285138\pi\)
0.624905 + 0.780701i \(0.285138\pi\)
\(480\) 0 0
\(481\) −27.6112 −1.25896
\(482\) 0 0
\(483\) 12.2630 + 12.2630i 0.557985 + 0.557985i
\(484\) 0 0
\(485\) 1.90422 1.90422i 0.0864661 0.0864661i
\(486\) 0 0
\(487\) 24.7929i 1.12348i 0.827315 + 0.561738i \(0.189867\pi\)
−0.827315 + 0.561738i \(0.810133\pi\)
\(488\) 0 0
\(489\) 27.4921i 1.24323i
\(490\) 0 0
\(491\) −17.4273 + 17.4273i −0.786482 + 0.786482i −0.980916 0.194433i \(-0.937713\pi\)
0.194433 + 0.980916i \(0.437713\pi\)
\(492\) 0 0
\(493\) 3.98716 + 3.98716i 0.179573 + 0.179573i
\(494\) 0 0
\(495\) −5.51651 −0.247949
\(496\) 0 0
\(497\) −0.790812 −0.0354728
\(498\) 0 0
\(499\) 15.0714 + 15.0714i 0.674688 + 0.674688i 0.958793 0.284105i \(-0.0916965\pi\)
−0.284105 + 0.958793i \(0.591697\pi\)
\(500\) 0 0
\(501\) 4.61179 4.61179i 0.206040 0.206040i
\(502\) 0 0
\(503\) 2.23642i 0.0997169i −0.998756 0.0498585i \(-0.984123\pi\)
0.998756 0.0498585i \(-0.0158770\pi\)
\(504\) 0 0
\(505\) 0.470639i 0.0209431i
\(506\) 0 0
\(507\) −12.0391 + 12.0391i −0.534676 + 0.534676i
\(508\) 0 0
\(509\) −21.4598 21.4598i −0.951189 0.951189i 0.0476743 0.998863i \(-0.484819\pi\)
−0.998863 + 0.0476743i \(0.984819\pi\)
\(510\) 0 0
\(511\) 7.08886 0.313593
\(512\) 0 0
\(513\) −25.8574 −1.14163
\(514\) 0 0
\(515\) 1.30483 + 1.30483i 0.0574978 + 0.0574978i
\(516\) 0 0
\(517\) 3.72671 3.72671i 0.163901 0.163901i
\(518\) 0 0
\(519\) 17.9561i 0.788187i
\(520\) 0 0
\(521\) 42.7220i 1.87168i 0.352419 + 0.935842i \(0.385359\pi\)
−0.352419 + 0.935842i \(0.614641\pi\)
\(522\) 0 0
\(523\) −3.20523 + 3.20523i −0.140155 + 0.140155i −0.773703 0.633548i \(-0.781598\pi\)
0.633548 + 0.773703i \(0.281598\pi\)
\(524\) 0 0
\(525\) −10.3146 10.3146i −0.450167 0.450167i
\(526\) 0 0
\(527\) 4.31396 0.187919
\(528\) 0 0
\(529\) −11.9813 −0.520927
\(530\) 0 0
\(531\) 23.6725 + 23.6725i 1.02730 + 1.02730i
\(532\) 0 0
\(533\) −8.71244 + 8.71244i −0.377378 + 0.377378i
\(534\) 0 0
\(535\) 0.159314i 0.00688776i
\(536\) 0 0
\(537\) 16.8163i 0.725679i
\(538\) 0 0
\(539\) 27.2914 27.2914i 1.17552 1.17552i
\(540\) 0 0
\(541\) 27.0364 + 27.0364i 1.16239 + 1.16239i 0.983952 + 0.178436i \(0.0571038\pi\)
0.178436 + 0.983952i \(0.442896\pi\)
\(542\) 0 0
\(543\) 36.6299 1.57194
\(544\) 0 0
\(545\) 0.229968 0.00985076
\(546\) 0 0
\(547\) −16.9275 16.9275i −0.723769 0.723769i 0.245602 0.969371i \(-0.421014\pi\)
