Properties

Label 1080.2.b.d.971.7
Level $1080$
Weight $2$
Character 1080.971
Analytic conductor $8.624$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,2,Mod(971,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.971"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} + 2 x^{13} - 6 x^{12} + 8 x^{11} - 6 x^{10} - 8 x^{9} + 32 x^{8} - 16 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 971.7
Root \(-0.119860 + 1.40913i\) of defining polynomial
Character \(\chi\) \(=\) 1080.971
Dual form 1080.2.b.d.971.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.119860 - 1.40913i) q^{2} +(-1.97127 + 0.337796i) q^{4} -1.00000 q^{5} -1.81970i q^{7} +(0.712273 + 2.73727i) q^{8} +(0.119860 + 1.40913i) q^{10} -1.81755i q^{11} +1.62865i q^{13} +(-2.56418 + 0.218109i) q^{14} +(3.77179 - 1.33177i) q^{16} -3.36115i q^{17} -2.50290 q^{19} +(1.97127 - 0.337796i) q^{20} +(-2.56116 + 0.217852i) q^{22} -7.77601 q^{23} +1.00000 q^{25} +(2.29498 - 0.195211i) q^{26} +(0.614687 + 3.58711i) q^{28} -6.90702 q^{29} +4.41794i q^{31} +(-2.32872 - 5.15529i) q^{32} +(-4.73628 + 0.402867i) q^{34} +1.81970i q^{35} +12.0300i q^{37} +(0.299998 + 3.52690i) q^{38} +(-0.712273 - 2.73727i) q^{40} -2.07086i q^{41} +1.84704 q^{43} +(0.613961 + 3.58288i) q^{44} +(0.932034 + 10.9574i) q^{46} -5.65012 q^{47} +3.68869 q^{49} +(-0.119860 - 1.40913i) q^{50} +(-0.550153 - 3.21051i) q^{52} -0.710648 q^{53} +1.81755i q^{55} +(4.98102 - 1.29612i) q^{56} +(0.827877 + 9.73286i) q^{58} +2.31644i q^{59} +4.93340i q^{61} +(6.22542 - 0.529534i) q^{62} +(-6.98533 + 3.89937i) q^{64} -1.62865i q^{65} -7.15709 q^{67} +(1.13538 + 6.62572i) q^{68} +(2.56418 - 0.218109i) q^{70} -0.231207 q^{71} -12.0660 q^{73} +(16.9518 - 1.44192i) q^{74} +(4.93388 - 0.845469i) q^{76} -3.30740 q^{77} -8.07178i q^{79} +(-3.77179 + 1.33177i) q^{80} +(-2.91811 + 0.248214i) q^{82} +10.7382i q^{83} +3.36115i q^{85} +(-0.221386 - 2.60271i) q^{86} +(4.97514 - 1.29459i) q^{88} +9.05322i q^{89} +2.96366 q^{91} +(15.3286 - 2.62671i) q^{92} +(0.677224 + 7.96172i) q^{94} +2.50290 q^{95} -12.6810 q^{97} +(-0.442127 - 5.19783i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 2 q^{4} - 16 q^{5} - 4 q^{8} - 2 q^{10} + 6 q^{14} + 10 q^{16} - 8 q^{19} - 2 q^{20} + 4 q^{22} - 8 q^{23} + 16 q^{25} - 16 q^{26} + 20 q^{28} - 8 q^{32} + 18 q^{34} - 14 q^{38} + 4 q^{40}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.119860 1.40913i −0.0847539 0.996402i
\(3\) 0 0
\(4\) −1.97127 + 0.337796i −0.985634 + 0.168898i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.81970i 0.687782i −0.939010 0.343891i \(-0.888255\pi\)
0.939010 0.343891i \(-0.111745\pi\)
\(8\) 0.712273 + 2.73727i 0.251827 + 0.967772i
\(9\) 0 0
\(10\) 0.119860 + 1.40913i 0.0379031 + 0.445604i
\(11\) 1.81755i 0.548012i −0.961728 0.274006i \(-0.911651\pi\)
0.961728 0.274006i \(-0.0883489\pi\)
\(12\) 0 0
\(13\) 1.62865i 0.451708i 0.974161 + 0.225854i \(0.0725172\pi\)
−0.974161 + 0.225854i \(0.927483\pi\)
\(14\) −2.56418 + 0.218109i −0.685307 + 0.0582922i
\(15\) 0 0
\(16\) 3.77179 1.33177i 0.942947 0.332943i
\(17\) 3.36115i 0.815198i −0.913161 0.407599i \(-0.866366\pi\)
0.913161 0.407599i \(-0.133634\pi\)
\(18\) 0 0
\(19\) −2.50290 −0.574204 −0.287102 0.957900i \(-0.592692\pi\)
−0.287102 + 0.957900i \(0.592692\pi\)
\(20\) 1.97127 0.337796i 0.440789 0.0755335i
\(21\) 0 0
\(22\) −2.56116 + 0.217852i −0.546041 + 0.0464462i
\(23\) −7.77601 −1.62141 −0.810705 0.585454i \(-0.800916\pi\)
−0.810705 + 0.585454i \(0.800916\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.29498 0.195211i 0.450082 0.0382840i
\(27\) 0 0
\(28\) 0.614687 + 3.58711i 0.116165 + 0.677901i
\(29\) −6.90702 −1.28260 −0.641301 0.767290i \(-0.721605\pi\)
−0.641301 + 0.767290i \(0.721605\pi\)
\(30\) 0 0
\(31\) 4.41794i 0.793485i 0.917930 + 0.396742i \(0.129859\pi\)
−0.917930 + 0.396742i \(0.870141\pi\)
\(32\) −2.32872 5.15529i −0.411663 0.911336i
\(33\) 0 0
\(34\) −4.73628 + 0.402867i −0.812265 + 0.0690912i
\(35\) 1.81970i 0.307585i
\(36\) 0 0
\(37\) 12.0300i 1.97773i 0.148826 + 0.988863i \(0.452451\pi\)
−0.148826 + 0.988863i \(0.547549\pi\)
\(38\) 0.299998 + 3.52690i 0.0486661 + 0.572138i
\(39\) 0 0
\(40\) −0.712273 2.73727i −0.112620 0.432801i
\(41\) 2.07086i 0.323415i −0.986839 0.161707i \(-0.948300\pi\)
0.986839 0.161707i \(-0.0517000\pi\)
\(42\) 0 0
\(43\) 1.84704 0.281671 0.140835 0.990033i \(-0.455021\pi\)
0.140835 + 0.990033i \(0.455021\pi\)
\(44\) 0.613961 + 3.58288i 0.0925582 + 0.540139i
\(45\) 0 0
\(46\) 0.932034 + 10.9574i 0.137421 + 1.61558i
\(47\) −5.65012 −0.824155 −0.412077 0.911149i \(-0.635197\pi\)
−0.412077 + 0.911149i \(0.635197\pi\)
\(48\) 0 0
\(49\) 3.68869 0.526956
\(50\) −0.119860 1.40913i −0.0169508 0.199280i
\(51\) 0 0
\(52\) −0.550153 3.21051i −0.0762925 0.445218i
\(53\) −0.710648 −0.0976150 −0.0488075 0.998808i \(-0.515542\pi\)
−0.0488075 + 0.998808i \(0.515542\pi\)
\(54\) 0 0
\(55\) 1.81755i 0.245079i
\(56\) 4.98102 1.29612i 0.665616 0.173202i
\(57\) 0 0
\(58\) 0.827877 + 9.73286i 0.108706 + 1.27799i
\(59\) 2.31644i 0.301574i 0.988566 + 0.150787i \(0.0481808\pi\)
−0.988566 + 0.150787i \(0.951819\pi\)
\(60\) 0 0
\(61\) 4.93340i 0.631657i 0.948816 + 0.315829i \(0.102282\pi\)
−0.948816 + 0.315829i \(0.897718\pi\)
\(62\) 6.22542 0.529534i 0.790630 0.0672509i
\(63\) 0 0
\(64\) −6.98533 + 3.89937i −0.873167 + 0.487422i
\(65\) 1.62865i 0.202010i
\(66\) 0 0
\(67\) −7.15709 −0.874378 −0.437189 0.899370i \(-0.644026\pi\)
−0.437189 + 0.899370i \(0.644026\pi\)
\(68\) 1.13538 + 6.62572i 0.137685 + 0.803486i
\(69\) 0 0
