Properties

Label 108.3.j.a.103.10
Level $108$
Weight $3$
Character 108.103
Analytic conductor $2.943$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [108,3,Mod(7,108)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(108, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("108.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 103.10
Character \(\chi\) \(=\) 108.103
Dual form 108.3.j.a.43.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22060 + 1.58434i) q^{2} +(1.88167 + 2.33652i) q^{3} +(-1.02026 - 3.86769i) q^{4} +(4.29021 - 1.56151i) q^{5} +(-5.99861 + 0.129252i) q^{6} +(11.3387 - 1.99932i) q^{7} +(7.37308 + 3.10447i) q^{8} +(-1.91862 + 8.79312i) q^{9} +(-2.76268 + 8.70313i) q^{10} +(-2.79665 + 7.68375i) q^{11} +(7.11713 - 9.66160i) q^{12} +(-18.9359 - 15.8891i) q^{13} +(-10.6724 + 20.4047i) q^{14} +(11.7213 + 7.08590i) q^{15} +(-13.9181 + 7.89213i) q^{16} +(-6.56214 + 11.3660i) q^{17} +(-11.5894 - 13.7726i) q^{18} +(8.74492 - 5.04888i) q^{19} +(-10.4166 - 15.0001i) q^{20} +(26.0071 + 22.7310i) q^{21} +(-8.76006 - 13.8096i) q^{22} +(20.3386 + 3.58624i) q^{23} +(6.62006 + 23.0689i) q^{24} +(-3.18352 + 2.67129i) q^{25} +(48.2869 - 10.6066i) q^{26} +(-24.1555 + 12.0629i) q^{27} +(-19.3012 - 41.8148i) q^{28} +(6.33255 - 5.31364i) q^{29} +(-25.5335 + 9.92140i) q^{30} +(-9.50040 - 1.67518i) q^{31} +(4.48468 - 31.6842i) q^{32} +(-23.2156 + 7.92386i) q^{33} +(-9.99778 - 24.2700i) q^{34} +(45.5234 - 26.2830i) q^{35} +(35.9666 - 1.55066i) q^{36} +(21.4626 - 37.1743i) q^{37} +(-2.67492 + 20.0176i) q^{38} +(1.49399 - 74.1421i) q^{39} +(36.4797 + 1.80572i) q^{40} +(-33.7981 - 28.3600i) q^{41} +(-67.7580 + 13.4587i) q^{42} +(-3.42972 + 9.42307i) q^{43} +(32.5717 + 2.97717i) q^{44} +(5.49926 + 40.7203i) q^{45} +(-30.5071 + 27.8458i) q^{46} +(-87.0515 + 15.3495i) q^{47} +(-44.6294 - 17.6695i) q^{48} +(78.5238 - 28.5803i) q^{49} +(-0.346420 - 8.30436i) q^{50} +(-38.9045 + 6.05447i) q^{51} +(-42.1346 + 89.4493i) q^{52} +8.52710 q^{53} +(10.3725 - 52.9944i) q^{54} +37.3319i q^{55} +(89.8079 + 20.4596i) q^{56} +(28.2519 + 10.9323i) q^{57} +(0.689087 + 16.5187i) q^{58} +(-4.23230 - 11.6281i) q^{59} +(15.4473 - 52.5637i) q^{60} +(-5.96660 - 33.8383i) q^{61} +(14.2502 - 13.0071i) q^{62} +(-4.17438 + 103.538i) q^{63} +(44.7245 + 45.7790i) q^{64} +(-106.050 - 38.5990i) q^{65} +(15.7829 - 46.4533i) q^{66} +(38.0852 - 45.3881i) q^{67} +(50.6552 + 13.7841i) q^{68} +(29.8912 + 54.2695i) q^{69} +(-13.9248 + 104.206i) q^{70} +(-22.0271 - 12.7174i) q^{71} +(-41.4441 + 58.8760i) q^{72} +(-9.11022 - 15.7794i) q^{73} +(32.6995 + 79.3791i) q^{74} +(-12.2319 - 2.41185i) q^{75} +(-28.4497 - 28.6715i) q^{76} +(-16.3482 + 92.7151i) q^{77} +(115.643 + 92.8650i) q^{78} +(48.7210 + 58.0634i) q^{79} +(-47.3881 + 55.5922i) q^{80} +(-73.6378 - 33.7413i) q^{81} +(86.1858 - 18.9314i) q^{82} +(20.4415 + 24.3612i) q^{83} +(61.3824 - 123.779i) q^{84} +(-10.4049 + 59.0092i) q^{85} +(-10.7430 - 16.9357i) q^{86} +(24.3312 + 4.79757i) q^{87} +(-44.4739 + 47.9707i) q^{88} +(-13.1160 - 22.7175i) q^{89} +(-71.2271 - 40.9905i) q^{90} +(-246.476 - 142.303i) q^{91} +(-6.88020 - 82.3223i) q^{92} +(-13.9626 - 25.3500i) q^{93} +(81.9364 - 156.655i) q^{94} +(29.6337 - 35.3160i) q^{95} +(82.4693 - 49.1407i) q^{96} +(-29.5430 - 10.7528i) q^{97} +(-50.5654 + 159.294i) q^{98} +(-62.1984 - 39.3335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 6 q^{2} - 6 q^{4} - 12 q^{5} - 6 q^{6} - 3 q^{8} - 12 q^{9} - 3 q^{10} + 39 q^{12} - 12 q^{13} + 39 q^{14} - 6 q^{16} - 6 q^{17} - 27 q^{18} - 69 q^{20} - 12 q^{21} - 6 q^{22} - 138 q^{24} - 12 q^{25}+ \cdots + 510 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22060 + 1.58434i −0.610301 + 0.792170i
\(3\) 1.88167 + 2.33652i 0.627224 + 0.778839i
\(4\) −1.02026 3.86769i −0.255066 0.966924i
\(5\) 4.29021 1.56151i 0.858042 0.312302i 0.124727 0.992191i \(-0.460194\pi\)
0.733315 + 0.679889i \(0.237972\pi\)
\(6\) −5.99861 + 0.129252i −0.999768 + 0.0215420i
\(7\) 11.3387 1.99932i 1.61981 0.285617i 0.711117 0.703074i \(-0.248190\pi\)
0.908697 + 0.417457i \(0.137079\pi\)
\(8\) 7.37308 + 3.10447i 0.921634 + 0.388059i
\(9\) −1.91862 + 8.79312i −0.213180 + 0.977013i
\(10\) −2.76268 + 8.70313i −0.276268 + 0.870313i
\(11\) −2.79665 + 7.68375i −0.254241 + 0.698522i 0.745255 + 0.666780i \(0.232328\pi\)
−0.999496 + 0.0317425i \(0.989894\pi\)
\(12\) 7.11713 9.66160i 0.593094 0.805133i
\(13\) −18.9359 15.8891i −1.45661 1.22224i −0.927575 0.373637i \(-0.878111\pi\)
−0.529032 0.848602i \(-0.677445\pi\)
\(14\) −10.6724 + 20.4047i −0.762317 + 1.45748i
\(15\) 11.7213 + 7.08590i 0.781417 + 0.472393i
\(16\) −13.9181 + 7.89213i −0.869883 + 0.493258i
\(17\) −6.56214 + 11.3660i −0.386008 + 0.668586i −0.991909 0.126955i \(-0.959480\pi\)
0.605900 + 0.795541i \(0.292813\pi\)
\(18\) −11.5894 13.7726i −0.643856 0.765146i
\(19\) 8.74492 5.04888i 0.460259 0.265731i −0.251894 0.967755i \(-0.581053\pi\)
0.712153 + 0.702024i \(0.247720\pi\)
\(20\) −10.4166 15.0001i −0.520829 0.750004i
\(21\) 26.0071 + 22.7310i 1.23844 + 1.08243i
\(22\) −8.76006 13.8096i −0.398185 0.627711i
\(23\) 20.3386 + 3.58624i 0.884286 + 0.155923i 0.597306 0.802013i \(-0.296238\pi\)
0.286980 + 0.957937i \(0.407349\pi\)
\(24\) 6.62006 + 23.0689i 0.275836 + 0.961205i
\(25\) −3.18352 + 2.67129i −0.127341 + 0.106852i
\(26\) 48.2869 10.6066i 1.85719 0.407947i
\(27\) −24.1555 + 12.0629i −0.894647 + 0.446774i
\(28\) −19.3012 41.8148i −0.689328 1.49339i
\(29\) 6.33255 5.31364i 0.218364 0.183229i −0.527044 0.849838i \(-0.676700\pi\)
0.745407 + 0.666609i \(0.232255\pi\)
\(30\) −25.5335 + 9.92140i −0.851115 + 0.330713i
\(31\) −9.50040 1.67518i −0.306464 0.0540379i 0.0183011 0.999833i \(-0.494174\pi\)
−0.324765 + 0.945795i \(0.605285\pi\)
\(32\) 4.48468 31.6842i 0.140146 0.990131i
\(33\) −23.2156 + 7.92386i −0.703503 + 0.240117i
\(34\) −9.99778 24.2700i −0.294052 0.713822i
\(35\) 45.5234 26.2830i 1.30067 0.750942i
\(36\) 35.9666 1.55066i 0.999072 0.0430739i
\(37\) 21.4626 37.1743i 0.580071 1.00471i −0.415400 0.909639i \(-0.636358\pi\)
0.995470 0.0950729i \(-0.0303084\pi\)
\(38\) −2.67492 + 20.0176i −0.0703927 + 0.526779i
\(39\) 1.49399 74.1421i 0.0383076 1.90108i
\(40\) 36.4797 + 1.80572i 0.911993 + 0.0451430i
\(41\) −33.7981 28.3600i −0.824344 0.691707i 0.129641 0.991561i \(-0.458617\pi\)
−0.953985 + 0.299854i \(0.903062\pi\)
\(42\) −67.7580 + 13.4587i −1.61328 + 0.320445i
\(43\) −3.42972 + 9.42307i −0.0797609 + 0.219141i −0.973163 0.230117i \(-0.926089\pi\)
0.893402 + 0.449258i \(0.148311\pi\)
\(44\) 32.5717 + 2.97717i 0.740266 + 0.0676630i
\(45\) 5.49926 + 40.7203i 0.122206 + 0.904895i
\(46\) −30.5071 + 27.8458i −0.663198 + 0.605344i
\(47\) −87.0515 + 15.3495i −1.85216 + 0.326586i −0.985149 0.171703i \(-0.945073\pi\)
−0.867011 + 0.498288i \(0.833962\pi\)
\(48\) −44.6294 17.6695i −0.929780 0.368115i
\(49\) 78.5238 28.5803i 1.60253 0.583272i
\(50\) −0.346420 8.30436i −0.00692841 0.166087i
\(51\) −38.9045 + 6.05447i −0.762834 + 0.118715i
\(52\) −42.1346 + 89.4493i −0.810281 + 1.72018i
\(53\) 8.52710 0.160889 0.0804443 0.996759i \(-0.474366\pi\)
0.0804443 + 0.996759i \(0.474366\pi\)
\(54\) 10.3725 52.9944i 0.192083 0.981379i
\(55\) 37.3319i 0.678762i
\(56\) 89.8079 + 20.4596i 1.60371 + 0.365349i
\(57\) 28.2519 + 10.9323i 0.495647 + 0.191795i
\(58\) 0.689087 + 16.5187i 0.0118808 + 0.284806i
\(59\) −4.23230 11.6281i −0.0717339 0.197087i 0.898644 0.438678i \(-0.144553\pi\)