−0.969371 + 0.245602i \(0.921014\pi\)
\(548\) 0 0
\(549\) 52.2305 52.2305i 2.22914 2.22914i
\(550\) 0 0
\(551\) 21.1711i 0.901920i
\(552\) 0 0
\(553\) 11.9384i 0.507671i
\(554\) 0 0
\(555\) 2.06451 2.06451i 0.0876337 0.0876337i
\(556\) 0 0
\(557\) 21.7982 + 21.7982i 0.923621 + 0.923621i 0.997283 0.0736625i \(-0.0234688\pi\)
−0.0736625 + 0.997283i \(0.523469\pi\)
\(558\) 0 0
\(559\) −20.0029 −0.846032
\(560\) 0 0
\(561\) −18.7017 −0.789587
\(562\) 0 0
\(563\) 5.82606 + 5.82606i 0.245539 + 0.245539i 0.819137 0.573598i \(-0.194453\pi\)
−0.573598 + 0.819137i \(0.694453\pi\)
\(564\) 0 0
\(565\) −0.982377 + 0.982377i −0.0413289 + 0.0413289i
\(566\) 0 0
\(567\) 3.84698i 0.161558i
\(568\) 0 0
\(569\) 9.99322i 0.418938i −0.977815 0.209469i \(-0.932827\pi\)
0.977815 0.209469i \(-0.0671735\pi\)
\(570\) 0 0
\(571\) −7.14084 + 7.14084i −0.298835 + 0.298835i −0.840557 0.541723i \(-0.817772\pi\)
0.541723 + 0.840557i \(0.317772\pi\)
\(572\) 0 0
\(573\) 54.5633 + 54.5633i 2.27941 + 2.27941i
\(574\) 0 0
\(575\) 29.4235 1.22704
\(576\) 0 0
\(577\) 3.84281 0.159978 0.0799891 0.996796i \(-0.474511\pi\)
0.0799891 + 0.996796i \(0.474511\pi\)
\(578\) 0 0
\(579\) 27.5510 + 27.5510i 1.14498 + 1.14498i
\(580\) 0 0
\(581\) 3.98802 3.98802i 0.165451 0.165451i
\(582\) 0 0
\(583\) 54.2743i 2.24781i
\(584\) 0 0
\(585\) 3.71026i 0.153400i
\(586\) 0 0
\(587\) −7.57085 + 7.57085i −0.312482 + 0.312482i −0.845871 0.533388i \(-0.820918\pi\)
0.533388 + 0.845871i \(0.320918\pi\)
\(588\) 0 0
\(589\) −11.4532 11.4532i −0.471920 0.471920i
\(590\) 0 0
\(591\) 70.8309 2.91360
\(592\) 0 0
\(593\) −0.0598069 −0.00245597 −0.00122799 0.999999i \(-0.500391\pi\)
−0.00122799 + 0.999999i \(0.500391\pi\)
\(594\) 0 0
\(595\) 0.113697 + 0.113697i 0.00466110 + 0.00466110i
\(596\) 0 0
\(597\) 29.4401 29.4401i 1.20490 1.20490i
\(598\) 0 0
\(599\) 8.94011i 0.365283i −0.983180 0.182641i \(-0.941535\pi\)
0.983180 0.182641i \(-0.0584647\pi\)
\(600\) 0 0
\(601\) 28.4600i 1.16091i 0.814293 + 0.580454i \(0.197125\pi\)
−0.814293 + 0.580454i \(0.802875\pi\)
\(602\) 0 0
\(603\) 8.66876 8.66876i 0.353019 0.353019i
\(604\) 0 0
\(605\) 3.45043 + 3.45043i 0.140280 + 0.140280i
\(606\) 0 0
\(607\) −20.8160 −0.844896 −0.422448 0.906387i \(-0.638829\pi\)
−0.422448 + 0.906387i \(0.638829\pi\)
\(608\) 0 0
\(609\) 16.5338 0.669982
\(610\) 0 0
\(611\) 2.50649 + 2.50649i 0.101402 + 0.101402i