\(70\) 2.56418 0.218109i 0.306479 0.0260691i
\(71\) −0.231207 −0.0274393 −0.0137196 0.999906i \(-0.504367\pi\)
−0.0137196 + 0.999906i \(0.504367\pi\)
\(72\) 0 0
\(73\) −12.0660 −1.41221 −0.706107 0.708105i \(-0.749550\pi\)
−0.706107 + 0.708105i \(0.749550\pi\)
\(74\) 16.9518 1.44192i 1.97061 0.167620i
\(75\) 0 0
\(76\) 4.93388 0.845469i 0.565955 0.0969819i
\(77\) −3.30740 −0.376913
\(78\) 0 0
\(79\) 8.07178i 0.908146i −0.890964 0.454073i \(-0.849970\pi\)
0.890964 0.454073i \(-0.150030\pi\)
\(80\) −3.77179 + 1.33177i −0.421699 + 0.148897i
\(81\) 0 0
\(82\) −2.91811 + 0.248214i −0.322251 + 0.0274107i
\(83\) 10.7382i 1.17867i 0.807890 + 0.589333i \(0.200609\pi\)
−0.807890 + 0.589333i \(0.799391\pi\)
\(84\) 0 0
\(85\) 3.36115i 0.364568i
\(86\) −0.221386 2.60271i −0.0238727 0.280657i
\(87\) 0 0
\(88\) 4.97514 1.29459i 0.530351 0.138004i
\(89\) 9.05322i 0.959640i 0.877367 + 0.479820i \(0.159298\pi\)
−0.877367 + 0.479820i \(0.840702\pi\)
\(90\) 0 0
\(91\) 2.96366 0.310676
\(92\) 15.3286 2.62671i 1.59812 0.273853i
\(93\) 0 0
\(94\) 0.677224 + 7.96172i 0.0698503 + 0.821189i
\(95\) 2.50290 0.256792
\(96\) 0 0
\(97\) −12.6810 −1.28756 −0.643779 0.765211i \(-0.722634\pi\)
−0.643779 + 0.765211i \(0.722634\pi\)
\(98\) −0.442127 5.19783i −0.0446616 0.525060i
\(99\) 0 0
\(100\) −1.97127 + 0.337796i −0.197127 + 0.0337796i
\(101\) −8.46064 −0.841865 −0.420932 0.907092i \(-0.638297\pi\)
−0.420932 + 0.907092i \(0.638297\pi\)
\(102\) 0 0
\(103\) 10.8866i 1.07269i −0.843999 0.536345i \(-0.819805\pi\)
0.843999 0.536345i \(-0.180195\pi\)
\(104\) −4.45807 + 1.16005i −0.437150 + 0.113752i
\(105\) 0 0
\(106\) 0.0851784 + 1.00139i 0.00827325 + 0.0972638i
\(107\) 16.8706i 1.63095i −0.578796 0.815473i \(-0.696477\pi\)
0.578796 0.815473i \(-0.303523\pi\)
\(108\) 0 0
\(109\) 14.1044i 1.35096i 0.737379 + 0.675479i \(0.236063\pi\)
−0.737379 + 0.675479i \(0.763937\pi\)
\(110\) 2.56116 0.217852i 0.244197 0.0207714i
\(111\) 0 0
\(112\) −2.42342 6.86352i −0.228992 0.648542i
\(113\) 0.973596i 0.0915882i 0.998951 + 0.0457941i \(0.0145818\pi\)
−0.998951 + 0.0457941i \(0.985418\pi\)
\(114\) 0 0
\(115\) 7.77601 0.725117
\(116\) 13.6156 2.33316i 1.26418 0.216629i
\(117\) 0 0
\(118\) 3.26415 0.277648i 0.300489 0.0255596i
\(119\) −6.11628 −0.560678
\(120\) 0 0
\(121\) 7.69651 0.699682
\(122\) 6.95178 0.591318i 0.629385 0.0535354i
\(123\) 0 0
\(124\) −1.49236 8.70893i −0.134018 0.782085i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.73403i 0.597549i −0.954324 0.298774i \(-0.903422\pi\)
0.954324 0.298774i \(-0.0965778\pi\)
\(128\) 6.33197 + 9.37583i 0.559672 + 0.828714i
\(129\) 0 0
\(130\) −2.29498 + 0.195211i −0.201283 + 0.0171211i
\(131\) 9.61835i 0.840359i −0.907441 0.420180i \(-0.861967\pi\)
0.907441 0.420180i \(-0.138033\pi\)
\(132\) 0 0
\(133\) 4.55452i 0.394927i
\(134\) 0.857850 + 10.0852i 0.0741069 + 0.871231i
\(135\) 0 0
\(136\) 9.20038 2.39405i 0.788926 0.205288i
\(137\) 12.6763i 1.08301i −0.840698 0.541504i \(-0.817855\pi\)
0.840698 0.541504i \(-0.182145\pi\)
\(138\) 0 0
\(139\) 14.5112 1.23082 0.615412 0.788205i \(-0.288989\pi\)
0.615412 + 0.788205i \(0.288989\pi\)
\(140\) −0.614687 3.58711i −0.0519505 0.303166i
\(141\) 0 0
\(142\) 0.0277125 + 0.325800i 0.00232558 + 0.0273405i
\(143\) 2.96016 0.247541
\(144\) 0 0
\(145\) 6.90702 0.573597
\(146\) 1.44623 + 17.0025i 0.119691 + 1.40713i
\(147\) 0 0
\(148\) −4.06370 23.7144i −0.334034 1.94931i
\(149\) −1.62527 −0.133147 −0.0665737 0.997782i \(-0.521207\pi\)
−0.0665737 + 0.997782i \(0.521207\pi\)
\(150\) 0 0
\(151\) 21.7458i 1.76965i −0.465926 0.884824i \(-0.654279\pi\)
0.465926 0.884824i \(-0.345721\pi\)
\(152\) −1.78275 6.85112i −0.144600 0.555699i
\(153\) 0 0
\(154\) 0.396425 + 4.66054i 0.0319448 + 0.375557i
\(155\) 4.41794i 0.354857i
\(156\) 0 0
\(157\) 15.7680i 1.25842i −0.777235 0.629211i \(-0.783378\pi\)
0.777235 0.629211i \(-0.216622\pi\)
\(158\) −11.3742 + 0.967485i −0.904879 + 0.0769690i
\(159\) 0 0
\(160\) 2.32872 + 5.15529i 0.184101 + 0.407562i
\(161\) 14.1500i 1.11518i
\(162\) 0 0
\(163\) −10.1506 −0.795053 −0.397527 0.917591i \(-0.630131\pi\)
−0.397527 + 0.917591i \(0.630131\pi\)
\(164\) 0.699529 + 4.08223i 0.0546241 + 0.318768i
\(165\) 0 0
\(166\) 15.1314 1.28708i 1.17442 0.0998965i
\(167\) 7.58284 0.586778 0.293389 0.955993i \(-0.405217\pi\)
0.293389 + 0.955993i \(0.405217\pi\)
\(168\) 0 0
\(169\) 10.3475 0.795960
\(170\) 4.73628 0.402867i 0.363256 0.0308985i
\(171\) 0 0
\(172\) −3.64100 + 0.623922i −0.277624 + 0.0475736i
\(173\) −8.03931 −0.611218 −0.305609 0.952157i \(-0.598860\pi\)
−0.305609 + 0.952157i \(0.598860\pi\)
\(174\) 0 0
\(175\) 1.81970i 0.137556i
\(176\) −2.42056 6.85542i −0.182457 0.516747i
\(177\) 0 0
\(178\) 12.7571 1.08512i 0.956187 0.0813332i
\(179\) 14.5342i 1.08633i 0.839625 + 0.543167i \(0.182775\pi\)
−0.839625 + 0.543167i \(0.817225\pi\)
\(180\) 0 0
\(181\) 17.6839i 1.31443i 0.753701 + 0.657217i \(0.228267\pi\)
−0.753701 + 0.657217i \(0.771733\pi\)
\(182\) −0.355225 4.17617i −0.0263310 0.309558i
\(183\) 0 0
\(184\) −5.53864 21.2851i −0.408314 1.56916i
\(185\) 12.0300i 0.884466i
\(186\) 0 0
\(187\) −6.10906 −0.446738
\(188\) 11.1379 1.90859i 0.812314 0.139198i
\(189\) 0 0
\(190\) −0.299998 3.52690i −0.0217641 0.255868i
\(191\) −19.5451 −1.41423 −0.707115 0.707098i \(-0.750004\pi\)
−0.707115 + 0.707098i \(0.750004\pi\)
\(192\) 0 0
\(193\) −15.0295 −1.08185 −0.540923 0.841072i \(-0.681925\pi\)
−0.540923 + 0.841072i \(0.681925\pi\)
\(194\) 1.51994 + 17.8691i 0.109126 + 1.28293i
\(195\) 0 0
\(196\) −7.27140 + 1.24603i −0.519386 + 0.0890018i
