Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1085,2,Mod(156,1085)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1085, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1085.156");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1085 = 5 \cdot 7 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1085.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.66376861931\) |
Analytic rank: | \(0\) |
Dimension: | \(42\) |
Relative dimension: | \(21\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
156.1 | −1.33195 | + | 2.30700i | −0.683827 | − | 1.18442i | −2.54818 | − | 4.41358i | 0.500000 | − | 0.866025i | 3.64330 | 2.39166 | − | 1.13136i | 8.24840 | 0.564760 | − | 0.978194i | 1.33195 | + | 2.30700i | ||||
156.2 | −1.13491 | + | 1.96571i | −1.65498 | − | 2.86651i | −1.57602 | − | 2.72975i | 0.500000 | − | 0.866025i | 7.51299 | −0.890736 | + | 2.49130i | 2.61493 | −3.97793 | + | 6.88997i | 1.13491 | + | 1.96571i | ||||
156.3 | −1.02906 | + | 1.78238i | −0.242586 | − | 0.420171i | −1.11792 | − | 1.93629i | 0.500000 | − | 0.866025i | 0.998537 | 0.0964952 | + | 2.64399i | 0.485366 | 1.38230 | − | 2.39422i | 1.02906 | + | 1.78238i | ||||
156.4 | −1.00349 | + | 1.73810i | 0.976835 | + | 1.69193i | −1.01400 | − | 1.75630i | 0.500000 | − | 0.866025i | −3.92099 | −1.14469 | − | 2.38531i | 0.0561989 | −0.408414 | + | 0.707394i | 1.00349 | + | 1.73810i | ||||
156.5 | −0.770925 | + | 1.33528i | −1.27701 | − | 2.21185i | −0.188649 | − | 0.326750i | 0.500000 | − | 0.866025i | 3.93792 | −1.93332 | − | 1.80618i | −2.50196 | −1.76151 | + | 3.05103i | 0.770925 | + | 1.33528i | ||||
156.6 | −0.710340 | + | 1.23034i | −0.00548753 | − | 0.00950467i | −0.00916471 | − | 0.0158737i | 0.500000 | − | 0.866025i | 0.0155920 | 1.73420 | − | 1.99814i | −2.81532 | 1.49994 | − | 2.59797i | 0.710340 | + | 1.23034i | ||||
156.7 | −0.587774 | + | 1.01805i | 0.989210 | + | 1.71336i | 0.309044 | + | 0.535279i | 0.500000 | − | 0.866025i | −2.32573 | −1.81747 | + | 1.92270i | −3.07769 | −0.457072 | + | 0.791672i | 0.587774 | + | 1.01805i | ||||
156.8 | −0.331045 | + | 0.573387i | −0.386113 | − | 0.668768i | 0.780818 | + | 1.35242i | 0.500000 | − | 0.866025i | 0.511284 | 2.47081 | + | 0.946095i | −2.35813 | 1.20183 | − | 2.08164i | 0.331045 | + | 0.573387i | ||||
156.9 | −0.119785 | + | 0.207473i | 0.851462 | + | 1.47478i | 0.971303 | + | 1.68235i | 0.500000 | − | 0.866025i | −0.407968 | 0.663521 | − | 2.56120i | −0.944527 | 0.0500242 | − | 0.0866444i | 0.119785 | + | 0.207473i | ||||
156.10 | 0.0421816 | − | 0.0730607i | −0.783476 | − | 1.35702i | 0.996441 | + | 1.72589i | 0.500000 | − | 0.866025i | −0.132193 | −2.58973 | + | 0.541556i | 0.336853 | 0.272330 | − | 0.471690i | −0.0421816 | − | 0.0730607i | ||||