\(612\) 0 0
\(613\) −30.4927 + 30.4927i −1.23159 + 1.23159i −0.268233 + 0.963354i \(0.586440\pi\)
−0.963354 + 0.268233i \(0.913560\pi\)
\(614\) 0 0
\(615\) 1.30287i 0.0525370i
\(616\) 0 0
\(617\) 24.7514i 0.996453i 0.867047 + 0.498227i \(0.166015\pi\)
−0.867047 + 0.498227i \(0.833985\pi\)
\(618\) 0 0
\(619\) −13.8910 + 13.8910i −0.558327 + 0.558327i −0.928831 0.370504i \(-0.879185\pi\)
0.370504 + 0.928831i \(0.379185\pi\)
\(620\) 0 0
\(621\) 28.8021 + 28.8021i 1.15579 + 1.15579i
\(622\) 0 0
\(623\) 1.68429 0.0674798
\(624\) 0 0
\(625\) −24.6227 −0.984908
\(626\) 0 0
\(627\) 49.6514 + 49.6514i 1.98289 + 1.98289i
\(628\) 0 0
\(629\) 4.49312 4.49312i 0.179153 0.179153i
\(630\) 0 0
\(631\) 43.5129i 1.73222i −0.499854 0.866110i \(-0.666613\pi\)
0.499854 0.866110i \(-0.333387\pi\)
\(632\) 0 0
\(633\) 42.6233i 1.69412i
\(634\) 0 0
\(635\) −1.77976 + 1.77976i −0.0706275 + 0.0706275i
\(636\) 0 0
\(637\) 18.3555 + 18.3555i 0.727270 + 0.727270i
\(638\) 0 0
\(639\) −4.19946 −0.166128
\(640\) 0 0
\(641\) 20.1009 0.793936 0.396968 0.917832i \(-0.370062\pi\)
0.396968 + 0.917832i \(0.370062\pi\)
\(642\) 0 0
\(643\) −12.2175 12.2175i −0.481811 0.481811i 0.423899 0.905710i \(-0.360661\pi\)
−0.905710 + 0.423899i \(0.860661\pi\)
\(644\) 0 0
\(645\) 1.49563 1.49563i 0.0588905 0.0588905i
\(646\) 0 0
\(647\) 16.3854i 0.644178i 0.946709 + 0.322089i \(0.104385\pi\)
−0.946709 + 0.322089i \(0.895615\pi\)
\(648\) 0 0
\(649\) 40.2093i 1.57835i
\(650\) 0 0
\(651\) 8.94446 8.94446i 0.350561 0.350561i
\(652\) 0 0
\(653\) 18.7699 + 18.7699i 0.734523 + 0.734523i 0.971512 0.236989i \(-0.0761605\pi\)
−0.236989 + 0.971512i \(0.576161\pi\)
\(654\) 0 0
\(655\) 0.659243 0.0257587
\(656\) 0 0
\(657\) 37.6441 1.46864
\(658\) 0 0
\(659\) −28.1462 28.1462i −1.09642 1.09642i −0.994826 0.101593i \(-0.967606\pi\)
−0.101593 0.994826i \(-0.532394\pi\)
\(660\) 0 0
\(661\) −8.99640 + 8.99640i −0.349919 + 0.349919i −0.860080 0.510160i \(-0.829586\pi\)
0.510160 + 0.860080i \(0.329586\pi\)
\(662\) 0 0
\(663\) 12.5783i 0.488500i
\(664\) 0 0
\(665\) 0.603709i 0.0234108i
\(666\) 0 0
\(667\) −23.5821 + 23.5821i −0.913102 + 0.913102i
\(668\) 0 0
\(669\) −37.3911 37.3911i −1.44562 1.44562i
\(670\) 0 0
\(671\) −88.7172 −3.42489
\(672\) 0 0
\(673\) 18.4947 0.712919 0.356459 0.934311i \(-0.383984\pi\)
0.356459 + 0.934311i \(0.383984\pi\)
\(674\) 0 0
\(675\) −24.2260 24.2260i −0.932458 0.932458i