\(197\) 16.9578 1.20820 0.604098 0.796910i \(-0.293534\pi\)
0.604098 + 0.796910i \(0.293534\pi\)
\(198\) 0 0
\(199\) 10.7884i 0.764769i −0.924003 0.382385i \(-0.875103\pi\)
0.924003 0.382385i \(-0.124897\pi\)
\(200\) 0.712273 + 2.73727i 0.0503653 + 0.193554i
\(201\) 0 0
\(202\) 1.01409 + 11.9221i 0.0713513 + 0.838836i
\(203\) 12.5687i 0.882150i
\(204\) 0 0
\(205\) 2.07086i 0.144635i
\(206\) −15.3406 + 1.30487i −1.06883 + 0.0909146i
\(207\) 0 0
\(208\) 2.16900 + 6.14294i 0.150393 + 0.425936i
\(209\) 4.54915i 0.314671i
\(210\) 0 0
\(211\) 4.74610 0.326735 0.163368 0.986565i \(-0.447764\pi\)
0.163368 + 0.986565i \(0.447764\pi\)
\(212\) 1.40088 0.240054i 0.0962126 0.0164870i
\(213\) 0 0
\(214\) −23.7728 + 2.02212i −1.62508 + 0.138229i
\(215\) −1.84704 −0.125967
\(216\) 0 0
\(217\) 8.03931 0.545744
\(218\) 19.8749 1.69056i 1.34610 0.114499i
\(219\) 0 0
\(220\) −0.613961 3.58288i −0.0413933 0.241558i
\(221\) 5.47415 0.368231
\(222\) 0 0
\(223\) 8.77733i 0.587774i −0.955840 0.293887i \(-0.905051\pi\)
0.955840 0.293887i \(-0.0949489\pi\)
\(224\) −9.38109 + 4.23757i −0.626800 + 0.283135i
\(225\) 0 0
\(226\) 1.37192 0.116695i 0.0912587 0.00776246i
\(227\) 17.1165i 1.13606i −0.823007 0.568031i \(-0.807705\pi\)
0.823007 0.568031i \(-0.192295\pi\)
\(228\) 0 0
\(229\) 7.89367i 0.521628i −0.965389 0.260814i \(-0.916009\pi\)
0.965389 0.260814i \(-0.0839910\pi\)
\(230\) −0.932034 10.9574i −0.0614565 0.722508i
\(231\) 0 0
\(232\) −4.91969 18.9064i −0.322993 1.24127i
\(233\) 12.7180i 0.833187i −0.909093 0.416593i \(-0.863224\pi\)
0.909093 0.416593i \(-0.136776\pi\)
\(234\) 0 0
\(235\) 5.65012 0.368573
\(236\) −0.782483 4.56631i −0.0509353 0.297242i
\(237\) 0 0
\(238\) 0.733098 + 8.61860i 0.0475197 + 0.558661i
\(239\) 7.68918 0.497372 0.248686 0.968584i \(-0.420001\pi\)
0.248686 + 0.968584i \(0.420001\pi\)
\(240\) 0 0
\(241\) −9.08135 −0.584981 −0.292491 0.956268i \(-0.594484\pi\)
−0.292491 + 0.956268i \(0.594484\pi\)
\(242\) −0.922505 10.8453i −0.0593008 0.697165i
\(243\) 0 0
\(244\) −1.66648 9.72505i −0.106686 0.622583i
\(245\) −3.68869 −0.235662
\(246\) 0 0
\(247\) 4.07636i 0.259372i
\(248\) −12.0931 + 3.14678i −0.767912 + 0.199820i
\(249\) 0 0
\(250\) 0.119860 + 1.40913i 0.00758062 + 0.0891209i
\(251\) 2.26783i 0.143144i −0.997435 0.0715722i \(-0.977198\pi\)
0.997435 0.0715722i \(-0.0228016\pi\)
\(252\) 0 0
\(253\) 14.1333i 0.888553i
\(254\) −9.48909 + 0.807142i −0.595398 + 0.0506446i
\(255\) 0 0
\(256\) 12.4528 10.0463i 0.778298 0.627895i
\(257\) 16.6994i 1.04168i 0.853655 + 0.520839i \(0.174381\pi\)
−0.853655 + 0.520839i \(0.825619\pi\)
\(258\) 0 0
\(259\) 21.8911 1.36024
\(260\) 0.550153 + 3.21051i 0.0341190 + 0.199108i
\(261\) 0 0
\(262\) −13.5535 + 1.15286i −0.837335 + 0.0712237i
\(263\) −26.8597 −1.65624 −0.828121 0.560549i \(-0.810590\pi\)
−0.828121 + 0.560549i \(0.810590\pi\)
\(264\) 0 0
\(265\) 0.710648 0.0436548
\(266\) 6.41789 0.545906i 0.393506 0.0334716i
\(267\) 0 0
\(268\) 14.1085 2.41764i 0.861816 0.147681i
\(269\) −22.0431 −1.34399 −0.671996 0.740555i \(-0.734563\pi\)
−0.671996 + 0.740555i \(0.734563\pi\)
\(270\) 0 0
\(271\) 20.8366i 1.26574i −0.774260 0.632868i \(-0.781878\pi\)
0.774260 0.632868i \(-0.218122\pi\)
\(272\) −4.47628 12.6775i −0.271414 0.768688i
\(273\) 0 0
\(274\) −17.8625 + 1.51938i −1.07911 + 0.0917892i
\(275\) 1.81755i 0.109602i
\(276\) 0 0
\(277\) 6.94364i 0.417203i 0.978001 + 0.208601i \(0.0668912\pi\)
−0.978001 + 0.208601i \(0.933109\pi\)
\(278\) −1.73932 20.4481i −0.104317 1.22640i
\(279\) 0 0
\(280\) −4.98102 + 1.29612i −0.297673 + 0.0774582i
\(281\) 23.6671i 1.41186i 0.708280 + 0.705932i \(0.249471\pi\)
−0.708280 + 0.705932i \(0.750529\pi\)
\(282\) 0 0
\(283\) −25.8883 −1.53890 −0.769450 0.638707i \(-0.779469\pi\)
−0.769450 + 0.638707i \(0.779469\pi\)
\(284\) 0.455771 0.0781009i 0.0270451 0.00463443i
\(285\) 0 0
\(286\) −0.354806 4.17124i −0.0209801 0.246651i
\(287\) −3.76835 −0.222439
\(288\) 0 0
\(289\) 5.70270 0.335453
\(290\) −0.827877 9.73286i −0.0486146 0.571533i
\(291\) 0 0
\(292\) 23.7852 4.07584i 1.39193 0.238520i
\(293\) 25.7105 1.50202 0.751011 0.660290i \(-0.229567\pi\)
0.751011 + 0.660290i \(0.229567\pi\)
\(294\) 0 0
\(295\) 2.31644i 0.134868i
\(296\) −32.9295 + 8.56867i −1.91399 + 0.498044i
\(297\) 0 0
\(298\) 0.194805 + 2.29021i 0.0112848 + 0.132668i
\(299\) 12.6644i 0.732404i
\(300\) 0 0
\(301\) 3.36105i 0.193728i
\(302\) −30.6425 + 2.60645i −1.76328 + 0.149985i
\(303\) 0 0
\(304\) −9.44040 + 3.33329i −0.541444 + 0.191177i
\(305\) 4.93340i 0.282486i
\(306\) 0 0
\(307\) 11.7270 0.669293 0.334647 0.942344i \(-0.391383\pi\)
0.334647 + 0.942344i \(0.391383\pi\)
\(308\) 6.51976 1.11723i 0.371498 0.0636598i
\(309\) 0 0
\(310\) −6.22542 + 0.529534i −0.353580 + 0.0300755i
\(311\) 21.3624 1.21135 0.605675 0.795712i \(-0.292903\pi\)
0.605675 + 0.795712i \(0.292903\pi\)
\(312\) 0 0
\(313\) 22.1199 1.25029 0.625146 0.780508i \(-0.285039\pi\)
0.625146 + 0.780508i \(0.285039\pi\)
\(314\) −22.2191 + 1.88995i −1.25389 + 0.106656i
\(315\) 0 0
\(316\) 2.72661 + 15.9116i 0.153384 + 0.895100i
\(317\) −27.5433 −1.54699 −0.773494 0.633804i \(-0.781493\pi\)
−0.773494 + 0.633804i \(0.781493\pi\)
\(318\) 0 0
\(319\) 12.5539i 0.702882i
\(320\) 6.98533 3.89937i 0.390492 0.217982i
\(321\) 0 0
\(322\) 19.9391 1.69602i 1.11116 0.0945156i
\(323\) 8.41261i 0.468090i
\(324\) 0 0
\(325\) 1.62865i 0.0903415i
\(326\) 1.21665 + 14.3034i 0.0673839 + 0.792192i
\(327\) 0 0
\(328\) 5.66852 1.47502i 0.312992 0.0814444i
\(329\) 10.2815i 0.566838i
\(330\) 0 0