−0.970378 + 0.241591i \(0.922331\pi\)
\(60\) 15.4473 52.5637i 0.257455 0.876062i
\(61\) −5.96660 33.8383i −0.0978132 0.554726i −0.993849 0.110744i \(-0.964677\pi\)
0.896036 0.443982i \(-0.146435\pi\)
\(62\) 14.2502 13.0071i 0.229843 0.209792i
\(63\) −4.17438 + 103.538i −0.0662600 + 1.64347i
\(64\) 44.7245 + 45.7790i 0.698820 + 0.715297i
\(65\) −106.050 38.5990i −1.63154 0.593831i
\(66\) 15.7829 46.4533i 0.239135 0.703837i
\(67\) 38.0852 45.3881i 0.568435 0.677435i −0.402874 0.915256i \(-0.631989\pi\)
0.971309 + 0.237821i \(0.0764331\pi\)
\(68\) 50.6552 + 13.7841i 0.744929 + 0.202707i
\(69\) 29.8912 + 54.2695i 0.433206 + 0.786515i
\(70\) −13.9248 + 104.206i −0.198926 + 1.48865i
\(71\) −22.0271 12.7174i −0.310241 0.179118i 0.336793 0.941579i \(-0.390658\pi\)
−0.647034 + 0.762461i \(0.723991\pi\)
\(72\) −41.4441 + 58.8760i −0.575613 + 0.817723i
\(73\) −9.11022 15.7794i −0.124797 0.216156i 0.796856 0.604169i \(-0.206495\pi\)
−0.921654 + 0.388013i \(0.873161\pi\)
\(74\) 32.6995 + 79.3791i 0.441885 + 1.07269i
\(75\) −12.2319 2.41185i −0.163091 0.0321580i
\(76\) −28.4497 28.6715i −0.374338 0.377257i
\(77\) −16.3482 + 92.7151i −0.212314 + 1.20409i
\(78\) 115.643 + 92.8650i 1.48260 + 1.19058i
\(79\) 48.7210 + 58.0634i 0.616721 + 0.734980i 0.980503 0.196505i \(-0.0629591\pi\)
−0.363782 + 0.931484i \(0.618515\pi\)
\(80\) −47.3881 + 55.5922i −0.592351 + 0.694902i
\(81\) −73.6378 33.7413i −0.909109 0.416559i
\(82\) 86.1858 18.9314i 1.05105 0.230871i
\(83\) 20.4415 + 24.3612i 0.246283 + 0.293509i 0.874997 0.484128i \(-0.160863\pi\)
−0.628714 + 0.777636i \(0.716418\pi\)
\(84\) 61.3824 123.779i 0.730743 1.47356i
\(85\) −10.4049 + 59.0092i −0.122411 + 0.694226i
\(86\) −10.7430 16.9357i −0.124919 0.196926i
\(87\) 24.3312 + 4.79757i 0.279669 + 0.0551445i
\(88\) −44.4739 + 47.9707i −0.505386 + 0.545122i
\(89\) −13.1160 22.7175i −0.147371 0.255253i 0.782884 0.622167i \(-0.213748\pi\)
−0.930255 + 0.366914i \(0.880414\pi\)
\(90\) −71.2271 40.9905i −0.791412 0.455450i
\(91\) −246.476 142.303i −2.70852 1.56377i
\(92\) −6.88020 82.3223i −0.0747848 0.894808i
\(93\) −13.9626 25.3500i −0.150135 0.272580i
\(94\) 81.9364 156.655i 0.871664 1.66654i
\(95\) 29.6337 35.3160i 0.311933 0.371748i
\(96\) 82.4693 49.1407i 0.859055 0.511883i
\(97\) −29.5430 10.7528i −0.304567 0.110853i 0.185215 0.982698i \(-0.440702\pi\)
−0.489783 + 0.871844i \(0.662924\pi\)
\(98\) −50.5654 + 159.294i −0.515973 + 1.62544i
\(99\) −62.1984 39.3335i −0.628266 0.397308i
\(100\) 13.5798 + 9.58747i 0.135798 + 0.0958747i
\(101\) −7.75907 44.0039i −0.0768225 0.435682i −0.998823 0.0484945i \(-0.984558\pi\)
0.922001 0.387188i \(-0.126553\pi\)
\(102\) 37.8946 69.0281i 0.371516 0.676746i
\(103\) 55.3396 + 152.044i 0.537278 + 1.47616i 0.850241 + 0.526393i \(0.176456\pi\)
−0.312963 + 0.949765i \(0.601322\pi\)
\(104\) −90.2885 175.938i −0.868159 1.69171i
\(105\) 147.071 + 56.9103i 1.40067 + 0.542003i
\(106\) −10.4082 + 13.5098i −0.0981905 + 0.127451i
\(107\) 130.167i 1.21651i −0.793741 0.608256i \(-0.791869\pi\)
0.793741 0.608256i \(-0.208131\pi\)
\(108\) 71.3005 + 81.1187i 0.660190 + 0.751099i
\(109\) 25.8218 0.236897 0.118449 0.992960i \(-0.462208\pi\)
0.118449 + 0.992960i \(0.462208\pi\)
\(110\) −59.1464 45.5674i −0.537694 0.414249i
\(111\) 127.244 19.8022i 1.14634 0.178398i
\(112\) −142.035 + 117.313i −1.26817 + 1.04744i
\(113\) 18.4582 6.71825i 0.163347 0.0594535i −0.259052 0.965863i \(-0.583410\pi\)
0.422399 + 0.906410i \(0.361188\pi\)
\(114\) −51.8048 + 31.4166i −0.454428 + 0.275584i
\(115\) 92.8567 16.3731i 0.807449 0.142375i
\(116\) −27.0124 19.0711i −0.232865 0.164406i
\(117\) 176.045 136.020i 1.50466 1.16257i
\(118\) 23.5889 + 7.48793i 0.199906 + 0.0634571i
\(119\) −51.6819 + 141.995i −0.434302 + 1.19323i
\(120\) 64.4238 + 88.6332i 0.536865 + 0.738610i
\(121\) 41.4727 + 34.7997i 0.342750 + 0.287601i
\(122\) 60.8942 + 31.8500i 0.499133 + 0.261065i
\(123\) 2.66658 132.334i 0.0216795 1.07589i
\(124\) 3.21383 + 38.4538i 0.0259180 + 0.310111i
\(125\) −66.5561 + 115.278i −0.532448 + 0.922228i
\(126\) −158.945 132.993i −1.26147 1.05550i
\(127\) −85.9709 + 49.6353i −0.676936 + 0.390829i −0.798700 0.601730i \(-0.794478\pi\)
0.121763 + 0.992559i \(0.461145\pi\)
\(128\) −127.120 + 14.9808i −0.993128 + 0.117037i
\(129\) −28.4708 + 9.71754i −0.220704 + 0.0753298i
\(130\) 190.599 120.905i 1.46614 0.930039i
\(131\) −71.0230 12.5233i −0.542161 0.0955976i −0.104140 0.994563i \(-0.533209\pi\)
−0.438020 + 0.898965i \(0.644320\pi\)
\(132\) 54.3331 + 81.7064i 0.411614 + 0.618988i
\(133\) 89.0617 74.7316i 0.669637 0.561892i
\(134\) 25.4234 + 115.741i 0.189727 + 0.863736i
\(135\) −84.7957 + 89.4713i −0.628117 + 0.662750i
\(136\) −83.6685 + 63.4301i −0.615209 + 0.466398i
\(137\) −78.2241 + 65.6378i −0.570979 + 0.479108i −0.881971 0.471304i \(-0.843783\pi\)
0.310992 + 0.950413i \(0.399339\pi\)
\(138\) −122.467 18.8836i −0.887439 0.136838i
\(139\) 156.260 + 27.5528i 1.12417 + 0.198222i 0.704672 0.709533i \(-0.251094\pi\)
0.419500 + 0.907755i \(0.362205\pi\)
\(140\) −148.100 149.255i −1.05786 1.06611i
\(141\) −199.667 174.515i −1.41608 1.23769i
\(142\) 47.0350 19.3756i 0.331232 0.136448i
\(143\) 175.045 101.062i 1.22409 0.706729i
\(144\) −42.6928 137.526i −0.296478 0.955040i
\(145\) 18.8707 32.6850i 0.130143 0.225413i
\(146\) 36.1198 + 4.82664i 0.247396 + 0.0330592i
\(147\) 214.534 + 129.693i 1.45942 + 0.882267i
\(148\) −165.677 45.0833i −1.11944 0.304617i
\(149\) −13.9503 11.7057i −0.0936261 0.0785616i 0.594773 0.803894i \(-0.297242\pi\)
−0.688399 + 0.725332i \(0.741686\pi\)
\(150\) 18.7514 16.4355i 0.125009 0.109570i
\(151\) 58.6575 161.160i 0.388460 1.06729i −0.579235 0.815161i \(-0.696648\pi\)
0.967695 0.252125i \(-0.0811293\pi\)
\(152\) 80.1511 10.0774i 0.527310 0.0662988i
\(153\) −87.3520 79.5086i −0.570928 0.519664i
\(154\) −126.938 139.069i −0.824270 0.903047i
\(155\) −43.3745 + 7.64809i −0.279835 + 0.0493425i
\(156\) −288.283 + 69.8661i −1.84797 + 0.447860i
\(157\) −162.347 + 59.0894i −1.03406 + 0.376365i −0.802624 0.596486i \(-0.796563\pi\)
−0.231432 + 0.972851i \(0.574341\pi\)
\(158\) −151.461 + 6.31827i −0.958614 + 0.0399891i
\(159\) 16.0452 + 19.9237i 0.100913 + 0.125306i
\(160\) −30.2349 142.935i −0.188968 0.893342i
\(161\) 237.783 1.47691
\(162\) 143.340 75.4827i 0.884815 0.465942i
\(163\) 23.1683i 0.142137i −0.997471 0.0710684i \(-0.977359\pi\)
0.997471 0.0710684i \(-0.0226409\pi\)
\(164\) −75.2048 + 159.655i −0.458566 + 0.973508i
\(165\) −87.2266 + 70.2464i −0.528646 + 0.425736i
\(166\) −63.5474 + 2.65091i −0.382816 + 0.0159693i
\(167\) 81.2649 + 223.274i 0.486616 + 1.33697i 0.903726 + 0.428111i \(0.140821\pi\)
−0.417110 + 0.908856i \(0.636957\pi\)
\(168\) 121.185 + 248.336i 0.721339 + 1.47819i
\(169\) 76.7580 + 435.316i 0.454189 + 2.57584i
\(170\) −80.7903 88.5116i −0.475237 0.520657i
\(171\) 27.6173 + 86.5820i 0.161504 + 0.506327i
\(172\) 39.9448 + 3.65109i 0.232237 + 0.0212273i
\(173\) 230.336 + 83.8353i 1.33142 + 0.484597i 0.907100 0.420915i \(-0.138291\pi\)
0.424320 + 0.905512i \(0.360513\pi\)
\(174\) −37.2997 + 32.6929i −0.214366 + 0.187890i
\(175\) −30.7562 + 36.6538i −0.175750 + 0.209450i
\(176\) −21.7169 129.015i −0.123392 0.733039i
\(177\) 19.2055 31.7692i 0.108506 0.179487i
\(178\) 52.0017 + 6.94891i 0.292144 + 0.0390388i
\(179\) −51.8077 29.9112i −0.289428 0.167102i 0.348256 0.937400i \(-0.386774\pi\)
−0.637684 + 0.770298i \(0.720107\pi\)
\(180\) 151.883 62.8148i 0.843794 0.348971i