\(676\) 0 0
\(677\) −7.27015 + 7.27015i −0.279414 + 0.279414i −0.832875 0.553461i \(-0.813307\pi\)
0.553461 + 0.832875i \(0.313307\pi\)
\(678\) 0 0
\(679\) 17.1852i 0.659509i
\(680\) 0 0
\(681\) 81.8024i 3.13467i
\(682\) 0 0
\(683\) −1.07946 + 1.07946i −0.0413043 + 0.0413043i −0.727457 0.686153i \(-0.759298\pi\)
0.686153 + 0.727457i \(0.259298\pi\)
\(684\) 0 0
\(685\) −0.318824 0.318824i −0.0121817 0.0121817i
\(686\) 0 0
\(687\) −27.9817 −1.06757
\(688\) 0 0
\(689\) −36.5035 −1.39067
\(690\) 0 0
\(691\) −15.3729 15.3729i −0.584812 0.584812i 0.351410 0.936222i \(-0.385702\pi\)
−0.936222 + 0.351410i \(0.885702\pi\)
\(692\) 0 0
\(693\) −24.8928 + 24.8928i −0.945598 + 0.945598i
\(694\) 0 0
\(695\) 0.0387658i 0.00147047i
\(696\) 0 0
\(697\) 2.83552i 0.107403i
\(698\) 0 0
\(699\) −45.6676 + 45.6676i −1.72731 + 1.72731i
\(700\) 0 0
\(701\) −2.22188 2.22188i −0.0839191 0.0839191i 0.663901 0.747820i \(-0.268900\pi\)
−0.747820 + 0.663901i \(0.768900\pi\)
\(702\) 0 0
\(703\) −23.8577 −0.899810
\(704\) 0 0
\(705\) −0.374825 −0.0141167
\(706\) 0 0
\(707\) −2.12372 2.12372i −0.0798705 0.0798705i
\(708\) 0 0
\(709\) −14.5326 + 14.5326i −0.545785 + 0.545785i −0.925219 0.379434i \(-0.876119\pi\)
0.379434 + 0.925219i \(0.376119\pi\)
\(710\) 0 0
\(711\) 63.3964i 2.37755i
\(712\) 0 0
\(713\) 25.5149i 0.955542i
\(714\) 0 0
\(715\) −3.15107 + 3.15107i −0.117843 + 0.117843i
\(716\) 0 0
\(717\) 7.07507 + 7.07507i 0.264223 + 0.264223i
\(718\) 0 0
\(719\) 22.0455 0.822158 0.411079 0.911600i \(-0.365152\pi\)
0.411079 + 0.911600i \(0.365152\pi\)
\(720\) 0 0
\(721\) 11.7759 0.438557
\(722\) 0 0
\(723\) −7.92228 7.92228i −0.294633 0.294633i
\(724\) 0 0
\(725\) 19.8353 19.8353i 0.736666 0.736666i
\(726\) 0 0
\(727\) 35.0296i 1.29917i −0.760287 0.649587i \(-0.774942\pi\)
0.760287 0.649587i \(-0.225058\pi\)
\(728\) 0 0
\(729\) 39.3769i 1.45840i
\(730\) 0 0
\(731\) 3.25504 3.25504i 0.120392 0.120392i
\(732\) 0 0
\(733\) 33.3592 + 33.3592i 1.23215 + 1.23215i 0.963136 + 0.269015i \(0.0866983\pi\)
0.269015 + 0.963136i \(0.413302\pi\)
\(734\) 0 0
\(735\) −2.74491 −0.101247
\(736\) 0 0
\(737\) −14.7245 −0.542384
\(738\) 0 0
\(739\) 30.4784 + 30.4784i 1.12117 + 1.12117i 0.991566 + 0.129599i \(0.0413690\pi\)
0.129599 + 0.991566i \(0.458631\pi\)
\(740\) 0 0
\(741\) −33.3942 + 33.3942i −1.22677 + 1.22677i
\(742\) 0 0
