Properties

Label 10800.2.dl
Level 1080010800
Weight 22
Character orbit 10800.dl
Rep. character χ10800(4193,)\chi_{10800}(4193,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 424424
Sturm bound 43204320

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 10800=243352 10800 = 2^{4} \cdot 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 10800.dl (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 45 45
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 43204320

Dimensions

The following table gives the dimensions of various subspaces of M2(10800,[χ])M_{2}(10800, [\chi]).

Total New Old
Modular forms 9072 440 8632
Cusp forms 8208 424 7784
Eisenstein series 864 16 848

Decomposition of S2new(10800,[χ])S_{2}^{\mathrm{new}}(10800, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(10800,[χ])S_{2}^{\mathrm{old}}(10800, [\chi]) into lower level spaces

S2old(10800,[χ]) S_{2}^{\mathrm{old}}(10800, [\chi]) \simeq S2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])20^{\oplus 20}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])16^{\oplus 16}\oplusS2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi])10^{\oplus 10}\oplusS2new(180,[χ])S_{2}^{\mathrm{new}}(180, [\chi])12^{\oplus 12}\oplusS2new(225,[χ])S_{2}^{\mathrm{new}}(225, [\chi])10^{\oplus 10}\oplusS2new(270,[χ])S_{2}^{\mathrm{new}}(270, [\chi])8^{\oplus 8}\oplusS2new(360,[χ])S_{2}^{\mathrm{new}}(360, [\chi])8^{\oplus 8}\oplusS2new(450,[χ])S_{2}^{\mathrm{new}}(450, [\chi])8^{\oplus 8}\oplusS2new(540,[χ])S_{2}^{\mathrm{new}}(540, [\chi])6^{\oplus 6}\oplusS2new(675,[χ])S_{2}^{\mathrm{new}}(675, [\chi])5^{\oplus 5}\oplusS2new(720,[χ])S_{2}^{\mathrm{new}}(720, [\chi])4^{\oplus 4}\oplusS2new(900,[χ])S_{2}^{\mathrm{new}}(900, [\chi])6^{\oplus 6}\oplusS2new(1080,[χ])S_{2}^{\mathrm{new}}(1080, [\chi])4^{\oplus 4}\oplusS2new(1350,[χ])S_{2}^{\mathrm{new}}(1350, [\chi])4^{\oplus 4}\oplusS2new(1800,[χ])S_{2}^{\mathrm{new}}(1800, [\chi])4^{\oplus 4}\oplusS2new(2160,[χ])S_{2}^{\mathrm{new}}(2160, [\chi])2^{\oplus 2}\oplusS2new(2700,[χ])S_{2}^{\mathrm{new}}(2700, [\chi])3^{\oplus 3}\oplusS2new(3600,[χ])S_{2}^{\mathrm{new}}(3600, [\chi])2^{\oplus 2}\oplusS2new(5400,[χ])S_{2}^{\mathrm{new}}(5400, [\chi])2^{\oplus 2}