\(181\) −33.9126 58.7384i −0.187362 0.324521i 0.757008 0.653406i \(-0.226661\pi\)
−0.944370 + 0.328885i \(0.893327\pi\)
\(182\) 526.305 216.806i 2.89178 1.19124i
\(183\) 67.8365 77.6137i 0.370691 0.424118i
\(184\) 138.824 + 89.5822i 0.754481 + 0.486860i
\(185\) 34.0311 193.000i 0.183952 1.04324i
\(186\) 57.2057 + 8.82078i 0.307557 + 0.0474236i
\(187\) −68.9811 82.2085i −0.368883 0.439617i
\(188\) 148.183 + 321.028i 0.788206 + 1.70760i
\(189\) −249.774 + 185.072i −1.32156 + 0.979216i
\(190\) 19.7817 + 90.0566i 0.104114 + 0.473982i
\(191\) −3.10621 3.70184i −0.0162629 0.0193814i 0.757852 0.652427i \(-0.226249\pi\)
−0.774115 + 0.633045i \(0.781805\pi\)
\(192\) −22.8066 + 190.641i −0.118785 + 0.992920i
\(193\) −19.2895 + 109.396i −0.0999455 + 0.566819i 0.893174 + 0.449712i \(0.148473\pi\)
−0.993119 + 0.117107i \(0.962638\pi\)
\(194\) 53.0964 33.6813i 0.273693 0.173615i
\(195\) −109.364 320.418i −0.560841 1.64317i
\(196\) −190.655 274.547i −0.972729 1.40075i
\(197\) −103.487 179.244i −0.525314 0.909870i −0.999565 0.0294806i \(-0.990615\pi\)
0.474252 0.880389i \(-0.342719\pi\)
\(198\) 138.237 50.5328i 0.698167 0.255216i
\(199\) 95.4698 + 55.1195i 0.479748 + 0.276982i 0.720311 0.693651i \(-0.243999\pi\)
−0.240564 + 0.970633i \(0.577332\pi\)
\(200\) −31.7653 + 9.81247i −0.158826 + 0.0490624i
\(201\) 177.714 + 3.58101i 0.884149 + 0.0178160i
\(202\) 79.1878 + 41.4182i 0.392019 + 0.205041i
\(203\) 61.1792 72.9105i 0.301375 0.359165i
\(204\) 63.1097 + 144.294i 0.309361 + 0.707322i
\(205\) −189.285 68.8942i −0.923343 0.336069i
\(206\) −308.437 97.9089i −1.49727 0.475286i
\(207\) −70.5561 + 171.959i −0.340851 + 0.830719i
\(208\) 388.951 + 71.7021i 1.86996 + 0.344722i
\(209\) 14.3378 + 81.3137i 0.0686019 + 0.389061i
\(210\) −269.680 + 163.545i −1.28419 + 0.778787i
\(211\) 61.7185 + 169.570i 0.292505 + 0.803651i 0.995699 + 0.0926522i \(0.0295345\pi\)
−0.703194 + 0.710998i \(0.748243\pi\)
\(212\) −8.69988 32.9802i −0.0410372 0.155567i
\(213\) −11.7335 75.3966i −0.0550868 0.353975i
\(214\) 206.229 + 158.882i 0.963685 + 0.742439i
\(215\) 45.7825i 0.212942i
\(216\) −215.549 + 13.9506i −0.997912 + 0.0645859i
\(217\) −111.071 −0.511849
\(218\) −31.5181 + 40.9105i −0.144578 + 0.187663i
\(219\) 19.7263 50.9778i 0.0900744 0.232775i
\(220\) 144.388 38.0883i 0.656311 0.173129i
\(221\) 304.855 110.958i 1.37943 0.502073i
\(222\) −123.941 + 225.768i −0.558293 + 1.01697i
\(223\) −8.13269 + 1.43401i −0.0364695 + 0.00643055i −0.191853 0.981424i \(-0.561450\pi\)
0.155384 + 0.987854i \(0.450339\pi\)
\(224\) −12.4963 368.224i −0.0557870 1.64386i
\(225\) −17.3810 33.1183i −0.0772490 0.147192i
\(226\) −11.8862 + 37.4444i −0.0525937 + 0.165683i
\(227\) −45.2829 + 124.414i −0.199484 + 0.548079i −0.998588 0.0531140i \(-0.983085\pi\)
0.799104 + 0.601193i \(0.205308\pi\)
\(228\) 13.4585 120.423i 0.0590285 0.528173i
\(229\) −286.648 240.527i −1.25174 1.05033i −0.996512 0.0834533i \(-0.973405\pi\)
−0.255228 0.966881i \(-0.582150\pi\)
\(230\) −87.4004 + 167.102i −0.380002 + 0.726529i
\(231\) −247.392 + 136.262i −1.07096 + 0.589877i
\(232\) 63.1864 19.5186i 0.272355 0.0841320i
\(233\) −48.4626 + 83.9396i −0.207994 + 0.360256i −0.951082 0.308937i \(-0.900027\pi\)
0.743089 + 0.669193i \(0.233360\pi\)
\(234\) 0.621113 + 444.943i 0.00265433 + 1.90146i
\(235\) −349.501 + 201.784i −1.48724 + 0.858657i
\(236\) −40.6560 + 28.2330i −0.172271 + 0.119631i
\(237\) −43.9892 + 223.094i −0.185608 + 0.941323i
\(238\) −161.885 255.201i −0.680189 1.07227i
\(239\) 461.201 + 81.3223i 1.92971 + 0.340261i 0.999633 0.0270953i \(-0.00862575\pi\)
0.930080 + 0.367356i \(0.119737\pi\)
\(240\) −219.061 6.11675i −0.912753 0.0254864i
\(241\) 110.780 92.9556i 0.459669 0.385708i −0.383341 0.923607i \(-0.625226\pi\)
0.843009 + 0.537899i \(0.180782\pi\)
\(242\) −105.756 + 23.2302i −0.437009 + 0.0959926i
\(243\) −59.7253 235.546i −0.245783 0.969325i
\(244\) −124.789 + 57.6009i −0.511429 + 0.236069i
\(245\) 292.255 245.231i 1.19288 1.00094i
\(246\) 206.407 + 165.752i 0.839053 + 0.673788i
\(247\) −245.815 43.3438i −0.995203 0.175481i
\(248\) −64.8466 41.8449i −0.261478 0.168730i
\(249\) −18.4562 + 93.6018i −0.0741213 + 0.375911i
\(250\) −101.402 246.156i −0.405607 0.984626i
\(251\) −246.323 + 142.215i −0.981366 + 0.566592i −0.902682 0.430308i \(-0.858405\pi\)
−0.0786839 + 0.996900i \(0.525072\pi\)
\(252\) 404.714 89.4911i 1.60601 0.355123i
\(253\) −84.4357 + 146.247i −0.333738 + 0.578051i
\(254\) 26.2970 196.792i 0.103532 0.774772i
\(255\) −157.455 + 86.7247i −0.617469 + 0.340097i
\(256\) 131.429 219.687i 0.513393 0.858154i
\(257\) 164.184 + 137.767i 0.638848 + 0.536057i 0.903664 0.428242i \(-0.140867\pi\)
−0.264816 + 0.964299i \(0.585311\pi\)
\(258\) 19.3556 56.9686i 0.0750216 0.220809i
\(259\) 169.035 464.419i 0.652644 1.79312i
\(260\) −41.0905 + 449.550i −0.158040 + 1.72904i
\(261\) 34.5737 + 65.8777i 0.132466 + 0.252405i
\(262\) 106.532 97.2387i 0.406611 0.371140i
\(263\) −121.818 + 21.4798i −0.463187 + 0.0816723i −0.400372 0.916353i \(-0.631119\pi\)
−0.0628152 + 0.998025i \(0.520008\pi\)
\(264\) −195.770 13.6489i −0.741552 0.0517005i
\(265\) 36.5830 13.3151i 0.138049 0.0502458i
\(266\) 9.69140 + 232.321i 0.0364338 + 0.873389i
\(267\) 28.3999 73.3927i 0.106367 0.274879i
\(268\) −214.404 100.994i −0.800016 0.376843i
\(269\) 395.510 1.47030 0.735150 0.677905i \(-0.237112\pi\)
0.735150 + 0.677905i \(0.237112\pi\)
\(270\) −38.2511 243.554i −0.141671 0.902052i
\(271\) 462.522i 1.70672i −0.521320 0.853361i \(-0.674560\pi\)
0.521320 0.853361i \(-0.325440\pi\)
\(272\) 1.63110 209.982i 0.00599670 0.771993i
\(273\) −131.294 843.662i −0.480929 3.09034i
\(274\) −8.51209 204.051i −0.0310660 0.744712i
\(275\) −11.6223 31.9320i −0.0422630 0.116117i
\(276\) 179.401 170.979i 0.650004 0.619490i
\(277\) −6.18174 35.0584i −0.0223168 0.126565i 0.971614 0.236572i \(-0.0760238\pi\)
−0.993931 + 0.110007i \(0.964913\pi\)
\(278\) −234.384 + 213.938i −0.843109 + 0.769560i
\(279\) 32.9576 80.3241i 0.118128 0.287900i
\(280\) 417.242 52.4600i 1.49015 0.187357i
\(281\) −58.6385 21.3427i −0.208678 0.0759525i 0.235566 0.971858i \(-0.424306\pi\)
−0.444244 + 0.895906i \(0.646528\pi\)
\(282\) 520.204 103.327i 1.84470 0.366409i
\(283\) −177.070 + 211.024i −0.625690 + 0.745668i −0.982038 0.188685i \(-0.939577\pi\)
0.356348 + 0.934353i \(0.384022\pi\)
\(284\) −26.7134 + 98.1692i −0.0940614 + 0.345666i
\(285\) 138.277 + 2.78635i 0.485184 + 0.00977665i
\(286\) −53.5433 + 400.688i −0.187214 + 1.40101i
\(287\) −439.927 253.992i −1.53285 0.884989i
\(288\) 269.998 + 100.224i 0.937494 + 0.348001i
\(289\) 58.3767 + 101.111i 0.201995 + 0.349866i
\(290\) 28.7505 + 69.7928i 0.0991396 + 0.240665i
\(291\) −30.4663 89.2610i −0.104695 0.306739i
\(292\) −51.7349 + 51.3346i −0.177174 + 0.175804i
\(293\) −89.3427 + 506.688i −0.304924 + 1.72931i 0.318938 + 0.947776i \(0.396674\pi\)
−0.623862 + 0.781534i \(0.714437\pi\)
\(294\) −467.339 + 181.591i −1.58959 + 0.617658i
\(295\) −36.3149 43.2784i −0.123101 0.146706i
\(296\) 273.652 207.459i 0.924501 0.700875i
\(297\) −25.1336 219.340i −0.0846251 0.738519i
\(298\) 35.5735 7.81401i 0.119374 0.0262215i
\(299\) −328.147 391.070i −1.09748 1.30793i
\(300\) 3.15139 + 49.7698i 0.0105046 + 0.165899i
\(301\) −20.0488 + 113.702i −0.0666073 + 0.377749i
\(302\) 183.735 + 289.646i 0.608394 + 0.959092i
\(303\) 88.2158 100.930i 0.291141 0.333103i
\(304\) −81.8665 + 139.287i −0.269298 + 0.458181i
\(305\) −78.4368 135.856i −0.257170 0.445431i