\(743\) 25.9320i 0.951354i 0.879620 + 0.475677i \(0.157797\pi\)
−0.879620 + 0.475677i \(0.842203\pi\)
\(744\) 0 0
\(745\) 0.653160i 0.0239299i
\(746\) 0 0
\(747\) 21.1776 21.1776i 0.774848 0.774848i
\(748\) 0 0
\(749\) 0.718892 + 0.718892i 0.0262677 + 0.0262677i
\(750\) 0 0
\(751\) −9.47512 −0.345752 −0.172876 0.984944i \(-0.555306\pi\)
−0.172876 + 0.984944i \(0.555306\pi\)
\(752\) 0 0
\(753\) −22.6737 −0.826277
\(754\) 0 0
\(755\) −1.36236 1.36236i −0.0495815 0.0495815i
\(756\) 0 0
\(757\) −11.9056 + 11.9056i −0.432717 + 0.432717i −0.889552 0.456835i \(-0.848983\pi\)
0.456835 + 0.889552i \(0.348983\pi\)
\(758\) 0 0
\(759\) 110.611i 4.01494i
\(760\) 0 0
\(761\) 18.8898i 0.684754i 0.939563 + 0.342377i \(0.111232\pi\)
−0.939563 + 0.342377i \(0.888768\pi\)
\(762\) 0 0
\(763\) 1.03771 1.03771i 0.0375677 0.0375677i
\(764\) 0 0
\(765\) 0.603764 + 0.603764i 0.0218291 + 0.0218291i
\(766\) 0 0
\(767\) 27.0437 0.976493
\(768\) 0 0
\(769\) −13.3803 −0.482506 −0.241253 0.970462i \(-0.577558\pi\)
−0.241253 + 0.970462i \(0.577558\pi\)
\(770\) 0 0
\(771\) −52.6474 52.6474i −1.89605 1.89605i
\(772\) 0 0
\(773\) 4.48902 4.48902i 0.161459 0.161459i −0.621754 0.783213i \(-0.713580\pi\)
0.783213 + 0.621754i \(0.213580\pi\)
\(774\) 0 0
\(775\) 21.4611i 0.770906i
\(776\) 0 0
\(777\) 18.6319i 0.668414i
\(778\) 0 0
\(779\) −7.52806 + 7.52806i −0.269721 + 0.269721i
\(780\) 0 0
\(781\) 3.56654 + 3.56654i 0.127621 + 0.127621i
\(782\) 0 0
\(783\) 38.8329 1.38777
\(784\) 0 0
\(785\) −3.86252 −0.137859
\(786\) 0 0
\(787\) −11.9747 11.9747i −0.426850 0.426850i 0.460704 0.887554i \(-0.347597\pi\)
−0.887554 + 0.460704i \(0.847597\pi\)
\(788\) 0 0
\(789\) −35.5248 + 35.5248i −1.26472 + 1.26472i
\(790\) 0 0
\(791\) 8.86578i 0.315231i
\(792\) 0 0
\(793\) 59.6688i 2.11890i
\(794\) 0 0
\(795\) 2.72940 2.72940i 0.0968017 0.0968017i
\(796\) 0 0
\(797\) 3.52687 + 3.52687i 0.124928 + 0.124928i 0.766807 0.641878i \(-0.221845\pi\)
−0.641878 + 0.766807i \(0.721845\pi\)
\(798\) 0 0
\(799\) −0.815754 −0.0288593
\(800\) 0 0
\(801\) 8.94412 0.316025
\(802\) 0 0
\(803\) −31.9706 31.9706i −1.12822 1.12822i
\(804\) 0 0
\(805\) −0.672458 + 0.672458i −0.0237010 + 0.0237010i
\(806\) 0 0
\(807\) 20.0853i 0.707037i
\(808\) 0 0
\(809\) 11.8721i 0.417402i 0.977980 + 0.208701i \(0.0669235\pi\)
−0.977980 + 0.208701i \(0.933076\pi\)
\(810\) 0 0
\(811\) −7.06018 + 7.06018i −0.247916 + 0.247916i −0.820115 0.572199i \(-0.806091\pi\)