156.11 | 0.0487364 | − | 0.0844139i | 1.40478 | + | 2.43316i | 0.995250 | + | 1.72382i | 0.500000 | − | 0.866025i | 0.273856 | −2.57650 | − | 0.601355i | 0.388965 | −2.44684 | + | 4.23804i | −0.0487364 | − | 0.0844139i | ||||
156.12 | 0.314226 | − | 0.544255i | −0.762561 | − | 1.32079i | 0.802524 | + | 1.39001i | 0.500000 | − | 0.866025i | −0.958466 | 2.64570 | + | 0.0171482i | 2.26560 | 0.337001 | − | 0.583702i | −0.314226 | − | 0.544255i | ||||
156.13 | 0.343434 | − | 0.594845i | 0.712603 | + | 1.23426i | 0.764106 | + | 1.32347i | 0.500000 | − | 0.866025i | 0.978928 | 2.26275 | − | 1.37112i | 2.42342 | 0.484395 | − | 0.838996i | −0.343434 | − | 0.594845i | ||||
156.14 | 0.552963 | − | 0.957759i | −1.29834 | − | 2.24879i | 0.388465 | + | 0.672841i | 0.500000 | − | 0.866025i | −2.87173 | 0.0293321 | + | 2.64559i | 3.07108 | −1.87137 | + | 3.24130i | −0.552963 | − | 0.957759i | ||||
156.15 | 0.773945 | − | 1.34051i | −1.14005 | − | 1.97462i | −0.197982 | − | 0.342915i | 0.500000 | − | 0.866025i | −3.52934 | −2.50486 | − | 0.851866i | 2.48287 | −1.09941 | + | 1.90424i | −0.773945 | − | 1.34051i | ||||
156.16 | 0.881830 | − | 1.52737i | 0.756156 | + | 1.30970i | −0.555248 | − | 0.961717i | 0.500000 | − | 0.866025i | 2.66720 | 2.42433 | + | 1.05954i | 1.56878 | 0.356456 | − | 0.617400i | −0.881830 | − | 1.52737i | ||||
156.17 | 1.04051 | − | 1.80221i | −0.253233 | − | 0.438612i | −1.16531 | − | 2.01838i | 0.500000 | − | 0.866025i | −1.05396 | 0.106549 | + | 2.64360i | −0.688024 | 1.37175 | − | 2.37593i | −1.04051 | − | 1.80221i | ||||
156.18 | 1.17661 | − | 2.03795i | 0.691083 | + | 1.19699i | −1.76881 | − | 3.06368i | 0.500000 | − | 0.866025i | 3.25254 | −1.78677 | + | 1.95127i | −3.61837 | 0.544807 | − | 0.943634i | −1.17661 | − | 2.03795i | ||||
156.19 | 1.22080 | − | 2.11448i | 1.56664 | + | 2.71350i | −1.98070 | − | 3.43066i | 0.500000 | − | 0.866025i | 7.65019 | 2.62870 | + | 0.299879i | −4.78892 | −3.40871 | + | 5.90405i | −1.22080 | − | 2.11448i | ||||
156.20 | 1.30265 | − | 2.25626i | −1.64921 | − | 2.85651i | −2.39381 | − | 4.14619i | 0.500000 | − | 0.866025i | −8.59339 | 0.642033 | − | 2.56667i | −7.26258 | −3.93978 | + | 6.82391i | −1.30265 | − | 2.25626i | ||||
See all 42 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1085.2.j.d | ✓ | 42 |
7.c | even | 3 | 1 | inner | 1085.2.j.d | ✓ | 42 |
7.c | even | 3 | 1 | 7595.2.a.bg | 21 | ||
7.d | odd | 6 | 1 | 7595.2.a.bf | 21 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1085.2.j.d | ✓ | 42 | 1.a | even | 1 | 1 | trivial |
1085.2.j.d | ✓ | 42 | 7.c | even | 3 | 1 | inner |
7595.2.a.bf | 21 | 7.d | odd | 6 | 1 | ||
7595.2.a.bg | 21 | 7.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{42} - 4 T_{2}^{41} + 40 T_{2}^{40} - 120 T_{2}^{39} + 784 T_{2}^{38} - 2010 T_{2}^{37} + \cdots + 81 \) acting on \(S_{2}^{\mathrm{new}}(1085, [\chi])\).