\(306\) 232.591 41.3468i 0.760100 0.135120i
\(307\) 369.715 + 213.455i 1.20428 + 0.695294i 0.961505 0.274787i \(-0.0886075\pi\)
0.242780 + 0.970081i \(0.421941\pi\)
\(308\) 375.273 31.3640i 1.21842 0.101831i
\(309\) −251.123 + 415.400i −0.812696 + 1.34434i
\(310\) 40.8258 78.0552i 0.131696 0.251791i
\(311\) −303.936 + 362.217i −0.977287 + 1.16468i 0.00905262 + 0.999959i \(0.497118\pi\)
−0.986339 + 0.164726i \(0.947326\pi\)
\(312\) 241.188 542.017i 0.773037 1.73724i
\(313\) −271.635 98.8672i −0.867845 0.315870i −0.130551 0.991442i \(-0.541675\pi\)
−0.737294 + 0.675572i \(0.763897\pi\)
\(314\) 104.543 329.337i 0.332940 1.04884i
\(315\) 143.767 + 450.720i 0.456404 + 1.43086i
\(316\) 174.863 247.678i 0.553365 0.783790i
\(317\) −45.4577 257.803i −0.143400 0.813260i −0.968638 0.248476i \(-0.920070\pi\)
0.825238 0.564784i \(-0.191041\pi\)
\(318\) −51.1507 + 1.10214i −0.160851 + 0.00346586i
\(319\) 23.1187 + 63.5181i 0.0724724 + 0.199116i
\(320\) 263.362 + 126.564i 0.823006 + 0.395512i
\(321\) 304.137 244.931i 0.947467 0.763026i
\(322\) −290.238 + 376.729i −0.901361 + 1.16997i
\(323\) 132.526i 0.410297i
\(324\) −55.3710 + 319.234i −0.170898 + 0.985289i
\(325\) 102.727 0.316084
\(326\) 36.7065 + 28.2793i 0.112597 + 0.0867463i
\(327\) 48.5881 + 60.3330i 0.148588 + 0.184505i
\(328\) −161.153 314.025i −0.491321 0.957395i
\(329\) −956.362 + 348.087i −2.90688 + 1.05802i
\(330\) −4.82521 223.939i −0.0146219 0.678604i
\(331\) 63.1721 11.1389i 0.190852 0.0336524i −0.0774050 0.997000i \(-0.524663\pi\)
0.268257 + 0.963347i \(0.413552\pi\)
\(332\) 73.3661 103.916i 0.220982 0.313001i
\(333\) 285.700 + 260.047i 0.857957 + 0.780921i
\(334\) −452.933 143.777i −1.35609 0.430470i
\(335\) 92.5194 254.195i 0.276177 0.758791i
\(336\) −541.367 111.121i −1.61121 0.330717i
\(337\) 274.967 + 230.725i 0.815926 + 0.684644i 0.952014 0.306053i \(-0.0990086\pi\)
−0.136088 + 0.990697i \(0.543453\pi\)
\(338\) −783.380 409.737i −2.31769 1.21224i
\(339\) 50.4296 + 30.4864i 0.148760 + 0.0899304i
\(340\) 238.845 19.9618i 0.702486 0.0587113i
\(341\) 39.4410 68.3137i 0.115663 0.200334i
\(342\) −170.885 61.9270i −0.499664 0.181073i
\(343\) 344.633 198.974i 1.00476 0.580099i
\(344\) −54.5412 + 58.8295i −0.158550 + 0.171016i
\(345\) 212.982 + 186.152i 0.617339 + 0.539572i
\(346\) −413.972 + 262.600i −1.19645 + 0.758960i
\(347\) 468.627 + 82.6316i 1.35051 + 0.238131i 0.801655 0.597787i \(-0.203953\pi\)
0.548854 + 0.835918i \(0.315064\pi\)
\(348\) −6.26864 99.0004i −0.0180133 0.284484i
\(349\) 369.888 310.373i 1.05985 0.889320i 0.0657560 0.997836i \(-0.479054\pi\)
0.994095 + 0.108515i \(0.0346097\pi\)
\(350\) −20.5310 93.4680i −0.0586600 0.267051i
\(351\) 649.074 + 155.387i 1.84921 + 0.442699i
\(352\) 230.911 + 123.069i 0.655998 + 0.349628i
\(353\) −314.600 + 263.981i −0.891219 + 0.747822i −0.968454 0.249191i \(-0.919835\pi\)
0.0772349 + 0.997013i \(0.475391\pi\)
\(354\) 26.8908 + 69.2056i 0.0759628 + 0.195496i
\(355\) −114.359 20.1646i −0.322139 0.0568017i
\(356\) −74.4828 + 73.9065i −0.209221 + 0.207602i
\(357\) −429.022 + 146.432i −1.20174 + 0.410174i
\(358\) 110.626 45.5713i 0.309011 0.127294i
\(359\) 560.800 323.778i 1.56212 0.901889i 0.565074 0.825040i \(-0.308848\pi\)
0.997043 0.0768487i \(-0.0244858\pi\)
\(360\) −85.8685 + 317.306i −0.238524 + 0.881405i
\(361\) −129.518 + 224.331i −0.358774 + 0.621416i
\(362\) 134.455 + 17.9671i 0.371423 + 0.0496328i
\(363\) −3.27209 + 162.383i −0.00901403 + 0.447337i
\(364\) −298.914 + 1098.48i −0.821192 + 3.01780i
\(365\) −63.7244 53.4711i −0.174587 0.146496i
\(366\) 40.1650 + 202.211i 0.109740 + 0.552490i
\(367\) −147.995 + 406.613i −0.403256 + 1.10794i 0.557412 + 0.830236i \(0.311794\pi\)
−0.960668 + 0.277700i \(0.910428\pi\)
\(368\) −311.378 + 110.601i −0.846136 + 0.300546i
\(369\) 314.218 242.779i 0.851540 0.657937i
\(370\) 264.239 + 289.493i 0.714159 + 0.782413i
\(371\) 96.6862 17.0484i 0.260610 0.0459525i
\(372\) −83.8005 + 79.8665i −0.225270 + 0.214695i
\(373\) 442.492 161.054i 1.18630 0.431779i 0.327880 0.944719i \(-0.393666\pi\)
0.858424 + 0.512940i \(0.171444\pi\)
\(374\) 214.445 8.94566i 0.573381 0.0239189i
\(375\) −394.587 + 61.4070i −1.05223 + 0.163752i
\(376\) −689.490 157.076i −1.83375 0.417755i
\(377\) −204.341 −0.542020
\(378\) 11.6579 621.626i 0.0308411 1.64451i
\(379\) 387.390i 1.02214i 0.859540 + 0.511068i \(0.170750\pi\)
−0.859540 + 0.511068i \(0.829250\pi\)
\(380\) −166.826 78.5824i −0.439015 0.206796i
\(381\) −277.743 107.475i −0.728984 0.282087i
\(382\) 9.65643 0.402823i 0.0252786 0.00105451i
\(383\) 97.0070 + 266.524i 0.253282 + 0.695886i 0.999543 + 0.0302328i \(0.00962487\pi\)
−0.746261 + 0.665653i \(0.768153\pi\)
\(384\) −274.202 268.830i −0.714067 0.700077i
\(385\) 74.6383 + 423.295i 0.193866 + 1.09947i
\(386\) −149.776 164.090i −0.388020 0.425104i
\(387\) −76.2778 48.2372i −0.197100 0.124644i
\(388\) −11.4468 + 125.234i −0.0295022 + 0.322768i
\(389\) −67.3782 24.5237i −0.173209 0.0630428i 0.253960 0.967215i \(-0.418267\pi\)
−0.427169 + 0.904172i \(0.640489\pi\)
\(390\) 641.141 + 217.833i 1.64395 + 0.558547i
\(391\) −174.226 + 207.634i −0.445590 + 0.531033i
\(392\) 667.689 + 33.0502i 1.70329 + 0.0843116i
\(393\) −104.381 189.511i −0.265601 0.482217i
\(394\) 410.300 + 54.8278i 1.04137 + 0.139157i
\(395\) 299.690 + 173.026i 0.758708 + 0.438040i
\(396\) −88.6712 + 280.695i −0.223917 + 0.708825i
\(397\) 66.7682 + 115.646i 0.168182 + 0.291300i 0.937781 0.347228i \(-0.112877\pi\)
−0.769599 + 0.638528i \(0.779544\pi\)
\(398\) −203.859 + 83.9776i −0.512207 + 0.210999i
\(399\) 342.197 + 67.4736i 0.857635 + 0.169107i
\(400\) 23.2265 62.3041i 0.0580662 0.155760i
\(401\) 95.0909 539.287i 0.237134 1.34486i −0.600937 0.799296i \(-0.705206\pi\)
0.838072 0.545560i \(-0.183683\pi\)
\(402\) −222.591 + 277.188i −0.553710 + 0.689523i
\(403\) 153.281 + 182.674i 0.380351 + 0.453285i
\(404\) −162.277 + 74.9053i −0.401677 + 0.185409i
\(405\) −368.609 29.7710i −0.910146 0.0735085i
\(406\) 40.8396 + 185.923i 0.100590 + 0.457939i
\(407\) 225.615 + 268.877i 0.554336 + 0.660632i
\(408\) −305.642 76.1381i −0.749123 0.186613i
\(409\) 105.910 600.648i 0.258950 1.46858i −0.526778 0.850003i \(-0.676600\pi\)
0.785727 0.618573i \(-0.212289\pi\)
\(410\) 340.194 215.800i 0.829741 0.526341i
\(411\) −300.556 59.2630i −0.731280 0.144192i
\(412\) 531.600 369.162i 1.29029 0.896024i
\(413\) −71.2371 123.386i −0.172487 0.298756i
\(414\) −186.320 321.678i −0.450049 0.777000i
\(415\) 125.739 + 72.5952i 0.302985 + 0.174928i
\(416\) −588.355 + 528.711i −1.41431 + 1.27094i
\(417\) 229.652 + 416.949i 0.550725 + 0.999878i
\(418\) −146.329 76.5357i −0.350070 0.183100i
\(419\) 271.624 323.708i 0.648267 0.772574i −0.337385 0.941367i \(-0.609542\pi\)
0.985652 + 0.168793i \(0.0539869\pi\)
\(420\) 70.0609 626.888i 0.166812 1.49259i
\(421\) −158.812 57.8029i −0.377226 0.137299i 0.146447 0.989219i \(-0.453216\pi\)
−0.523673 + 0.851920i \(0.675438\pi\)
\(422\) −343.991 109.195i −0.815144 0.258755i
\(423\) 32.0483 794.904i 0.0757643 1.87921i
\(424\) 62.8709 + 26.4721i 0.148281 + 0.0624343i
\(425\) −9.47107 53.7131i −0.0222849 0.126384i
\(426\) 133.776 + 73.4394i 0.314028 + 0.172393i
\(427\) −135.307 371.753i −0.316878 0.870616i
\(428\) −503.446 + 132.804i −1.17628 + 0.310291i
\(429\) 565.511 + 218.829i 1.31821 + 0.510092i
\(430\) −72.5350 55.8822i −0.168686 0.129959i
\(431\) 132.068i 0.306422i −0.988193 0.153211i \(-0.951039\pi\)