0.572199 + 0.820115i \(0.306091\pi\)
\(812\) 0 0
\(813\) −41.4218 41.4218i −1.45273 1.45273i
\(814\) 0 0
\(815\) 1.50757 0.0528078
\(816\) 0 0
\(817\) −17.2837 −0.604679
\(818\) 0 0
\(819\) −16.7422 16.7422i −0.585020 0.585020i
\(820\) 0 0
\(821\) −7.90352 + 7.90352i −0.275835 + 0.275835i −0.831444 0.555609i \(-0.812485\pi\)
0.555609 + 0.831444i \(0.312485\pi\)
\(822\) 0 0
\(823\) 29.3339i 1.02252i −0.859427 0.511258i \(-0.829180\pi\)
0.859427 0.511258i \(-0.170820\pi\)
\(824\) 0 0
\(825\) 93.0374i 3.23915i
\(826\) 0 0
\(827\) 12.8238 12.8238i 0.445928 0.445928i −0.448070 0.893998i \(-0.647889\pi\)
0.893998 + 0.448070i \(0.147889\pi\)
\(828\) 0 0
\(829\) −12.8736 12.8736i −0.447118 0.447118i 0.447277 0.894395i \(-0.352394\pi\)
−0.894395 + 0.447277i \(0.852394\pi\)
\(830\) 0 0
\(831\) −30.2419 −1.04908
\(832\) 0 0
\(833\) −5.97391 −0.206984
\(834\) 0 0
\(835\) 0.252894 + 0.252894i 0.00875177 + 0.00875177i
\(836\) 0 0
\(837\) 21.0079 21.0079i 0.726138 0.726138i
\(838\) 0 0
\(839\) 32.0690i 1.10714i 0.832801 + 0.553572i \(0.186736\pi\)
−0.832801 + 0.553572i \(0.813264\pi\)
\(840\) 0 0
\(841\) 2.79492i 0.0963766i
\(842\) 0 0
\(843\) 47.6287 47.6287i 1.64042 1.64042i
\(844\) 0 0
\(845\) −0.660182 0.660182i −0.0227110 0.0227110i
\(846\) 0 0
\(847\) 31.1395 1.06997
\(848\) 0 0
\(849\) −24.8992 −0.854539
\(850\) 0 0
\(851\) 26.5746 + 26.5746i 0.910965 + 0.910965i
\(852\) 0 0
\(853\) −27.3066 + 27.3066i −0.934960 + 0.934960i −0.998010 0.0630503i \(-0.979917\pi\)
0.0630503 + 0.998010i \(0.479917\pi\)
\(854\) 0 0
\(855\) 3.20588i 0.109639i
\(856\) 0 0
\(857\) 20.4665i 0.699121i −0.936914 0.349560i \(-0.886331\pi\)
0.936914 0.349560i \(-0.113669\pi\)
\(858\) 0 0
\(859\) −15.1127 + 15.1127i −0.515638 + 0.515638i −0.916249 0.400610i \(-0.868798\pi\)
0.400610 + 0.916249i \(0.368798\pi\)
\(860\) 0 0
\(861\) −5.87910 5.87910i −0.200359 0.200359i
\(862\) 0 0
\(863\) 7.40206 0.251969 0.125985 0.992032i \(-0.459791\pi\)
0.125985 + 0.992032i \(0.459791\pi\)
\(864\) 0 0
\(865\) −0.984651 −0.0334791
\(866\) 0 0
\(867\) 2.04684 + 2.04684i 0.0695145 + 0.0695145i
\(868\) 0 0
\(869\) 53.8417 53.8417i 1.82645 1.82645i
\(870\) 0 0
\(871\) 9.90331i 0.335561i
\(872\) 0 0
\(873\) 91.2590i 3.08865i
\(874\) 0 0
\(875\) 1.13410 1.13410i 0.0383396 0.0383396i
\(876\) 0 0
