Properties

Label 1085.2.a.p
Level $1085$
Weight $2$
Character orbit 1085.a
Self dual yes
Analytic conductor $8.664$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1085,2,Mod(1,1085)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1085, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1085.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1085 = 5 \cdot 7 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1085.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.66376861931\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 9x^{5} + 29x^{4} + 18x^{3} - 70x^{2} - 10x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{6} - \beta_1 + 1) q^{3} + (\beta_{2} + 2) q^{4} - q^{5} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots - 2) q^{6}+ \cdots + ( - \beta_{5} - \beta_{4} - \beta_1 + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{6} - \beta_1 + 1) q^{3} + (\beta_{2} + 2) q^{4} - q^{5} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots - 2) q^{6}+ \cdots + ( - \beta_{6} + 2 \beta_{5} - 2 \beta_{3} + \cdots - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} + 2 q^{3} + 13 q^{4} - 7 q^{5} - 12 q^{6} + 7 q^{7} + 9 q^{8} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 3 q^{2} + 2 q^{3} + 13 q^{4} - 7 q^{5} - 12 q^{6} + 7 q^{7} + 9 q^{8} + 11 q^{9} - 3 q^{10} + 5 q^{11} + 4 q^{12} + 9 q^{13} + 3 q^{14} - 2 q^{15} + 13 q^{16} - 2 q^{17} - 5 q^{18} + 13 q^{19} - 13 q^{20} + 2 q^{21} + 20 q^{22} + 8 q^{23} - 8 q^{24} + 7 q^{25} + 4 q^{26} + 8 q^{27} + 13 q^{28} - q^{29} + 12 q^{30} - 7 q^{31} + 11 q^{32} - 13 q^{33} + 20 q^{34} - 7 q^{35} - 3 q^{36} + 37 q^{37} - 4 q^{38} + 21 q^{39} - 9 q^{40} + 9 q^{41} - 12 q^{42} + 19 q^{43} + 16 q^{44} - 11 q^{45} + 8 q^{46} - q^{47} + 8 q^{48} + 7 q^{49} + 3 q^{50} - 4 q^{51} + 26 q^{52} + 25 q^{53} - 32 q^{54} - 5 q^{55} + 9 q^{56} + 33 q^{57} + 4 q^{58} + 7 q^{59} - 4 q^{60} - 34 q^{61} - 3 q^{62} + 11 q^{63} + 49 q^{64} - 9 q^{65} + 32 q^{66} - 20 q^{68} + 4 q^{69} - 3 q^{70} - 23 q^{71} - 17 q^{72} - 3 q^{73} - 18 q^{74} + 2 q^{75} + 10 q^{76} + 5 q^{77} + 14 q^{78} + 13 q^{79} - 13 q^{80} - 5 q^{81} - 78 q^{82} - 13 q^{83} + 4 q^{84} + 2 q^{85} + 10 q^{86} - 17 q^{87} + 52 q^{88} - 10 q^{89} + 5 q^{90} + 9 q^{91} + 60 q^{92} - 2 q^{93} - 38 q^{94} - 13 q^{95} - 26 q^{96} + 3 q^{97} + 3 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 9x^{5} + 29x^{4} + 18x^{3} - 70x^{2} - 10x + 48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 9\nu^{3} + 14\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 7\nu^{3} + 16\nu^{2} + 4\nu - 20 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 9\nu^{3} + 16\nu^{2} + 14\nu - 20 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} - 2\nu^{5} - 9\nu^{4} + 16\nu^{3} + 18\nu^{2} - 20\nu - 12 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} + \beta_{3} + 8\beta_{2} + 22 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -9\beta_{5} + 9\beta_{4} + 2\beta_{3} + 31\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{6} - 11\beta_{5} + 2\beta_{4} + 13\beta_{3} + 54\beta_{2} + 2\beta _1 + 138 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.53671