0.988193 0.153211i \(-0.0489614\pi\)
\(432\) 240.997 358.531i 0.557864 0.829933i
\(433\) 303.878 0.701797 0.350898 0.936414i \(-0.385876\pi\)
0.350898 + 0.936414i \(0.385876\pi\)
\(434\) 135.574 175.975i 0.312382 0.405472i
\(435\) 111.877 17.4108i 0.257189 0.0400247i
\(436\) −26.3450 99.8708i −0.0604243 0.229061i
\(437\) 195.966 71.3257i 0.448434 0.163217i
\(438\) 56.6881 + 93.4767i 0.129425 + 0.213417i
\(439\) −419.874 + 74.0352i −0.956433 + 0.168645i −0.630017 0.776581i \(-0.716952\pi\)
−0.326416 + 0.945226i \(0.605841\pi\)
\(440\) −115.896 + 275.251i −0.263400 + 0.625570i
\(441\) 100.653 + 745.304i 0.228238 + 1.69003i
\(442\) −196.311 + 618.429i −0.444143 + 1.39916i
\(443\) 101.688 279.386i 0.229544 0.630667i −0.770432 0.637522i \(-0.779960\pi\)
0.999977 + 0.00685446i \(0.00218186\pi\)
\(444\) −206.411 471.938i −0.464890 1.06292i
\(445\) −91.7440 76.9823i −0.206166 0.172994i
\(446\) 7.65481 14.6353i 0.0171633 0.0328146i
\(447\) 1.10064 54.6213i 0.00246229 0.122195i
\(448\) 598.644 + 429.656i 1.33626 + 0.959054i
\(449\) −344.212 + 596.193i −0.766620 + 1.32782i 0.172766 + 0.984963i \(0.444729\pi\)
−0.939386 + 0.342861i \(0.888604\pi\)
\(450\) 73.6858 + 12.8868i 0.163746 + 0.0286373i
\(451\) 312.432 180.383i 0.692755 0.399962i
\(452\) −44.8164 64.5364i −0.0991513 0.142780i
\(453\) 486.927 166.196i 1.07490 0.366879i
\(454\) −141.841 223.603i −0.312426 0.492518i
\(455\) −1279.64 225.635i −2.81239 0.495901i
\(456\) 174.364 + 168.312i 0.382377 + 0.369105i
\(457\) 426.489 357.867i 0.933237 0.783079i −0.0431589 0.999068i \(-0.513742\pi\)
0.976396 + 0.215990i \(0.0692977\pi\)
\(458\) 730.959 160.561i 1.59598 0.350570i
\(459\) 21.4053 353.708i 0.0466346 0.770607i
\(460\) −158.064 342.436i −0.343618 0.744427i
\(461\) −263.908 + 221.445i −0.572469 + 0.480358i −0.882464 0.470380i \(-0.844117\pi\)
0.309995 + 0.950738i \(0.399672\pi\)
\(462\) 86.0826 558.274i 0.186326 1.20839i
\(463\) 613.691 + 108.210i 1.32547 + 0.233715i 0.791177 0.611587i \(-0.209468\pi\)
0.534289 + 0.845302i \(0.320580\pi\)
\(464\) −46.2013 + 123.933i −0.0995718 + 0.267097i
\(465\) −99.4865 86.9540i −0.213949 0.186998i
\(466\) −73.8354 179.238i −0.158445 0.384631i
\(467\) −513.973 + 296.742i −1.10058 + 0.635422i −0.936374 0.351003i \(-0.885841\pi\)
−0.164210 + 0.986425i \(0.552507\pi\)
\(468\) −705.698 542.114i −1.50790 1.15836i
\(469\) 341.091 590.787i 0.727272 1.25967i
\(470\) 106.906 800.026i 0.227460 1.70218i
\(471\) −443.547 268.139i −0.941713 0.569297i
\(472\) 4.89421 98.8742i 0.0103691 0.209479i
\(473\) −62.8127 52.7062i −0.132797 0.111429i
\(474\) −299.763 342.002i −0.632411 0.721524i
\(475\) −14.3526 + 39.4334i −0.0302160 + 0.0830178i
\(476\) 601.922 + 55.0178i 1.26454 + 0.115584i
\(477\) −16.3602 + 74.9798i −0.0342982 + 0.157190i
\(478\) −691.785 + 631.438i −1.44725 + 1.32100i
\(479\) 539.671 95.1586i 1.12666 0.198661i 0.420898 0.907108i \(-0.361715\pi\)
0.705764 + 0.708447i \(0.250604\pi\)
\(480\) 277.077 339.601i 0.577244 0.707501i
\(481\) −997.081 + 362.908i −2.07293 + 0.754486i
\(482\) 12.0547 + 288.975i 0.0250098 + 0.599533i
\(483\) 447.430 + 555.584i 0.926355 + 1.15028i
\(484\) 92.2817 195.909i 0.190665 0.404770i
\(485\) −143.536 −0.295951
\(486\) 446.085 + 192.883i 0.917871 + 0.396878i
\(487\) 190.678i 0.391536i 0.980650 + 0.195768i \(0.0627199\pi\)
−0.980650 + 0.195768i \(0.937280\pi\)
\(488\) 61.0579 268.015i 0.125119 0.549212i
\(489\) 54.1331 43.5952i 0.110702 0.0891517i
\(490\) 31.8023 + 762.361i 0.0649026 + 1.55584i
\(491\) −117.631 323.189i −0.239575 0.658226i −0.999962 0.00875596i \(-0.997213\pi\)
0.760387 0.649470i \(-0.225009\pi\)
\(492\) −514.548 + 124.702i −1.04583 + 0.253459i
\(493\) 18.8395 + 106.844i 0.0382141 + 0.216723i
\(494\) 368.714 336.549i 0.746384 0.681273i
\(495\) −328.264 71.6256i −0.663159 0.144698i
\(496\) 145.448 51.6630i 0.293243 0.104159i
\(497\) −275.185 100.159i −0.553692 0.201527i
\(498\) −125.769 143.491i −0.252549 0.288135i
\(499\) 286.634 341.597i 0.574417 0.684563i −0.398114 0.917336i \(-0.630335\pi\)
0.972531 + 0.232772i \(0.0747797\pi\)
\(500\) 513.767 + 139.804i 1.02753 + 0.279608i
\(501\) −368.768 + 610.004i −0.736064 + 1.21757i
\(502\) 75.3460 563.847i 0.150092 1.12320i
\(503\) −756.960 437.031i −1.50489 0.868849i −0.999984 0.00567418i \(-0.998194\pi\)
−0.504906 0.863174i \(-0.668473\pi\)
\(504\) −352.210 + 750.437i −0.698830 + 1.48896i
\(505\) −102.001 176.670i −0.201981 0.349842i
\(506\) −128.642 312.284i −0.254234 0.617162i
\(507\) −872.690 + 998.469i −1.72128 + 1.96937i
\(508\) 279.687 + 281.868i 0.550565 + 0.554859i
\(509\) 121.243 687.602i 0.238198 1.35089i −0.597575 0.801813i \(-0.703869\pi\)
0.835773 0.549075i \(-0.185020\pi\)
\(510\) 54.7879 355.318i 0.107427 0.696701i
\(511\) −134.846 160.703i −0.263886 0.314488i
\(512\) 187.637 + 476.378i 0.366479 + 0.930426i
\(513\) −150.334 + 227.447i −0.293048 + 0.443367i
\(514\) −418.672 + 91.9648i −0.814538 + 0.178920i
\(515\) 474.837 + 565.889i 0.922014 + 1.09881i
\(516\) 66.6321 + 100.202i 0.129132 + 0.194189i
\(517\) 125.511 711.809i 0.242768 1.37681i
\(518\) 529.473 + 834.679i 1.02215 + 1.61135i
\(519\) 237.534 + 695.933i 0.457676 + 1.34091i
\(520\) −662.085 613.823i −1.27324 1.18043i
\(521\) −198.852 344.421i −0.381673 0.661077i 0.609629 0.792687i \(-0.291319\pi\)
−0.991302 + 0.131610i \(0.957985\pi\)
\(522\) −146.573 25.6339i −0.280792 0.0491071i
\(523\) −732.018 422.631i −1.39965 0.808089i −0.405296 0.914186i \(-0.632831\pi\)
−0.994356 + 0.106096i \(0.966165\pi\)
\(524\) 24.0259 + 287.473i 0.0458510 + 0.548612i
\(525\) −143.515 2.89189i −0.273363 0.00550837i
\(526\) 114.660 219.220i 0.217985 0.416767i
\(527\) 81.3829 96.9884i 0.154427 0.184039i
\(528\) 260.581 293.506i 0.493525 0.555882i
\(529\) −96.3010 35.0507i −0.182044 0.0662584i
\(530\) −23.5576 + 74.2124i −0.0444484 + 0.140023i
\(531\) 110.368 14.9051i 0.207849 0.0280699i
\(532\) −379.905 268.218i −0.714108 0.504168i
\(533\) 189.383 + 1074.04i 0.355315 + 2.01509i
\(534\) 81.6139 + 134.578i 0.152835 + 0.252019i
\(535\) −203.257 558.443i −0.379919 1.04382i
\(536\) 421.711 216.416i 0.786774 0.403761i
\(537\) −27.5971 177.333i −0.0513913 0.330228i
\(538\) −482.761 + 626.623i −0.897325 + 1.16473i
\(539\) 683.286i 1.26769i
\(540\) 432.562 + 236.680i 0.801040 + 0.438296i
\(541\) −419.088 −0.774654 −0.387327 0.921942i \(-0.626602\pi\)
−0.387327 + 0.921942i \(0.626602\pi\)
\(542\) 732.791 + 564.555i 1.35201 + 1.04161i
\(543\) 73.4307 189.764i 0.135232 0.349473i
\(544\) 330.692 + 258.889i 0.607890 + 0.475898i
\(545\) 110.781 40.3209i 0.203268 0.0739834i
\(546\) 1496.90 + 821.761i 2.74158 + 1.50506i
\(547\) −360.585 + 63.5809i −0.659205 + 0.116236i −0.493236 0.869895i \(-0.664186\pi\)
−0.165969 + 0.986131i \(0.553075\pi\)
\(548\) 333.676 + 235.579i 0.608898 + 0.429889i
\(549\) 308.992 + 12.4577i 0.562826 + 0.0226916i
\(550\) 64.7774 + 20.5626i 0.117777 + 0.0373866i
\(551\) 28.5497 78.4396i 0.0518143 0.142359i
\(552\) 51.9119 + 492.930i 0.0940434 + 0.892989i
\(553\) 668.519 + 560.954i 1.20890 + 1.01438i
\(554\) 63.0899 + 32.9984i 0.113881 + 0.0595638i
\(555\) 514.982 283.648i 0.927896 0.511078i
\(556\) −52.8602 632.477i −0.0950722 1.13755i
\(557\) 96.4150 166.996i 0.173097 0.299813i −0.766404 0.642359i \(-0.777956\pi\)
0.939501 + 0.342546i \(0.111289\pi\)
\(558\) 87.0324 + 150.260i 0.155972 + 0.269283i
\(559\) 214.669 123.939i 0.384023 0.221716i
\(560\) −426.172 + 725.086i −0.761022 + 1.29480i