\(331\) −23.5166 −1.29259 −0.646294 0.763089i \(-0.723682\pi\)
−0.646294 + 0.763089i \(0.723682\pi\)
\(332\) −3.62730 21.1678i −0.199074 1.16173i
\(333\) 0 0
\(334\) −0.908880 10.6852i −0.0497317 0.584666i
\(335\) 7.15709 0.391034
\(336\) 0 0
\(337\) 1.93972 0.105663 0.0528315 0.998603i \(-0.483175\pi\)
0.0528315 + 0.998603i \(0.483175\pi\)
\(338\) −1.24025 14.5809i −0.0674608 0.793096i
\(339\) 0 0
\(340\) −1.13538 6.62572i −0.0615747 0.359330i
\(341\) 8.02982 0.434839
\(342\) 0 0
\(343\) 19.4502i 1.05021i
\(344\) 1.31559 + 5.05585i 0.0709321 + 0.272593i
\(345\) 0 0
\(346\) 0.963593 + 11.3284i 0.0518031 + 0.609019i
\(347\) 2.36962i 0.127208i −0.997975 0.0636041i \(-0.979741\pi\)
0.997975 0.0636041i \(-0.0202595\pi\)
\(348\) 0 0
\(349\) 19.5697i 1.04754i 0.851859 + 0.523771i \(0.175475\pi\)
−0.851859 + 0.523771i \(0.824525\pi\)
\(350\) −2.56418 + 0.218109i −0.137061 + 0.0116584i
\(351\) 0 0
\(352\) −9.37001 + 4.23257i −0.499423 + 0.225597i
\(353\) 34.3742i 1.82955i −0.403961 0.914776i \(-0.632367\pi\)
0.403961 0.914776i \(-0.367633\pi\)
\(354\) 0 0
\(355\) 0.231207 0.0122712
\(356\) −3.05814 17.8463i −0.162081 0.945853i
\(357\) 0 0
\(358\) 20.4804 1.74207i 1.08242 0.0920710i
\(359\) 18.0416 0.952197 0.476098 0.879392i \(-0.342051\pi\)
0.476098 + 0.879392i \(0.342051\pi\)
\(360\) 0 0
\(361\) −12.7355 −0.670289
\(362\) 24.9188 2.11960i 1.30970 0.111403i
\(363\) 0 0
\(364\) −5.84217 + 1.00111i −0.306213 + 0.0524726i
\(365\) 12.0660 0.631562
\(366\) 0 0
\(367\) 31.7530i 1.65749i −0.559624 0.828747i \(-0.689054\pi\)
0.559624 0.828747i \(-0.310946\pi\)
\(368\) −29.3295 + 10.3559i −1.52890 + 0.539837i
\(369\) 0 0
\(370\) −16.9518 + 1.44192i −0.881284 + 0.0749620i
\(371\) 1.29317i 0.0671378i
\(372\) 0 0
\(373\) 25.1719i 1.30335i −0.758498 0.651675i \(-0.774067\pi\)
0.758498 0.651675i \(-0.225933\pi\)
\(374\) 0.732232 + 8.60842i 0.0378628 + 0.445131i
\(375\) 0 0
\(376\) −4.02443 15.4659i −0.207544 0.797594i
\(377\) 11.2492i 0.579361i
\(378\) 0 0
\(379\) 6.65638 0.341915 0.170958 0.985278i \(-0.445314\pi\)
0.170958 + 0.985278i \(0.445314\pi\)
\(380\) −4.93388 + 0.845469i −0.253103 + 0.0433716i
\(381\) 0 0
\(382\) 2.34267 + 27.5414i 0.119862 + 1.40914i
\(383\) 27.3801 1.39906 0.699529 0.714604i \(-0.253393\pi\)
0.699529 + 0.714604i \(0.253393\pi\)
\(384\) 0 0
\(385\) 3.30740 0.168561
\(386\) 1.80144 + 21.1784i 0.0916908 + 1.07795i
\(387\) 0 0
\(388\) 24.9976 4.28358i 1.26906 0.217466i
\(389\) 16.6119 0.842255 0.421128 0.907001i \(-0.361634\pi\)
0.421128 + 0.907001i \(0.361634\pi\)
\(390\) 0 0
\(391\) 26.1363i 1.32177i
\(392\) 2.62736 + 10.0970i 0.132702 + 0.509974i
\(393\) 0 0
\(394\) −2.03257 23.8957i −0.102399 1.20385i
\(395\) 8.07178i 0.406135i
\(396\) 0 0
\(397\) 14.6342i 0.734471i 0.930128 + 0.367235i \(0.119696\pi\)
−0.930128 + 0.367235i \(0.880304\pi\)
\(398\) −15.2022 + 1.29310i −0.762018 + 0.0648172i
\(399\) 0 0
\(400\) 3.77179 1.33177i 0.188589 0.0665886i
\(401\) 5.99427i 0.299339i 0.988736 + 0.149670i \(0.0478210\pi\)
−0.988736 + 0.149670i \(0.952179\pi\)
\(402\) 0 0
\(403\) −7.19529 −0.358423
\(404\) 16.6782 2.85797i 0.829770 0.142189i
\(405\) 0 0
\(406\) 17.7109 1.50649i 0.878976 0.0747657i
\(407\) 21.8652 1.08382
\(408\) 0 0
\(409\) 15.7240 0.777501 0.388751 0.921343i \(-0.372907\pi\)
0.388751 + 0.921343i \(0.372907\pi\)
\(410\) 2.91811 0.248214i 0.144115 0.0122584i
\(411\) 0 0
\(412\) 3.67745 + 21.4604i 0.181175 + 1.05728i
\(413\) 4.21522 0.207417
\(414\) 0 0
\(415\) 10.7382i 0.527115i
\(416\) 8.39620 3.79268i 0.411657 0.185952i
\(417\) 0 0
\(418\) 6.41032 0.545261i 0.313539 0.0266696i
\(419\) 34.2549i 1.67346i 0.547615 + 0.836730i \(0.315536\pi\)
−0.547615 + 0.836730i \(0.684464\pi\)
\(420\) 0 0
\(421\) 9.72697i 0.474064i −0.971502 0.237032i \(-0.923825\pi\)
0.971502 0.237032i \(-0.0761746\pi\)
\(422\) −0.568868 6.68785i −0.0276921 0.325559i
\(423\) 0 0
\(424\) −0.506175 1.94524i −0.0245820 0.0944691i
\(425\) 3.36115i 0.163040i
\(426\) 0 0
\(427\) 8.97731 0.434442
\(428\) 5.69883 + 33.2565i 0.275463 + 1.60751i
\(429\) 0 0
\(430\) 0.221386 + 2.60271i 0.0106762 + 0.125514i
\(431\) 2.31013 0.111275 0.0556375 0.998451i \(-0.482281\pi\)
0.0556375 + 0.998451i \(0.482281\pi\)
\(432\) 0 0
\(433\) −30.5094 −1.46619 −0.733093 0.680128i \(-0.761924\pi\)
−0.733093 + 0.680128i \(0.761924\pi\)
\(434\) −0.963593 11.3284i −0.0462540 0.543781i
\(435\) 0 0
\(436\) −4.76442 27.8036i −0.228174 1.33155i
\(437\) 19.4626 0.931021
\(438\) 0 0
\(439\) 6.33025i 0.302126i 0.988524 + 0.151063i \(0.0482697\pi\)
−0.988524 + 0.151063i \(0.951730\pi\)
\(440\) −4.97514 + 1.29459i −0.237180 + 0.0617173i
\(441\) 0 0
\(442\) −0.656132 7.71376i −0.0312090 0.366906i
\(443\) 36.4003i 1.72943i 0.502261 + 0.864716i \(0.332502\pi\)
−0.502261 + 0.864716i \(0.667498\pi\)
\(444\) 0 0
\(445\) 9.05322i 0.429164i
\(446\) −12.3684 + 1.05205i −0.585659 + 0.0498161i
\(447\) 0 0
\(448\) 7.09569 + 12.7112i 0.335240 + 0.600548i
\(449\) 7.90597i 0.373106i −0.982445 0.186553i \(-0.940268\pi\)
0.982445 0.186553i \(-0.0597316\pi\)
\(450\) 0 0
\(451\) −3.76390 −0.177235
\(452\) −0.328877 1.91922i −0.0154691 0.0902724i
\(453\) 0 0
\(454\) −24.1193 + 2.05159i −1.13197 + 0.0962857i
\(455\) −2.96366 −0.138939
\(456\) 0 0
\(457\) −15.1551 −0.708927 −0.354463 0.935070i \(-0.615336\pi\)
−0.354463 + 0.935070i \(0.615336\pi\)
\(458\) −11.1232 + 0.946136i −0.519751 + 0.0442100i
\(459\) 0 0
\(460\) −15.3286 + 2.62671i −0.714700 + 0.122471i
\(461\) −1.15336 −0.0537174 −0.0268587 0.999639i \(-0.508550\pi\)
−0.0268587 + 0.999639i \(0.508550\pi\)