−1.35041
−1.10106
1.13413
1.68842
2.42431
2.74132
−2.53671 2.16264 4.43491 −1.00000 −5.48599 1.00000 −6.17668 1.67701 2.53671
1.2 −1.35041 −0.875910 −0.176382 −1.00000 1.18284 1.00000 2.93902 −2.23278 1.35041
1.3 −1.10106 3.23919 −0.787672 −1.00000 −3.56653 1.00000 3.06939 7.49233 1.10106
1.4 1.13413 −2.48623 −0.713738 −1.00000 −2.81973 1.00000 −3.07775 3.18136 −1.13413
1.5 1.68842 1.88203 0.850758 −1.00000 3.17765 1.00000 −1.94040 0.542036 −1.68842
1.6 2.42431 −2.45978 3.87727 −1.00000 −5.96327 1.00000 4.55109 3.05052 −2.42431
1.7 2.74132 0.538070 5.51485 −1.00000 1.47502 1.00000 9.63533 −2.71048 −2.74132
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1085.2.a.p 7
3.b odd 2 1 9765.2.a.bc 7
5.b even 2 1 5425.2.a.ba 7
7.b odd 2 1 7595.2.a.u 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1085.2.a.p 7 1.a even 1 1 trivial
5425.2.a.ba 7 5.b even 2 1
7595.2.a.u 7 7.b odd 2 1
9765.2.a.bc 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1085))\):

\( T_{2}^{7} - 3T_{2}^{6} - 9T_{2}^{5} + 29T_{2}^{4} + 18T_{2}^{3} - 70T_{2}^{2} - 10T_{2} + 48 \) Copy content Toggle raw display
\( T_{3}^{7} - 2T_{3}^{6} - 14T_{3}^{5} + 24T_{3}^{4} + 55T_{3}^{3} - 80T_{3}^{2} - 46T_{3} + 38 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 3 T^{6} + \cdots + 48 \) Copy content Toggle raw display
$3$ \( T^{7} - 2 T^{6} + \cdots + 38 \) Copy content Toggle raw display
$5$ \( (T + 1)^{7} \) Copy content Toggle raw display
$7$ \( (T - 1)^{7} \) Copy content Toggle raw display
$11$ \( T^{7} - 5 T^{6} + \cdots + 2216 \) Copy content Toggle raw display
$13$ \( T^{7} - 9 T^{6} + \cdots + 32 \) Copy content Toggle raw display
$17$ \( T^{7} + 2 T^{6} + \cdots - 912 \) Copy content Toggle raw display
$19$ \( T^{7} - 13 T^{6} + \cdots - 608 \) Copy content Toggle raw display
$23$ \( T^{7} - 8 T^{6} + \cdots - 512 \) Copy content Toggle raw display
$29$ \( T^{7} + T^{6} + \cdots + 4208 \) Copy content Toggle raw display
$31$ \( (T + 1)^{7} \) Copy content Toggle raw display
$37$ \( T^{7} - 37 T^{6} + \cdots + 64 \) Copy content Toggle raw display
$41$ \( T^{7} - 9 T^{6} + \cdots + 144192 \) Copy content Toggle raw display
$43$ \( T^{7} - 19 T^{6} + \cdots - 245248 \) Copy content Toggle raw display
$47$ \( T^{7} + T^{6} + \cdots - 90592 \) Copy content Toggle raw display
$53$ \( T^{7} - 25 T^{6} + \cdots + 7716 \) Copy content Toggle raw display
$59$ \( T^{7} - 7 T^{6} + \cdots - 1336 \) Copy content Toggle raw display
$61$ \( T^{7} + 34 T^{6} + \cdots - 243632 \) Copy content Toggle raw display
$67$ \( T^{7} - 148 T^{5} + \cdots + 4672 \) Copy content Toggle raw display
$71$ \( T^{7} + 23 T^{6} + \cdots + 53632 \) Copy content Toggle raw display
$73$ \( T^{7} + 3 T^{6} + \cdots - 420864 \) Copy content Toggle raw display
$79$ \( T^{7} - 13 T^{6} + \cdots - 336828 \) Copy content Toggle raw display
$83$ \( T^{7} + 13 T^{6} + \cdots - 335976 \) Copy content Toggle raw display
$89$ \( T^{7} + 10 T^{6} + \cdots + 185856 \) Copy content Toggle raw display
$97$ \( T^{7} - 3 T^{6} + \cdots + 59832 \) Copy content Toggle raw display
show more
show less