\(561\) 62.2816 315.865i 0.111019 0.563039i
\(562\) 105.388 66.8524i 0.187524 0.118954i
\(563\) −413.192 72.8569i −0.733912 0.129408i −0.205813 0.978591i \(-0.565984\pi\)
−0.528099 + 0.849183i \(0.677095\pi\)
\(564\) −471.256 + 950.301i −0.835561 + 1.68493i
\(565\) 68.6991 57.6454i 0.121591 0.102027i
\(566\) −118.202 538.116i −0.208837 0.950735i
\(567\) −902.416 235.356i −1.59156 0.415091i
\(568\) −122.927 162.149i −0.216421 0.285473i
\(569\) 787.303 660.626i 1.38366 1.16103i 0.415825 0.909445i \(-0.363493\pi\)
0.967835 0.251584i \(-0.0809516\pi\)
\(570\) −173.196 + 215.677i −0.303853 + 0.378381i
\(571\) 99.4864 + 17.5421i 0.174232 + 0.0307218i 0.260083 0.965586i \(-0.416250\pi\)
−0.0858515 + 0.996308i \(0.527361\pi\)
\(572\) −569.470 573.911i −0.995577 1.00334i
\(573\) 2.80454 14.2234i 0.00489448 0.0248226i
\(574\) 939.385 386.970i 1.63656 0.674165i
\(575\) −74.3281 + 42.9134i −0.129266 + 0.0746319i
\(576\) −488.350 + 305.435i −0.847829 + 0.530269i
\(577\) 93.5986 162.118i 0.162216 0.280966i −0.773447 0.633861i \(-0.781469\pi\)
0.935663 + 0.352894i \(0.114803\pi\)
\(578\) −231.449 30.9283i −0.400431 0.0535091i
\(579\) −291.902 + 160.777i −0.504149 + 0.277681i
\(580\) −145.668 39.6387i −0.251153 0.0683427i
\(581\) 280.486 + 235.356i 0.482764 + 0.405087i
\(582\) 178.607 + 60.6833i 0.306885 + 0.104267i
\(583\) −23.8473 + 65.5201i −0.0409045 + 0.112384i
\(584\) −18.1837 144.625i −0.0311365 0.247645i
\(585\) 542.875 858.453i 0.927991 1.46744i
\(586\) −693.714 760.013i −1.18381 1.29695i
\(587\) −408.972 + 72.1129i −0.696716 + 0.122850i −0.510779 0.859712i \(-0.670643\pi\)
−0.185937 + 0.982562i \(0.559532\pi\)
\(588\) 282.733 962.075i 0.480838 1.63618i
\(589\) −91.5380 + 33.3171i −0.155413 + 0.0565655i
\(590\) 112.894 4.70942i 0.191345 0.00798206i
\(591\) 224.079 579.078i 0.379153 0.979827i
\(592\) −5.33480 + 686.783i −0.00901149 + 1.16011i
\(593\) −598.860 −1.00988 −0.504941 0.863154i \(-0.668486\pi\)
−0.504941 + 0.863154i \(0.668486\pi\)
\(594\) 378.188 + 227.907i 0.636679 + 0.383682i
\(595\) 689.890i 1.15948i
\(596\) −31.0411 + 65.8983i −0.0520823 + 0.110568i
\(597\) 50.8552 + 326.784i 0.0851846 + 0.547376i
\(598\) 1020.12 42.5550i 1.70589 0.0711622i
\(599\) −346.568 952.189i −0.578578 1.58963i −0.790578 0.612361i \(-0.790220\pi\)
0.212000 0.977270i \(-0.432002\pi\)
\(600\) −82.6989 55.7562i −0.137831 0.0929271i
\(601\) 68.1551 + 386.527i 0.113403 + 0.643140i 0.987529 + 0.157440i \(0.0503241\pi\)
−0.874126 + 0.485700i \(0.838565\pi\)
\(602\) −155.672 170.549i −0.258591 0.283305i
\(603\) 326.032 + 421.970i 0.540684 + 0.699784i
\(604\) −683.164 62.4436i −1.13107 0.103384i
\(605\) 232.267 + 84.5381i 0.383912 + 0.139732i
\(606\) 52.2312 + 262.959i 0.0861901 + 0.433926i
\(607\) 121.947 145.331i 0.200901 0.239424i −0.656182 0.754602i \(-0.727830\pi\)
0.857083 + 0.515178i \(0.172274\pi\)
\(608\) −120.752 299.718i −0.198604 0.492958i
\(609\) 285.476 + 5.75245i 0.468761 + 0.00944574i
\(610\) 310.983 + 41.5562i 0.509808 + 0.0681249i
\(611\) 1892.29 + 1092.51i 3.09704 + 1.78807i
\(612\) −218.393 + 418.970i −0.356851 + 0.684592i
\(613\) −373.608 647.108i −0.609474 1.05564i −0.991327 0.131418i \(-0.958047\pi\)
0.381853 0.924223i \(-0.375286\pi\)
\(614\) −789.461 + 325.211i −1.28577 + 0.529659i
\(615\) −195.200 571.904i −0.317399 0.929926i
\(616\) −408.368 + 632.843i −0.662935 + 1.02734i
\(617\) −117.557 + 666.700i −0.190530 + 1.08055i 0.728111 + 0.685459i \(0.240399\pi\)
−0.918641 + 0.395092i \(0.870713\pi\)
\(618\) −351.613 904.902i −0.568953 1.46424i
\(619\) 639.472 + 762.093i 1.03307 + 1.23117i 0.972475 + 0.233006i \(0.0748560\pi\)
0.0605971 + 0.998162i \(0.480700\pi\)
\(620\) 73.8339 + 159.956i 0.119087 + 0.257994i
\(621\) −534.548 + 158.715i −0.860786 + 0.255579i
\(622\) −202.890 923.661i −0.326189 1.48499i
\(623\) −194.138 231.364i −0.311618 0.371371i
\(624\) 564.345 + 1043.71i 0.904400 + 1.67261i
\(625\) −87.4900 + 496.180i −0.139984 + 0.793888i
\(626\) 488.198 309.685i 0.779869 0.494705i
\(627\) −163.012 + 186.506i −0.259987 + 0.297458i
\(628\) 394.176 + 567.621i 0.627669 + 0.903855i
\(629\) 281.681 + 487.886i 0.447824 + 0.775654i
\(630\) −889.576 322.373i −1.41202 0.511704i
\(631\) 301.563 + 174.107i 0.477913 + 0.275923i 0.719546 0.694445i \(-0.244350\pi\)
−0.241634 + 0.970368i \(0.577683\pi\)
\(632\) 178.967 + 579.359i 0.283176 + 0.916707i
\(633\) −280.070 + 463.282i −0.442448 + 0.731883i
\(634\) 463.934 + 242.655i 0.731757 + 0.382737i
\(635\) −291.327 + 347.190i −0.458783 + 0.546756i
\(636\) 60.6885 82.3854i 0.0954221 0.129537i
\(637\) −1941.03 706.479i −3.04715 1.10907i
\(638\) −128.853 40.9024i −0.201964 0.0641104i
\(639\) 154.087 169.287i 0.241138 0.264925i
\(640\) −521.980 + 262.770i −0.815594 + 0.410578i
\(641\) −34.7159 196.884i −0.0541589 0.307151i 0.945680 0.325099i \(-0.105398\pi\)
−0.999839 + 0.0179485i \(0.994287\pi\)
\(642\) 16.8243 + 780.820i 0.0262061 + 1.21623i
\(643\) −255.040 700.717i −0.396641 1.08976i −0.963910 0.266230i \(-0.914222\pi\)
0.567269 0.823533i \(-0.308000\pi\)
\(644\) −242.601 919.672i −0.376710 1.42806i
\(645\) −106.972 + 86.1476i −0.165847 + 0.133562i
\(646\) −209.966 161.761i −0.325025 0.250405i
\(647\) 654.355i 1.01137i 0.862719 + 0.505684i \(0.168760\pi\)
−0.862719 + 0.505684i \(0.831240\pi\)
\(648\) −438.188 477.383i −0.676217 0.736703i
\(649\) 101.184 0.155907
\(650\) −125.389 + 162.755i −0.192906 + 0.250392i
\(651\) −209.000 259.520i −0.321044 0.398648i
\(652\) −89.6080 + 23.6378i −0.137436 + 0.0362542i
\(653\) 621.236 226.111i 0.951357 0.346266i 0.180716 0.983535i \(-0.442158\pi\)
0.770641 + 0.637270i \(0.219936\pi\)
\(654\) −154.895 + 3.33751i −0.236842 + 0.00510323i
\(655\) −324.259 + 57.1756i −0.495052 + 0.0872910i
\(656\) 694.227 + 127.979i 1.05827 + 0.195090i
\(657\) 156.229 49.8327i 0.237791 0.0758488i
\(658\) 615.849 1940.08i 0.935940 2.94845i
\(659\) 125.066 343.616i 0.189782 0.521421i −0.807912 0.589304i \(-0.799402\pi\)
0.997693 + 0.0678827i \(0.0216244\pi\)
\(660\) 360.686 + 265.696i 0.546493 + 0.402570i
\(661\) 90.6624 + 76.0748i 0.137159 + 0.115090i 0.708786 0.705423i \(-0.249243\pi\)
−0.571627 + 0.820514i \(0.693687\pi\)
\(662\) −59.4601 + 113.682i −0.0898188 + 0.171725i
\(663\) 832.892 + 503.512i 1.25625 + 0.759444i
\(664\) 75.0879 + 243.077i 0.113084 + 0.366080i
\(665\) 265.399 459.685i 0.399097 0.691255i
\(666\) −760.728 + 135.232i −1.14223 + 0.203051i
\(667\) 147.851 85.3618i 0.221666 0.127979i
\(668\) 780.642 542.105i 1.16863 0.811535i
\(669\) −18.6537 16.3038i −0.0278829 0.0243704i
\(670\) 289.802 + 456.853i 0.432540 + 0.681870i
\(671\) 276.691 + 48.7882i 0.412357 + 0.0727096i
\(672\) 836.847 722.074i 1.24531 1.07451i
\(673\) 594.886 499.169i 0.883932 0.741707i −0.0830516 0.996545i \(-0.526467\pi\)
0.966984 + 0.254838i \(0.0820222\pi\)
\(674\) −701.172 + 154.018i −1.04031 + 0.228514i
\(675\) 44.6760 102.929i 0.0661866 0.152487i
\(676\) 1605.36 741.014i 2.37479 1.09617i
\(677\) −149.055 + 125.072i −0.220170 + 0.184745i −0.746201 0.665721i \(-0.768124\pi\)
0.526031 + 0.850466i \(0.323680\pi\)
\(678\) −109.855 + 42.6859i −0.162029 + 0.0629585i
\(679\) −356.478 62.8567i −0.525004 0.0925724i
\(680\) −259.909 + 402.777i −0.382219 + 0.592320i
\(681\) −375.903 + 128.302i −0.551986 + 0.188402i
\(682\) 60.0904 + 145.872i 0.0881092 + 0.213888i
\(683\) −420.466 + 242.756i −0.615617 + 0.355427i −0.775161 0.631764i \(-0.782331\pi\)
0.159544 + 0.987191i \(0.448998\pi\)