\(877\) −0.807629 0.807629i −0.0272717 0.0272717i 0.693339 0.720611i \(-0.256139\pi\)
−0.720611 + 0.693339i \(0.756139\pi\)
\(878\) 0 0
\(879\) 12.0131 0.405191
\(880\) 0 0
\(881\) 22.8408 0.769526 0.384763 0.923015i \(-0.374283\pi\)
0.384763 + 0.923015i \(0.374283\pi\)
\(882\) 0 0
\(883\) −8.29032 8.29032i −0.278992 0.278992i 0.553715 0.832706i \(-0.313210\pi\)
−0.832706 + 0.553715i \(0.813210\pi\)
\(884\) 0 0
\(885\) −2.02208 + 2.02208i −0.0679716 + 0.0679716i
\(886\) 0 0
\(887\) 20.9534i 0.703546i 0.936085 + 0.351773i \(0.114421\pi\)
−0.936085 + 0.351773i \(0.885579\pi\)
\(888\) 0 0
\(889\) 16.0620i 0.538702i
\(890\) 0 0
\(891\) −17.3498 + 17.3498i −0.581239 + 0.581239i
\(892\) 0 0
\(893\) 2.16575 + 2.16575i 0.0724742 + 0.0724742i
\(894\) 0 0
\(895\) 0.922149 0.0308240
\(896\) 0 0
\(897\) 74.3943 2.48395
\(898\) 0 0
\(899\) 17.2005 + 17.2005i 0.573668 + 0.573668i
\(900\) 0 0
\(901\) 5.94015 5.94015i 0.197895 0.197895i
\(902\) 0 0
\(903\) 13.4978i 0.449180i
\(904\) 0 0
\(905\) 2.00866i 0.0667700i
\(906\) 0 0
\(907\) 24.8227 24.8227i 0.824223 0.824223i −0.162488 0.986711i \(-0.551952\pi\)
0.986711 + 0.162488i \(0.0519517\pi\)
\(908\) 0 0
\(909\) −11.2776 11.2776i −0.374054 0.374054i
\(910\) 0 0
\(911\) −12.4172 −0.411401 −0.205701 0.978615i \(-0.565947\pi\)
−0.205701 + 0.978615i \(0.565947\pi\)
\(912\) 0 0
\(913\) −35.9717 −1.19049
\(914\) 0 0
\(915\) 4.46149 + 4.46149i 0.147492 + 0.147492i
\(916\) 0 0
\(917\) 2.97477 2.97477i 0.0982357 0.0982357i
\(918\) 0 0
\(919\) 20.5870i 0.679103i −0.940587 0.339552i \(-0.889725\pi\)
0.940587 0.339552i \(-0.110275\pi\)
\(920\) 0 0
\(921\) 0.808574i 0.0266434i
\(922\) 0 0
\(923\) −2.39876 + 2.39876i −0.0789562 + 0.0789562i
\(924\) 0 0
\(925\) −22.3524 22.3524i −0.734943 0.734943i
\(926\) 0 0
\(927\) 62.5337 2.05388
\(928\) 0 0
\(929\) 27.0561 0.887681 0.443841 0.896106i \(-0.353616\pi\)
0.443841 + 0.896106i \(0.353616\pi\)
\(930\) 0 0
\(931\) 15.8602 + 15.8602i 0.519797 + 0.519797i
\(932\) 0 0
\(933\) 21.1080 21.1080i 0.691046 0.691046i
\(934\) 0 0
\(935\) 1.02554i 0.0335386i
\(936\) 0 0
\(937\) 40.2132i 1.31371i 0.754018 + 0.656854i \(0.228113\pi\)
−0.754018 + 0.656854i \(0.771887\pi\)
\(938\) 0 0
\(939\) −6.05726 + 6.05726i −0.197671 + 0.197671i
\(940\) 0 0
\(941\) −10.2877 10.2877i −0.335370 0.335370i 0.519252 0.854621i \(-0.326211\pi\)
−0.854621 + 0.519252i \(0.826211\pi\)
\(942\) 0 0
\(943\) 16.7707 0.546129