\(462\) 0 0
\(463\) 35.2580i 1.63858i 0.573381 + 0.819289i \(0.305632\pi\)
−0.573381 + 0.819289i \(0.694368\pi\)
\(464\) −26.0518 + 9.19858i −1.20943 + 0.427033i
\(465\) 0 0
\(466\) −17.9213 + 1.52439i −0.830189 + 0.0706158i
\(467\) 13.3689i 0.618637i −0.950958 0.309319i \(-0.899899\pi\)
0.950958 0.309319i \(-0.100101\pi\)
\(468\) 0 0
\(469\) 13.0237i 0.601381i
\(470\) −0.677224 7.96172i −0.0312380 0.367247i
\(471\) 0 0
\(472\) −6.34072 + 1.64993i −0.291855 + 0.0759444i
\(473\) 3.35708i 0.154359i
\(474\) 0 0
\(475\) −2.50290 −0.114841
\(476\) 12.0568 2.06605i 0.552623 0.0946974i
\(477\) 0 0
\(478\) −0.921627 10.8350i −0.0421542 0.495582i
\(479\) −19.6701 −0.898750 −0.449375 0.893343i \(-0.648353\pi\)
−0.449375 + 0.893343i \(0.648353\pi\)
\(480\) 0 0
\(481\) −19.5928 −0.893354
\(482\) 1.08849 + 12.7968i 0.0495795 + 0.582877i
\(483\) 0 0
\(484\) −15.1719 + 2.59985i −0.689631 + 0.118175i
\(485\) 12.6810 0.575814
\(486\) 0 0
\(487\) 4.76228i 0.215800i 0.994162 + 0.107900i \(0.0344126\pi\)
−0.994162 + 0.107900i \(0.965587\pi\)
\(488\) −13.5041 + 3.51393i −0.611301 + 0.159068i
\(489\) 0 0
\(490\) 0.442127 + 5.19783i 0.0199733 + 0.234814i
\(491\) 41.3658i 1.86681i −0.358821 0.933407i \(-0.616821\pi\)
0.358821 0.933407i \(-0.383179\pi\)
\(492\) 0 0
\(493\) 23.2155i 1.04557i
\(494\) −5.74410 + 0.488593i −0.258439 + 0.0219828i
\(495\) 0 0
\(496\) 5.88368 + 16.6635i 0.264185 + 0.748214i
\(497\) 0.420728i 0.0188722i
\(498\) 0 0
\(499\) 22.7756 1.01957 0.509787 0.860301i \(-0.329724\pi\)
0.509787 + 0.860301i \(0.329724\pi\)
\(500\) 1.97127 0.337796i 0.0881577 0.0151067i
\(501\) 0 0
\(502\) −3.19566 + 0.271823i −0.142629 + 0.0121320i
\(503\) 27.4986 1.22610 0.613052 0.790043i \(-0.289942\pi\)
0.613052 + 0.790043i \(0.289942\pi\)
\(504\) 0 0
\(505\) 8.46064 0.376493
\(506\) 19.9156 1.69402i 0.885356 0.0753084i
\(507\) 0 0
\(508\) 2.27473 + 13.2746i 0.100925 + 0.588964i
\(509\) 27.5160 1.21963 0.609813 0.792545i \(-0.291244\pi\)
0.609813 + 0.792545i \(0.291244\pi\)
\(510\) 0 0
\(511\) 21.9564i 0.971296i
\(512\) −15.6491 16.3434i −0.691600 0.722281i
\(513\) 0 0
\(514\) 23.5315 2.00159i 1.03793 0.0882862i
\(515\) 10.8866i 0.479721i
\(516\) 0 0
\(517\) 10.2694i 0.451647i
\(518\) −2.62387 30.8472i −0.115286 1.35535i
\(519\) 0 0
\(520\) 4.45807 1.16005i 0.195499 0.0508714i
\(521\) 27.2736i 1.19488i 0.801914 + 0.597439i \(0.203815\pi\)
−0.801914 + 0.597439i \(0.796185\pi\)
\(522\) 0 0
\(523\) −18.6666 −0.816231 −0.408116 0.912930i \(-0.633814\pi\)
−0.408116 + 0.912930i \(0.633814\pi\)
\(524\) 3.24904 + 18.9603i 0.141935 + 0.828286i
\(525\) 0 0
\(526\) 3.21941 + 37.8487i 0.140373 + 1.65028i
\(527\) 14.8493 0.646847
\(528\) 0 0
\(529\) 37.4664 1.62897
\(530\) −0.0851784 1.00139i −0.00369991 0.0434977i
\(531\) 0 0
\(532\) −1.53850 8.97818i −0.0667024 0.389253i
\(533\) 3.37272 0.146089
\(534\) 0 0
\(535\) 16.8706i 0.729381i
\(536\) −5.09780 19.5909i −0.220191 0.846198i
\(537\) 0 0
\(538\) 2.64209 + 31.0615i 0.113909 + 1.33916i
\(539\) 6.70439i 0.288779i
\(540\) 0 0
\(541\) 12.4926i 0.537099i −0.963266 0.268550i \(-0.913456\pi\)
0.963266 0.268550i \(-0.0865443\pi\)
\(542\) −29.3614 + 2.49748i −1.26118 + 0.107276i
\(543\) 0 0
\(544\) −17.3277 + 7.82717i −0.742919 + 0.335587i
\(545\) 14.1044i 0.604167i
\(546\) 0 0
\(547\) −26.4085 −1.12915 −0.564574 0.825383i \(-0.690959\pi\)
−0.564574 + 0.825383i \(0.690959\pi\)
\(548\) 4.28200 + 24.9883i 0.182918 + 1.06745i
\(549\) 0 0
\(550\) −2.56116 + 0.217852i −0.109208 + 0.00928924i
\(551\) 17.2876 0.736475
\(552\) 0 0
\(553\) −14.6882 −0.624606
\(554\) 9.78446 0.832266i 0.415702 0.0353596i
\(555\) 0 0
\(556\) −28.6055 + 4.90183i −1.21314 + 0.207884i
\(557\) 18.2096 0.771568 0.385784 0.922589i \(-0.373931\pi\)
0.385784 + 0.922589i \(0.373931\pi\)
\(558\) 0 0
\(559\) 3.00819i 0.127233i
\(560\) 2.42342 + 6.86352i 0.102408 + 0.290037i
\(561\) 0 0
\(562\) 33.3500 2.83675i 1.40678 0.119661i
\(563\) 16.5404i 0.697096i 0.937291 + 0.348548i \(0.113325\pi\)
−0.937291 + 0.348548i \(0.886675\pi\)
\(564\) 0 0
\(565\) 0.973596i 0.0409595i
\(566\) 3.10297 + 36.4798i 0.130428 + 1.53336i
\(567\) 0 0
\(568\) −0.164683 0.632878i −0.00690993 0.0265550i
\(569\) 45.6110i 1.91211i 0.293186 + 0.956056i \(0.405285\pi\)
−0.293186 + 0.956056i \(0.594715\pi\)
\(570\) 0 0
\(571\) −11.5936 −0.485177 −0.242589 0.970129i \(-0.577997\pi\)
−0.242589 + 0.970129i \(0.577997\pi\)
\(572\) −5.83527 + 0.999931i −0.243985 + 0.0418092i
\(573\) 0 0
\(574\) 0.451675 + 5.31008i 0.0188525 + 0.221638i
\(575\) −7.77601 −0.324282
\(576\) 0 0
\(577\) 23.5612 0.980867 0.490434 0.871479i \(-0.336838\pi\)
0.490434 + 0.871479i \(0.336838\pi\)
\(578\) −0.683526 8.03581i −0.0284309 0.334246i
\(579\) 0 0
\(580\) −13.6156 + 2.33316i −0.565356 + 0.0968793i
\(581\) 19.5402 0.810665
\(582\) 0 0
\(583\) 1.29164i 0.0534942i
\(584\) −8.59427 33.0279i −0.355633 1.36670i
\(585\) 0 0
\(586\) −3.08166 36.2293i −0.127302 1.49662i
\(587\) 9.54307i 0.393885i −0.980415 0.196942i \(-0.936899\pi\)
0.980415 0.196942i \(-0.0631012\pi\)
\(588\) 0 0
\(589\) 11.0576i 0.455622i
\(590\) −3.26415 + 0.277648i −0.134383 + 0.0114306i
\(591\) 0 0
\(592\) 16.0213 + 45.3748i 0.658470 + 1.86489i
\(593\) 13.3233i 0.547121i −0.961855 0.273560i \(-0.911799\pi\)
0.961855 0.273560i \(-0.0882014\pi\)
\(594\) 0 0
\(595\) 6.11628 0.250743
\(596\) 3.20384 0.549010i 0.131235 0.0224883i
\(597\) 0 0
\(598\) −17.8458 + 1.51796i −0.729768 + 0.0620741i
\(599\) −16.0049 −0.653942 −0.326971 0.945034i \(-0.606028\pi\)
−0.326971 + 0.945034i \(0.606028\pi\)
\(600\) 0 0
