Defining parameters
Level: | \( N \) | \(=\) | \( 108 = 2^{2} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 108.f (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 36 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(108, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 100 | 200 |
Cusp forms | 276 | 92 | 184 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(108, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
108.9.f.a | $92$ | $43.997$ | None | \(1\) | \(0\) | \(2\) | \(0\) |
Decomposition of \(S_{9}^{\mathrm{old}}(108, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(108, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)