\(944\) 0 0
\(945\) 1.10734 0.0360219
\(946\) 0 0
\(947\) 21.5285 + 21.5285i 0.699581 + 0.699581i 0.964320 0.264739i \(-0.0852859\pi\)
−0.264739 + 0.964320i \(0.585286\pi\)
\(948\) 0 0
\(949\) 21.5026 21.5026i 0.698003 0.698003i
\(950\) 0 0
\(951\) 50.9054i 1.65072i
\(952\) 0 0
\(953\) 22.2373i 0.720338i 0.932887 + 0.360169i \(0.117281\pi\)
−0.932887 + 0.360169i \(0.882719\pi\)
\(954\) 0 0
\(955\) −2.99206 + 2.99206i −0.0968208 + 0.0968208i
\(956\) 0 0
\(957\) −74.5668 74.5668i −2.41040 2.41040i
\(958\) 0 0
\(959\) −2.87733 −0.0929139
\(960\) 0 0
\(961\) −12.3897 −0.399669
\(962\) 0 0
\(963\) 3.81754 + 3.81754i 0.123019 + 0.123019i
\(964\) 0 0
\(965\) −1.51080 + 1.51080i −0.0486343 + 0.0486343i
\(966\) 0 0
\(967\) 14.4501i 0.464683i 0.972634 + 0.232342i \(0.0746387\pi\)
−0.972634 + 0.232342i \(0.925361\pi\)
\(968\) 0 0
\(969\) 10.8684i 0.349143i
\(970\) 0 0
\(971\) −6.18861 + 6.18861i −0.198602 + 0.198602i −0.799400 0.600799i \(-0.794849\pi\)
0.600799 + 0.799400i \(0.294849\pi\)
\(972\) 0 0
\(973\) −0.174927 0.174927i −0.00560790 0.00560790i
\(974\) 0 0
\(975\) −62.5745 −2.00399
\(976\) 0 0
\(977\) 47.9589 1.53434 0.767171 0.641443i \(-0.221664\pi\)
0.767171 + 0.641443i \(0.221664\pi\)
\(978\) 0 0
\(979\) −7.59611 7.59611i −0.242773 0.242773i
\(980\) 0 0
\(981\) 5.51057 5.51057i 0.175939 0.175939i
\(982\) 0 0
\(983\) 32.0505i 1.02225i −0.859506 0.511126i \(-0.829229\pi\)
0.859506 0.511126i \(-0.170771\pi\)
\(984\) 0 0
\(985\) 3.88412i 0.123758i
\(986\) 0 0
\(987\) −1.69136 + 1.69136i −0.0538367 + 0.0538367i
\(988\) 0 0
\(989\) 19.2519 + 19.2519i 0.612176 + 0.612176i
\(990\) 0 0
\(991\) −37.1875 −1.18130 −0.590650 0.806928i \(-0.701128\pi\)
−0.590650 + 0.806928i \(0.701128\pi\)
\(992\) 0 0
\(993\) 27.7428 0.880390
\(994\) 0 0
\(995\) 1.61439 + 1.61439i 0.0511796 + 0.0511796i
\(996\) 0 0
\(997\) −3.51747 + 3.51747i −0.111399 + 0.111399i −0.760609 0.649210i \(-0.775100\pi\)
0.649210 + 0.760609i \(0.275100\pi\)
\(998\) 0 0
\(999\) 43.7607i 1.38453i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1088.2.l.b.273.14 30
4.3 odd 2 272.2.l.b.205.6 yes 30
16.5 even 4 inner 1088.2.l.b.817.14 30
16.11 odd 4 272.2.l.b.69.6 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
272.2.l.b.69.6 30 16.11 odd 4
272.2.l.b.205.6 yes 30 4.3 odd 2
1088.2.l.b.273.14 30 1.1 even 1 trivial
1088.2.l.b.817.14 30 16.5 even 4 inner