\(601\) −28.7471 −1.17262 −0.586309 0.810087i \(-0.699420\pi\)
−0.586309 + 0.810087i \(0.699420\pi\)
\(602\) −4.73614 + 0.402856i −0.193031 + 0.0164192i
\(603\) 0 0
\(604\) 7.34564 + 42.8668i 0.298890 + 1.74422i
\(605\) −7.69651 −0.312908
\(606\) 0 0
\(607\) 41.1332i 1.66955i 0.550593 + 0.834774i \(0.314401\pi\)
−0.550593 + 0.834774i \(0.685599\pi\)
\(608\) 5.82855 + 12.9032i 0.236379 + 0.523293i
\(609\) 0 0
\(610\) −6.95178 + 0.591318i −0.281469 + 0.0239418i
\(611\) 9.20209i 0.372277i
\(612\) 0 0
\(613\) 1.14958i 0.0464310i −0.999730 0.0232155i \(-0.992610\pi\)
0.999730 0.0232155i \(-0.00739038\pi\)
\(614\) −1.40560 16.5248i −0.0567252 0.666885i
\(615\) 0 0
\(616\) −2.35577 9.05325i −0.0949167 0.364766i
\(617\) 10.2790i 0.413817i 0.978360 + 0.206909i \(0.0663403\pi\)
−0.978360 + 0.206909i \(0.933660\pi\)
\(618\) 0 0
\(619\) 33.9667 1.36524 0.682618 0.730775i \(-0.260841\pi\)
0.682618 + 0.730775i \(0.260841\pi\)
\(620\) 1.49236 + 8.70893i 0.0599346 + 0.349759i
\(621\) 0 0
\(622\) −2.56050 30.1023i −0.102667 1.20699i
\(623\) 16.4741 0.660023
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −2.65130 31.1697i −0.105967 1.24579i
\(627\) 0 0
\(628\) 5.32636 + 31.0829i 0.212545 + 1.24034i
\(629\) 40.4347 1.61224
\(630\) 0 0
\(631\) 5.34016i 0.212589i −0.994335 0.106294i \(-0.966101\pi\)
0.994335 0.106294i \(-0.0338986\pi\)
\(632\) 22.0947 5.74931i 0.878879 0.228695i
\(633\) 0 0
\(634\) 3.30135 + 38.8120i 0.131113 + 1.54142i
\(635\) 6.73403i 0.267232i
\(636\) 0 0
\(637\) 6.00761i 0.238030i
\(638\) 17.6900 1.50471i 0.700353 0.0595720i
\(639\) 0 0
\(640\) −6.33197 9.37583i −0.250293 0.370612i
\(641\) 1.16117i 0.0458635i −0.999737 0.0229317i \(-0.992700\pi\)
0.999737 0.0229317i \(-0.00730004\pi\)
\(642\) 0 0
\(643\) −11.0169 −0.434463 −0.217231 0.976120i \(-0.569703\pi\)
−0.217231 + 0.976120i \(0.569703\pi\)
\(644\) −4.77981 27.8934i −0.188351 1.09916i
\(645\) 0 0
\(646\) 11.8544 1.00834i 0.466406 0.0396725i
\(647\) −3.84441 −0.151139 −0.0755697 0.997141i \(-0.524078\pi\)
−0.0755697 + 0.997141i \(0.524078\pi\)
\(648\) 0 0
\(649\) 4.21024 0.165266
\(650\) 2.29498 0.195211i 0.0900165 0.00765680i
\(651\) 0 0
\(652\) 20.0095 3.42882i 0.783631 0.134283i
\(653\) −41.4866 −1.62349 −0.811747 0.584009i \(-0.801483\pi\)
−0.811747 + 0.584009i \(0.801483\pi\)
\(654\) 0 0
\(655\) 9.61835i 0.375820i
\(656\) −2.75792 7.81086i −0.107679 0.304963i
\(657\) 0 0
\(658\) 14.4879 1.23234i 0.564799 0.0480418i
\(659\) 42.3819i 1.65096i −0.564429 0.825481i \(-0.690904\pi\)
0.564429 0.825481i \(-0.309096\pi\)
\(660\) 0 0
\(661\) 18.2025i 0.707994i −0.935247 0.353997i \(-0.884822\pi\)
0.935247 0.353997i \(-0.115178\pi\)
\(662\) 2.81870 + 33.1378i 0.109552 + 1.28794i
\(663\) 0 0
\(664\) −29.3933 + 7.64850i −1.14068 + 0.296819i
\(665\) 4.55452i 0.176617i
\(666\) 0 0
\(667\) 53.7091 2.07962
\(668\) −14.9478 + 2.56145i −0.578348 + 0.0991055i
\(669\) 0 0
\(670\) −0.857850 10.0852i −0.0331416 0.389627i
\(671\) 8.96671 0.346156
\(672\) 0 0
\(673\) −26.6523 −1.02737 −0.513686 0.857978i \(-0.671720\pi\)
−0.513686 + 0.857978i \(0.671720\pi\)
\(674\) −0.232495 2.73330i −0.00895536 0.105283i
\(675\) 0 0
\(676\) −20.3977 + 3.49534i −0.784525 + 0.134436i
\(677\) 21.2158 0.815388 0.407694 0.913119i \(-0.366333\pi\)
0.407694 + 0.913119i \(0.366333\pi\)
\(678\) 0 0
\(679\) 23.0756i 0.885559i
\(680\) −9.20038 + 2.39405i −0.352818 + 0.0918078i
\(681\) 0 0
\(682\) −0.962456 11.3150i −0.0368543 0.433275i
\(683\) 39.4448i 1.50931i 0.656119 + 0.754657i \(0.272197\pi\)
−0.656119 + 0.754657i \(0.727803\pi\)
\(684\) 0 0
\(685\) 12.6763i 0.484336i
\(686\) −27.4078 + 2.33131i −1.04643 + 0.0890096i
\(687\) 0 0
\(688\) 6.96663 2.45983i 0.265600 0.0937802i
\(689\) 1.15740i 0.0440934i
\(690\) 0 0
\(691\) −11.5459 −0.439227 −0.219613 0.975587i \(-0.570480\pi\)
−0.219613 + 0.975587i \(0.570480\pi\)
\(692\) 15.8476 2.71565i 0.602437 0.103233i
\(693\) 0 0
\(694\) −3.33910 + 0.284024i −0.126750 + 0.0107814i
\(695\) −14.5112 −0.550442
\(696\) 0 0
\(697\) −6.96048 −0.263647
\(698\) 27.5762 2.34563i 1.04377 0.0887833i
\(699\) 0 0
\(700\) 0.614687 + 3.58711i 0.0232330 + 0.135580i
\(701\) −27.9340 −1.05505 −0.527526 0.849539i \(-0.676880\pi\)
−0.527526 + 0.849539i \(0.676880\pi\)
\(702\) 0 0
\(703\) 30.1100i 1.13562i
\(704\) 7.08731 + 12.6962i 0.267113 + 0.478506i
\(705\) 0 0
\(706\) −48.4375 + 4.12009i −1.82297 + 0.155062i
\(707\) 15.3958i 0.579019i
\(708\) 0 0
\(709\) 17.6221i 0.661811i 0.943664 + 0.330905i \(0.107354\pi\)
−0.943664 + 0.330905i \(0.892646\pi\)
\(710\) −0.0277125 0.325800i −0.00104003 0.0122271i
\(711\) 0 0
\(712\) −24.7811 + 6.44837i −0.928713 + 0.241663i
\(713\) 34.3539i 1.28656i
\(714\) 0 0
\(715\) −2.96016 −0.110704
\(716\) −4.90958 28.6507i −0.183480 1.07073i
\(717\) 0 0
\(718\) −2.16246 25.4228i −0.0807024 0.948771i
\(719\) 6.36450 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(720\) 0 0
\(721\) −19.8104 −0.737776
\(722\) 1.52648 + 17.9459i 0.0568097 + 0.667878i
\(723\) 0 0
\(724\) −5.97355 34.8597i −0.222005 1.29555i
\(725\) −6.90702 −0.256520
\(726\) 0 0
\(727\) 52.3131i 1.94019i 0.242735 + 0.970093i \(0.421956\pi\)
−0.242735 + 0.970093i \(0.578044\pi\)
\(728\) 2.11094 + 8.11236i 0.0782365 + 0.300664i
\(729\) 0 0
\(730\) −1.44623 17.0025i −0.0535273 0.629289i
\(731\) 6.20816i 0.229617i
\(732\) 0 0
\(733\) 37.4356i 1.38272i −0.722512 0.691358i \(-0.757013\pi\)
0.722512 0.691358i \(-0.242987\pi\)
\(734\) −44.7440 + 3.80592i −1.65153 + 0.140479i
\(735\) 0 0
\(736\) 18.1082 + 40.0876i 0.667476 + 1.47765i
\(737\) 13.0084i 0.479170i