\(684\) 306.696 195.151i 0.448386 0.285309i
\(685\) −233.104 + 403.748i −0.340297 + 0.589413i
\(686\) −105.417 + 788.884i −0.153670 + 1.14998i
\(687\) 22.6158 1122.35i 0.0329197 1.63370i
\(688\) −26.6328 158.219i −0.0387105 0.229970i
\(689\) −161.468 135.488i −0.234352 0.196644i
\(690\) −554.895 + 110.218i −0.804195 + 0.159736i
\(691\) −373.852 + 1027.15i −0.541030 + 1.48647i 0.304485 + 0.952517i \(0.401516\pi\)
−0.845515 + 0.533951i \(0.820707\pi\)
\(692\) 89.2466 976.402i 0.128969 1.41099i
\(693\) −783.888 321.636i −1.13115 0.464121i
\(694\) −702.923 + 641.604i −1.01286 + 0.924501i
\(695\) 713.412 125.794i 1.02649 0.180998i
\(696\) 164.502 + 110.908i 0.236353 + 0.159351i
\(697\) 544.126 198.046i 0.780669 0.284140i
\(698\) 40.2500 + 964.870i 0.0576648 + 1.38233i
\(699\) −287.317 + 44.7133i −0.411040 + 0.0639675i
\(700\) 173.145 + 81.5591i 0.247350 + 0.116513i
\(701\) 933.794 1.33209 0.666044 0.745912i \(-0.267986\pi\)
0.666044 + 0.745912i \(0.267986\pi\)
\(702\) −1038.45 + 838.687i −1.47927 + 1.19471i
\(703\) 433.449i 0.616570i
\(704\) −476.833 + 215.623i −0.677320 + 0.306283i
\(705\) −1129.12 436.922i −1.60159 0.619748i
\(706\) −34.2338 820.650i −0.0484898 1.16239i
\(707\) −175.956 483.434i −0.248876 0.683782i
\(708\) −142.468 41.8683i −0.201226 0.0591360i
\(709\) 212.090 + 1202.82i 0.299139 + 1.69650i 0.649886 + 0.760032i \(0.274817\pi\)
−0.350746 + 0.936470i \(0.614072\pi\)
\(710\) 171.535 156.571i 0.241598 0.220522i
\(711\) −604.035 + 317.008i −0.849557 + 0.445862i
\(712\) −26.1791 208.216i −0.0367684 0.292439i
\(713\) −187.217 68.1414i −0.262576 0.0955700i
\(714\) 291.666 858.452i 0.408496 1.20231i
\(715\) 593.170 706.913i 0.829609 0.988689i
\(716\) −62.8299 + 230.894i −0.0877512 + 0.322477i
\(717\) 677.819 + 1230.63i 0.945355 + 1.71636i
\(718\) −171.539 + 1283.70i −0.238913 + 1.78789i
\(719\) 392.348 + 226.522i 0.545685 + 0.315052i 0.747380 0.664397i \(-0.231311\pi\)
−0.201695 + 0.979448i \(0.564645\pi\)
\(720\) −397.909 523.349i −0.552651 0.726873i
\(721\) 931.464 + 1613.34i 1.29191 + 2.23765i
\(722\) −197.327 479.019i −0.273306 0.663461i
\(723\) 425.644 + 83.9276i 0.588719 + 0.116082i
\(724\) −192.582 + 191.092i −0.265998 + 0.263939i
\(725\) −5.96552 + 33.8321i −0.00822830 + 0.0466650i
\(726\) −253.276 203.389i −0.348866 0.280151i
\(727\) −183.034 218.131i −0.251766 0.300043i 0.625328 0.780362i \(-0.284965\pi\)
−0.877094 + 0.480319i \(0.840521\pi\)
\(728\) −1375.51 1814.39i −1.88944 2.49229i
\(729\) 437.974 582.769i 0.600787 0.799409i
\(730\) 162.498 35.6941i 0.222601 0.0488960i
\(731\) −84.5959 100.818i −0.115726 0.137917i
\(732\) −369.397 183.185i −0.504641 0.250252i
\(733\) −127.118 + 720.924i −0.173422 + 0.983525i 0.766528 + 0.642211i \(0.221983\pi\)
−0.939950 + 0.341313i \(0.889128\pi\)
\(734\) −463.570 730.786i −0.631566 0.995622i
\(735\) 1122.92 + 221.414i 1.52778 + 0.301244i
\(736\) 204.839 628.328i 0.278314 0.853706i
\(737\) 242.240 + 419.572i 0.328684 + 0.569297i
\(738\) 1.10860 + 794.164i 0.00150217 + 1.07610i
\(739\) 266.611 + 153.928i 0.360772 + 0.208292i 0.669419 0.742885i \(-0.266543\pi\)
−0.308647 + 0.951177i \(0.599876\pi\)
\(740\) −781.185 + 65.2886i −1.05566 + 0.0882279i
\(741\) −361.270 655.910i −0.487544 0.885169i
\(742\) −91.0049 + 173.993i −0.122648 + 0.234492i
\(743\) −39.9815 + 47.6481i −0.0538109 + 0.0641294i −0.792279 0.610160i \(-0.791105\pi\)
0.738468 + 0.674289i \(0.235550\pi\)
\(744\) −24.2487 230.254i −0.0325923 0.309481i
\(745\) −78.1282 28.4363i −0.104870 0.0381696i
\(746\) −284.942 + 897.639i −0.381960 + 1.20327i
\(747\) −253.431 + 133.005i −0.339264 + 0.178052i
\(748\) −247.578 + 350.672i −0.330987 + 0.468813i
\(749\) −260.245 1475.92i −0.347457 1.97052i
\(750\) 384.344 700.113i 0.512458 0.933484i
\(751\) 81.5013 + 223.923i 0.108524 + 0.298167i 0.982053 0.188605i \(-0.0603966\pi\)
−0.873529 + 0.486772i \(0.838174\pi\)
\(752\) 1090.45 900.659i 1.45007 1.19768i
\(753\) −795.786 307.936i −1.05682 0.408946i
\(754\) 249.419 323.746i 0.330795 0.429372i
\(755\) 783.005i 1.03709i
\(756\) 970.636 + 777.228i 1.28391 + 1.02808i
\(757\) −1178.31 −1.55655 −0.778276 0.627923i \(-0.783905\pi\)
−0.778276 + 0.627923i \(0.783905\pi\)
\(758\) −613.757 472.849i −0.809706 0.623811i
\(759\) −500.589 + 77.9034i −0.659537 + 0.102640i
\(760\) 328.129 168.391i 0.431749 0.221567i
\(761\) 1203.80 438.148i 1.58187 0.575753i 0.606260 0.795267i \(-0.292669\pi\)
0.975610 + 0.219513i \(0.0704469\pi\)
\(762\) 509.290 308.855i 0.668360 0.405321i
\(763\) 292.785 51.6259i 0.383729 0.0676618i
\(764\) −11.1484 + 15.7907i −0.0145922 + 0.0206685i
\(765\) −498.912 204.708i −0.652172 0.267592i
\(766\) −540.672 171.628i −0.705838 0.224058i
\(767\) −104.618 + 287.437i −0.136399 + 0.374754i
\(768\) 760.609 106.294i 0.990376 0.138404i
\(769\) −143.704 120.582i −0.186871 0.156803i 0.544553 0.838726i \(-0.316699\pi\)
−0.731424 + 0.681923i \(0.761144\pi\)
\(770\) −761.746 398.422i −0.989281 0.517431i
\(771\) −12.9537 + 642.850i −0.0168012 + 0.833787i
\(772\) 442.791 37.0069i 0.573563 0.0479364i
\(773\) 226.649 392.567i 0.293207 0.507849i −0.681359 0.731949i \(-0.738611\pi\)
0.974566 + 0.224100i \(0.0719442\pi\)
\(774\) 169.529 61.9716i 0.219030 0.0800667i
\(775\) 34.7196 20.0454i 0.0447995 0.0258650i
\(776\) −184.441 170.997i −0.237682 0.220357i
\(777\) 1403.19 478.932i 1.80591 0.616386i
\(778\) 121.096 76.8163i 0.155650 0.0987356i
\(779\) −438.748 77.3631i −0.563219 0.0993107i
\(780\) −1127.70 + 749.897i −1.44577 + 0.961407i
\(781\) 159.319 133.685i 0.203994 0.171171i
\(782\) −116.303 529.471i −0.148725 0.677073i
\(783\) −88.8679 + 204.742i −0.113497 + 0.261484i
\(784\) −867.345 + 1017.50i −1.10631 + 1.29784i
\(785\) −604.233 + 507.012i −0.769724 + 0.645875i
\(786\) 427.658 + 65.9424i 0.544094 + 0.0838962i
\(787\) −817.303 144.113i −1.03850 0.183116i −0.371703 0.928352i \(-0.621226\pi\)
−0.666802 + 0.745235i \(0.732337\pi\)
\(788\) −587.679 + 583.132i −0.745785 + 0.740015i
\(789\) −279.410 244.212i −0.354132 0.309521i
\(790\) −639.934 + 263.614i −0.810042 + 0.333689i
\(791\) 195.860 113.080i 0.247611 0.142958i
\(792\) −336.484 483.102i −0.424853 0.609977i
\(793\) −424.677 + 735.562i −0.535532 + 0.927569i
\(794\) −264.720 35.3741i −0.333400 0.0445518i
\(795\) 99.9483 + 60.4221i 0.125721 + 0.0760027i
\(796\) 115.781 425.484i 0.145454 0.534528i
\(797\) −418.325 351.017i −0.524875 0.440422i 0.341452 0.939899i \(-0.389081\pi\)
−0.866327 + 0.499477i \(0.833526\pi\)
\(798\) −524.587 + 459.797i −0.657377 + 0.576187i
\(799\) 396.782 1090.15i 0.496598 1.36439i
\(800\) 70.3606 + 112.847i 0.0879507 + 0.141059i
\(801\) 224.923 71.7441i 0.280802 0.0895682i
\(802\) 738.346 + 808.912i 0.920631 + 1.00862i
\(803\) 146.723 25.8712i 0.182718 0.0322182i
\(804\) −167.465 690.997i −0.208289 0.859449i
\(805\) 1020.14 371.300i 1.26725 0.461242i
\(806\) −476.513 + 19.8780i −0.591207 + 0.0246625i
\(807\) 744.221 + 924.117i 0.922207 + 1.14513i
\(808\) 79.4007 348.532i 0.0982682 0.431351i
\(809\) −1048.73 −1.29633 −0.648167 0.761499i \(-0.724464\pi\)
−0.648167 + 0.761499i \(0.724464\pi\)
\(810\) 497.092 547.663i 0.613694 0.676127i
\(811\) 28.9928i 0.0357495i 0.999840 + 0.0178747i \(0.00569001\pi\)
−0.999840 + 0.0178747i \(0.994310\pi\)
\(812\) −344.414 162.235i −0.424156 0.199796i
\(813\) 1080.69 870.314i 1.32926 1.07050i
\(814\) −701.378 + 29.2583i −0.861644 + 0.0359439i
\(815\) −36.1775 99.3969i −0.0443896 0.121959i
\(816\) 493.696 391.306i 0.605019 0.479542i