\(738\) 0 0
\(739\) −16.8541 −0.619987 −0.309993 0.950739i \(-0.600327\pi\)
−0.309993 + 0.950739i \(0.600327\pi\)
\(740\) 4.06370 + 23.7144i 0.149385 + 0.871760i
\(741\) 0 0
\(742\) 1.82223 0.154999i 0.0668962 0.00569019i
\(743\) −28.1294 −1.03197 −0.515983 0.856599i \(-0.672573\pi\)
−0.515983 + 0.856599i \(0.672573\pi\)
\(744\) 0 0
\(745\) 1.62527 0.0595453
\(746\) −35.4703 + 3.01710i −1.29866 + 0.110464i
\(747\) 0 0
\(748\) 12.0426 2.06361i 0.440320 0.0754532i
\(749\) −30.6995 −1.12173
\(750\) 0 0
\(751\) 14.3476i 0.523553i −0.965129 0.261776i \(-0.915692\pi\)
0.965129 0.261776i \(-0.0843083\pi\)
\(752\) −21.3111 + 7.52467i −0.777134 + 0.274396i
\(753\) 0 0
\(754\) −15.8515 + 1.34833i −0.577276 + 0.0491031i
\(755\) 21.7458i 0.791411i
\(756\) 0 0
\(757\) 37.6662i 1.36900i −0.729013 0.684500i \(-0.760021\pi\)
0.729013 0.684500i \(-0.239979\pi\)
\(758\) −0.797835 9.37967i −0.0289787 0.340685i
\(759\) 0 0
\(760\) 1.78275 + 6.85112i 0.0646670 + 0.248516i
\(761\) 4.33123i 0.157007i 0.996914 + 0.0785035i \(0.0250142\pi\)
−0.996914 + 0.0785035i \(0.974986\pi\)
\(762\) 0 0
\(763\) 25.6658 0.929165
\(764\) 38.5285 6.60224i 1.39391 0.238861i
\(765\) 0 0
\(766\) −3.28178 38.5820i −0.118576 1.39402i
\(767\) −3.77268 −0.136223
\(768\) 0 0
\(769\) 54.6426 1.97046 0.985231 0.171233i \(-0.0547751\pi\)
0.985231 + 0.171233i \(0.0547751\pi\)
\(770\) −0.396425 4.66054i −0.0142862 0.167954i
\(771\) 0 0
\(772\) 29.6271 5.07690i 1.06630 0.182722i
\(773\) −5.82472 −0.209500 −0.104750 0.994499i \(-0.533404\pi\)
−0.104750 + 0.994499i \(0.533404\pi\)
\(774\) 0 0
\(775\) 4.41794i 0.158697i
\(776\) −9.03232 34.7113i −0.324241 1.24606i
\(777\) 0 0
\(778\) −1.99110 23.4082i −0.0713844 0.839225i
\(779\) 5.18316i 0.185706i
\(780\) 0 0
\(781\) 0.420231i 0.0150371i
\(782\) 36.8293 3.13270i 1.31701 0.112025i
\(783\) 0 0
\(784\) 13.9130 4.91250i 0.496892 0.175446i
\(785\) 15.7680i 0.562783i
\(786\) 0 0
\(787\) −6.33406 −0.225785 −0.112892 0.993607i \(-0.536012\pi\)
−0.112892 + 0.993607i \(0.536012\pi\)
\(788\) −33.4284 + 5.72829i −1.19084 + 0.204062i
\(789\) 0 0
\(790\) 11.3742 0.967485i 0.404674 0.0344216i
\(791\) 1.77165 0.0629927
\(792\) 0 0
\(793\) −8.03481 −0.285324
\(794\) 20.6215 1.75406i 0.731828 0.0622493i
\(795\) 0 0
\(796\) 3.64428 + 21.2668i 0.129168 + 0.753782i
\(797\) −48.9281 −1.73312 −0.866562 0.499070i \(-0.833675\pi\)
−0.866562 + 0.499070i \(0.833675\pi\)
\(798\) 0 0
\(799\) 18.9909i 0.671849i
\(800\) −2.32872 5.15529i −0.0823327 0.182267i
\(801\) 0 0
\(802\) 8.44667 0.718474i 0.298262 0.0253702i
\(803\) 21.9305i 0.773911i
\(804\) 0 0
\(805\) 14.1500i 0.498722i
\(806\) 0.862429 + 10.1391i 0.0303778 + 0.357133i
\(807\) 0 0
\(808\) −6.02628 23.1591i −0.212004 0.814733i
\(809\) 54.9565i 1.93217i −0.258228 0.966084i \(-0.583139\pi\)
0.258228 0.966084i \(-0.416861\pi\)
\(810\) 0 0
\(811\) −22.3321 −0.784184 −0.392092 0.919926i \(-0.628249\pi\)
−0.392092 + 0.919926i \(0.628249\pi\)
\(812\) −4.24566 24.7763i −0.148993 0.869477i
\(813\) 0 0
\(814\) −2.62077 30.8108i −0.0918579 1.07992i
\(815\) 10.1506 0.355559
\(816\) 0 0
\(817\) −4.62295 −0.161736
\(818\) −1.88468 22.1571i −0.0658963 0.774704i
\(819\) 0 0
\(820\) −0.699529 4.08223i −0.0244286 0.142558i
\(821\) 11.4773 0.400561 0.200281 0.979739i \(-0.435815\pi\)
0.200281 + 0.979739i \(0.435815\pi\)
\(822\) 0 0
\(823\) 42.1288i 1.46852i 0.678869 + 0.734259i \(0.262470\pi\)
−0.678869 + 0.734259i \(0.737530\pi\)
\(824\) 29.7996 7.75424i 1.03812 0.270132i
\(825\) 0 0
\(826\) −0.505237 5.93977i −0.0175794 0.206671i
\(827\) 6.31319i 0.219531i −0.993958 0.109766i \(-0.964990\pi\)
0.993958 0.109766i \(-0.0350100\pi\)
\(828\) 0 0
\(829\) 52.3405i 1.81786i −0.416948 0.908930i \(-0.636900\pi\)
0.416948 0.908930i \(-0.363100\pi\)
\(830\) −15.1314 + 1.28708i −0.525219 + 0.0446751i
\(831\) 0 0
\(832\) −6.35073 11.3767i −0.220172 0.394416i
\(833\) 12.3982i 0.429574i
\(834\) 0 0
\(835\) −7.58284 −0.262415
\(836\) −1.53668 8.96758i −0.0531473 0.310150i
\(837\) 0 0
\(838\) 48.2694 4.10580i 1.66744 0.141832i
\(839\) 15.6390 0.539917 0.269959 0.962872i \(-0.412990\pi\)
0.269959 + 0.962872i \(0.412990\pi\)
\(840\) 0 0
\(841\) 18.7070 0.645067
\(842\) −13.7065 + 1.16588i −0.472358 + 0.0401788i
\(843\) 0 0
\(844\) −9.35583 + 1.60321i −0.322041 + 0.0551849i
\(845\) −10.3475 −0.355964
\(846\) 0 0
\(847\) 14.0053i 0.481229i
\(848\) −2.68041 + 0.946421i −0.0920458 + 0.0325002i
\(849\) 0 0
\(850\) −4.73628 + 0.402867i −0.162453 + 0.0138182i
\(851\) 93.5458i 3.20671i
\(852\) 0 0
\(853\) 10.9782i 0.375888i −0.982180 0.187944i \(-0.939818\pi\)
0.982180 0.187944i \(-0.0601823\pi\)
\(854\) −1.07602 12.6501i −0.0368207 0.432879i
\(855\) 0 0
\(856\) 46.1795 12.0165i 1.57838 0.410715i
\(857\) 30.4038i 1.03857i 0.854600 + 0.519286i \(0.173802\pi\)
−0.854600 + 0.519286i \(0.826198\pi\)
\(858\) 0 0
\(859\) 0.724677 0.0247256 0.0123628 0.999924i \(-0.496065\pi\)
0.0123628 + 0.999924i \(0.496065\pi\)
\(860\) 3.64100 0.623922i 0.124157 0.0212755i
\(861\) 0 0
\(862\) −0.276892 3.25526i −0.00943100 0.110875i
\(863\) −46.9042 −1.59664 −0.798320 0.602234i \(-0.794277\pi\)
−0.798320 + 0.602234i \(0.794277\pi\)
\(864\) 0 0
\(865\) 8.03931 0.273345
\(866\) 3.65686 + 42.9915i 0.124265 + 1.46091i
\(867\) 0 0
\(868\) −15.8476 + 2.71565i −0.537904 + 0.0921751i
\(869\) −14.6709 −0.497675
\(870\) 0 0
\(871\) 11.6564i 0.394963i
\(872\) −38.6077 + 10.0462i −1.30742 + 0.340207i
\(873\) 0 0
\(874\) −2.33279 27.4252i −0.0789077 0.927671i
\(875\) 1.81970i 0.0615171i
\(876\) 0 0
\(877\) 36.9968i 1.24929i −0.780907 0.624647i \(-0.785243\pi\)
0.780907 0.624647i \(-0.214757\pi\)
\(878\) 8.92011 0.758745i 0.301039 0.0256064i
\(879\) 0 0
\(880\) 2.42056 + 6.85542i 0.0815972 + 0.231096i
\(881\) 57.3681i 1.93278i 0.257077 + 0.966391i \(0.417241\pi\)
−0.257077 + 0.966391i \(0.582759\pi\)
\(882\) 0 0
\(883\) −31.0907 −1.04629 −0.523143 0.852245i \(-0.675241\pi\)
−0.523143 + 0.852245i \(0.675241\pi\)
\(884\) −10.7910 + 1.84914i −0.362941 + 0.0621935i
\(885\) 0 0
\(886\) 51.2926 4.36295i 1.72321 0.146576i
\(887\) −36.9352 −1.24016 −0.620082 0.784537i \(-0.712901\pi\)
−0.620082 + 0.784537i \(0.712901\pi\)
\(888\) 0 0
\(889\) −12.2539 −0.410983
\(890\) −12.7571 + 1.08512i −0.427620 + 0.0363733i
\(891\) 0 0
\(892\) 2.96495 + 17.3025i 0.0992738 + 0.579330i
\(893\) 14.1417 0.473233
\(894\) 0 0
\(895\) 14.5342i 0.485823i
\(896\) 17.0612 11.5223i 0.569974 0.384932i
\(897\) 0 0
\(898\) −11.1405 + 0.947610i −0.371763 + 0.0316222i
\(899\) 30.5148i 1.01772i
\(900\) 0 0
\(901\) 2.38859i 0.0795755i
\(902\) 0.451142 + 5.30381i 0.0150214 + 0.176597i
\(903\) 0 0
\(904\) −2.66500 + 0.693466i −0.0886366 + 0.0230644i
\(905\) 17.6839i 0.587833i
\(906\) 0 0
\(907\) −44.8204 −1.48824 −0.744118 0.668048i \(-0.767130\pi\)
−0.744118 + 0.668048i \(0.767130\pi\)
\(908\) 5.78188 + 33.7412i 0.191879 + 1.11974i
\(909\) 0 0
\(910\) 0.355225 + 4.17617i 0.0117756 + 0.138439i
\(911\) 5.21667 0.172836 0.0864180 0.996259i \(-0.472458\pi\)
0.0864180 + 0.996259i \(0.472458\pi\)
\(912\) 0 0
\(913\) 19.5171 0.645923
\(914\) 1.81650 + 21.3555i 0.0600843 + 0.706376i
\(915\) 0 0
\(916\) 2.66645 + 15.5605i 0.0881019 + 0.514134i
\(917\) −17.5025 −0.577984
\(918\) 0 0
\(919\) 42.8019i 1.41191i −0.708259 0.705953i \(-0.750519\pi\)
0.708259 0.705953i \(-0.249481\pi\)
\(920\) 5.53864 + 21.2851i 0.182604 + 0.701748i
\(921\) 0 0
\(922\) 0.138242 + 1.62523i 0.00455276 + 0.0535241i
\(923\) 0.376557i 0.0123945i
\(924\) 0 0
\(925\) 12.0300i 0.395545i
\(926\) 49.6829 4.22603i 1.63268 0.138876i
\(927\) 0 0
\(928\) 16.0845 + 35.6077i 0.528000 + 1.16888i
\(929\) 0.344767i 0.0113114i −0.999984 0.00565572i \(-0.998200\pi\)
0.999984 0.00565572i \(-0.00180028\pi\)
\(930\) 0 0
\(931\) −9.23243 −0.302581
\(932\) 4.29610 + 25.0707i 0.140724 + 0.821217i
\(933\) 0 0
\(934\) −18.8384 + 1.60239i −0.616411 + 0.0524319i
\(935\) 6.10906 0.199787
\(936\) 0 0
\(937\) 56.2729 1.83835 0.919177 0.393844i \(-0.128855\pi\)
0.919177 + 0.393844i \(0.128855\pi\)
\(938\) 18.3521 1.56103i 0.599217 0.0509694i
\(939\) 0 0
\(940\) −11.1379 + 1.90859i −0.363278 + 0.0622512i
\(941\) −50.2577 −1.63835 −0.819177 0.573541i \(-0.805570\pi\)
−0.819177 + 0.573541i \(0.805570\pi\)
\(942\) 0 0
\(943\) 16.1031i 0.524388i
\(944\) 3.08496 + 8.73711i 0.100407 + 0.284369i
\(945\) 0 0
\(946\) −4.73055 + 0.402381i −0.153804 + 0.0130825i
\(947\) 12.0214i 0.390642i −0.980739 0.195321i \(-0.937425\pi\)
0.980739 0.195321i \(-0.0625749\pi\)
\(948\) 0 0
\(949\) 19.6513i 0.637908i
\(950\) 0.299998 + 3.52690i 0.00973321 + 0.114428i
\(951\) 0 0
\(952\) −4.35646 16.7419i −0.141194 0.542609i
\(953\) 11.3661i 0.368185i −0.982909 0.184093i \(-0.941065\pi\)
0.982909 0.184093i \(-0.0589346\pi\)
\(954\) 0 0
\(955\) 19.5451 0.632463
\(956\) −15.1574 + 2.59737i −0.490226 + 0.0840051i
\(957\) 0 0
\(958\) 2.35766 + 27.7176i 0.0761726 + 0.895516i
\(959\) −23.0670 −0.744873
\(960\) 0 0
\(961\) 11.4818 0.370382
\(962\) 2.34839 + 27.6087i 0.0757153 + 0.890140i
\(963\) 0 0
\(964\) 17.9018 3.06764i 0.576577 0.0988022i
\(965\) 15.0295 0.483817
\(966\) 0 0
\(967\) 30.6345i 0.985140i 0.870273 + 0.492570i \(0.163942\pi\)
−0.870273 + 0.492570i \(0.836058\pi\)
\(968\) 5.48201 + 21.0674i 0.176199 + 0.677133i
\(969\) 0 0
\(970\) −1.51994 17.8691i −0.0488025 0.573742i
\(971\) 7.61183i 0.244275i 0.992513 + 0.122138i \(0.0389749\pi\)
−0.992513 + 0.122138i \(0.961025\pi\)
\(972\) 0 0
\(973\) 26.4060i 0.846539i
\(974\) 6.71065 0.570808i 0.215023 0.0182899i
\(975\) 0 0
\(976\) 6.57017 + 18.6077i 0.210306 + 0.595619i
\(977\) 54.8810i 1.75580i 0.478845 + 0.877899i \(0.341055\pi\)
−0.478845 + 0.877899i \(0.658945\pi\)
\(978\) 0 0
\(979\) 16.4547 0.525894
\(980\) 7.27140 1.24603i 0.232276 0.0398028i
\(981\) 0 0
\(982\) −58.2896 + 4.95811i −1.86010 + 0.158220i
\(983\) 24.5795 0.783964 0.391982 0.919973i \(-0.371789\pi\)
0.391982 + 0.919973i \(0.371789\pi\)
\(984\) 0 0
\(985\) −16.9578 −0.540322
\(986\) 32.7136 2.78261i 1.04181 0.0886165i
\(987\) 0 0
\(988\) 1.37698 + 8.03559i 0.0438075 + 0.255646i
\(989\) −14.3626 −0.456704
\(990\) 0 0
\(991\) 16.9104i 0.537176i 0.963255 + 0.268588i \(0.0865570\pi\)
−0.963255 + 0.268588i \(0.913443\pi\)
\(992\) 22.7758 10.2881i 0.723131 0.326649i
\(993\) 0 0
\(994\) 0.592858 0.0504285i 0.0188043 0.00159949i
\(995\) 10.7884i 0.342015i
\(996\) 0 0
\(997\) 27.1453i 0.859700i −0.902900 0.429850i \(-0.858566\pi\)
0.902900 0.429850i \(-0.141434\pi\)
\(998\) −2.72988 32.0936i −0.0864129 1.01591i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.b.d.971.7 yes 16
3.2 odd 2 1080.2.b.a.971.10 yes 16
4.3 odd 2 4320.2.b.b.431.12 16
8.3 odd 2 1080.2.b.a.971.9 16
8.5 even 2 4320.2.b.d.431.5 16
12.11 even 2 4320.2.b.d.431.12 16
24.5 odd 2 4320.2.b.b.431.5 16
24.11 even 2 inner 1080.2.b.d.971.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.b.a.971.9 16 8.3 odd 2
1080.2.b.a.971.10 yes 16 3.2 odd 2
1080.2.b.d.971.7 yes 16 1.1 even 1 trivial
1080.2.b.d.971.8 yes 16 24.11 even 2 inner
4320.2.b.b.431.5 16 24.5 odd 2
4320.2.b.b.431.12 16 4.3 odd 2
4320.2.b.d.431.5 16 8.5 even 2
4320.2.b.d.431.12 16 12.11 even 2