\(817\) 17.5834 + 99.7202i 0.0215219 + 0.122057i
\(818\) 822.355 + 900.950i 1.00532 + 1.10141i
\(819\) 1724.18 1894.27i 2.10522 2.31290i
\(820\) −73.3411 + 802.388i −0.0894404 + 0.978522i
\(821\) 687.233 + 250.132i 0.837069 + 0.304668i 0.724757 0.689005i \(-0.241952\pi\)
0.112312 + 0.993673i \(0.464174\pi\)
\(822\) 460.752 403.846i 0.560525 0.491297i
\(823\) −337.483 + 402.197i −0.410065 + 0.488696i −0.931061 0.364863i \(-0.881116\pi\)
0.520997 + 0.853559i \(0.325560\pi\)
\(824\) −63.9945 + 1292.83i −0.0776632 + 1.56897i
\(825\) 52.7403 87.2414i 0.0639277 0.105747i
\(826\) 282.438 + 37.7418i 0.341934 + 0.0456922i
\(827\) −437.915 252.830i −0.529522 0.305720i 0.211300 0.977421i \(-0.432230\pi\)
−0.740822 + 0.671702i \(0.765564\pi\)
\(828\) 737.070 + 97.4465i 0.890181 + 0.117689i
\(829\) −334.899 580.062i −0.403979 0.699712i 0.590223 0.807240i \(-0.299040\pi\)
−0.994202 + 0.107528i \(0.965706\pi\)
\(830\) −268.492 + 110.603i −0.323485 + 0.133256i
\(831\) 70.2825 80.4122i 0.0845758 0.0967656i
\(832\) −119.510 1577.50i −0.143642 1.89603i
\(833\) −190.441 + 1080.05i −0.228621 + 1.29657i
\(834\) −940.903 145.082i −1.12818 0.173959i
\(835\) 697.287 + 830.994i 0.835074 + 0.995203i
\(836\) 299.868 138.416i 0.358694 0.165569i
\(837\) 249.694 74.1375i 0.298320 0.0885753i
\(838\) 181.320 + 825.463i 0.216372 + 0.985040i
\(839\) 402.854 + 480.103i 0.480160 + 0.572233i 0.950687 0.310153i \(-0.100380\pi\)
−0.470526 + 0.882386i \(0.655936\pi\)
\(840\) 907.687 + 876.181i 1.08058 + 1.04307i
\(841\) −134.172 + 760.926i −0.159538 + 0.904787i
\(842\) 285.426 181.058i 0.338985 0.215033i
\(843\) −60.4709 177.170i −0.0717330 0.210166i
\(844\) 592.877 411.715i 0.702461 0.487814i
\(845\) 1009.06 + 1747.74i 1.19415 + 2.06833i
\(846\) 1220.28 + 1021.04i 1.44241 + 1.20690i
\(847\) 539.822 + 311.666i 0.637334 + 0.367965i
\(848\) −118.681 + 67.2969i −0.139954 + 0.0793596i
\(849\) −826.250 16.6493i −0.973203 0.0196105i
\(850\) 96.6602 + 50.5570i 0.113718 + 0.0594788i
\(851\) 569.835 679.103i 0.669606 0.798006i
\(852\) −279.640 + 122.306i −0.328216 + 0.143552i
\(853\) 774.167 + 281.774i 0.907582 + 0.330333i 0.753287 0.657692i \(-0.228467\pi\)
0.154295 + 0.988025i \(0.450689\pi\)
\(854\) 754.139 + 239.390i 0.883067 + 0.280316i
\(855\) 253.682 + 328.330i 0.296705 + 0.384012i
\(856\) 404.100 959.730i 0.472079 1.12118i
\(857\) 131.996 + 748.584i 0.154020 + 0.873494i 0.959676 + 0.281109i \(0.0907023\pi\)
−0.805655 + 0.592385i \(0.798187\pi\)
\(858\) −1036.96 + 628.858i −1.20858 + 0.732935i
\(859\) −48.7050 133.816i −0.0566997 0.155781i 0.908109 0.418734i \(-0.137526\pi\)
−0.964809 + 0.262953i \(0.915304\pi\)
\(860\) 177.073 46.7101i 0.205898 0.0543141i
\(861\) −234.342 1505.83i −0.272174 1.74893i
\(862\) 209.240 + 161.202i 0.242738 + 0.187010i
\(863\) 507.425i 0.587978i 0.955809 + 0.293989i \(0.0949830\pi\)
−0.955809 + 0.293989i \(0.905017\pi\)
\(864\) 273.873 + 819.445i 0.316983 + 0.948431i
\(865\) 1119.10 1.29375
\(866\) −370.914 + 481.446i −0.428307 + 0.555942i
\(867\) −126.403 + 326.657i −0.145793 + 0.376766i
\(868\) 113.322 + 429.590i 0.130555 + 0.494919i
\(869\) −582.400 + 211.976i −0.670196 + 0.243931i
\(870\) −108.973 + 198.503i −0.125256 + 0.228165i
\(871\) −1442.35 + 254.326i −1.65597 + 0.291993i
\(872\) 190.386 + 80.1630i 0.218332 + 0.0919301i
\(873\) 151.232 239.145i 0.173233 0.273935i
\(874\) −126.192 + 397.536i −0.144384 + 0.454847i
\(875\) −524.180 + 1440.17i −0.599063 + 1.64591i
\(876\) −217.292 24.2846i −0.248051 0.0277221i
\(877\) −855.706 718.023i −0.975720 0.818726i 0.00771826 0.999970i \(-0.497543\pi\)
−0.983438 + 0.181244i \(0.941988\pi\)
\(878\) 395.202 755.591i 0.450117 0.860582i
\(879\) −1352.00 + 744.670i −1.53811 + 0.847178i
\(880\) −294.628 519.590i −0.334805 0.590443i
\(881\) 220.266 381.511i 0.250018 0.433044i −0.713513 0.700642i \(-0.752897\pi\)
0.963530 + 0.267599i \(0.0862302\pi\)
\(882\) −1303.67 750.250i −1.47809 0.850624i
\(883\) −513.152 + 296.269i −0.581146 + 0.335525i −0.761589 0.648060i \(-0.775580\pi\)
0.180442 + 0.983586i \(0.442247\pi\)
\(884\) −740.184 1065.88i −0.837312 1.20575i
\(885\) 32.7880 166.286i 0.0370485 0.187894i
\(886\) 318.521 + 502.127i 0.359504 + 0.566735i
\(887\) −447.779 78.9555i −0.504824 0.0890140i −0.0845643 0.996418i \(-0.526950\pi\)
−0.420259 + 0.907404i \(0.638061\pi\)
\(888\) 999.656 + 249.023i 1.12574 + 0.280431i
\(889\) −875.561 + 734.683i −0.984883 + 0.826415i
\(890\) 233.949 51.3888i 0.262864 0.0577402i
\(891\) 465.199 471.452i 0.522109 0.529126i
\(892\) 13.8438 + 29.9917i 0.0155200 + 0.0336230i
\(893\) −683.761 + 573.743i −0.765689 + 0.642490i
\(894\) 85.1953 + 68.4147i 0.0952967 + 0.0765265i
\(895\) −268.972 47.4271i −0.300528 0.0529912i
\(896\) −1411.43 + 424.017i −1.57525 + 0.473233i
\(897\) 296.277 1502.59i 0.330298 1.67512i
\(898\) −524.426 1273.06i −0.583993 1.41767i
\(899\) −69.0630 + 39.8735i −0.0768220 + 0.0443532i
\(900\) −110.358 + 101.014i −0.122620 + 0.112238i
\(901\) −55.9560 + 96.9186i −0.0621043 + 0.107568i
\(902\) −95.5678 + 715.175i −0.105951 + 0.792877i
\(903\) −303.393 + 167.106i −0.335983 + 0.185057i
\(904\) 156.951 + 7.76895i 0.173618 + 0.00859397i
\(905\) −237.213 199.045i −0.262113 0.219939i
\(906\) −331.033 + 974.318i −0.365379 + 1.07541i
\(907\) −509.329 + 1399.37i −0.561554 + 1.54286i 0.255806 + 0.966728i \(0.417659\pi\)
−0.817360 + 0.576128i \(0.804563\pi\)
\(908\) 527.395 + 48.2058i 0.580832 + 0.0530901i
\(909\) 401.818 + 16.2002i 0.442044 + 0.0178220i
\(910\) 1919.41 1751.97i 2.10924 1.92525i
\(911\) 372.965 65.7638i 0.409402 0.0721886i 0.0348454 0.999393i \(-0.488906\pi\)
0.374556 + 0.927204i \(0.377795\pi\)
\(912\) −479.492 + 70.8101i −0.525759 + 0.0776427i
\(913\) −244.353 + 88.9373i −0.267638 + 0.0974122i
\(914\) 46.4092 + 1112.52i 0.0507759 + 1.21720i
\(915\) 169.839 438.906i 0.185616 0.479679i
\(916\) −637.827 + 1354.07i −0.696317 + 1.47824i
\(917\) −830.347 −0.905503
\(918\) 534.267 + 465.650i 0.581990 + 0.507244i
\(919\) 235.053i 0.255771i −0.991789 0.127885i \(-0.959181\pi\)
0.991789 0.127885i \(-0.0408190\pi\)
\(920\) 735.469 + 167.551i 0.799423 + 0.182120i
\(921\) 196.942 + 1265.50i 0.213834 + 1.37405i
\(922\) −28.7176 688.416i −0.0311471 0.746655i
\(923\) 215.036 + 590.806i 0.232975 + 0.640093i
\(924\) 779.423 + 817.815i 0.843532 + 0.885081i
\(925\) 30.9768 + 175.678i 0.0334884 + 0.189922i
\(926\) −920.514 + 840.213i −0.994075 + 0.907357i
\(927\) −1443.12 + 194.893i −1.55676 + 0.210240i
\(928\) −139.959 224.472i −0.150818 0.241887i
\(929\) 227.048 + 82.6386i 0.244400 + 0.0889543i 0.461316 0.887236i \(-0.347378\pi\)
−0.216916 + 0.976190i \(0.569600\pi\)
\(930\) 259.198 51.4841i 0.278708 0.0553593i
\(931\) 542.386 646.390i 0.582584 0.694297i
\(932\) 374.097 + 101.798i 0.401392 + 0.109225i
\(933\) −1418.23 28.5780i −1.52008 0.0306302i
\(934\) 157.216 1176.51i 0.168325 1.25965i
\(935\) −424.313 244.977i −0.453810 0.262007i
\(936\) 1720.27 456.361i 1.83789 0.487565i
\(937\) −244.489 423.467i −0.260927 0.451939i 0.705561 0.708649i \(-0.250695\pi\)
−0.966489 + 0.256710i \(0.917362\pi\)
\(938\) 519.670 + 1261.52i 0.554020 + 1.34490i
\(939\) −280.124 820.716i −0.298322 0.874032i
\(940\) 1137.02 + 1145.89i 1.20960 + 1.21903i
\(941\) 181.612 1029.97i 0.192999 1.09455i −0.722242 0.691641i \(-0.756888\pi\)
0.915240 0.402909i \(-0.132001\pi\)
\(942\) 966.217 375.438i 1.02571 0.398554i
\(943\) −585.699 698.009i −0.621102 0.740201i
\(944\) 150.676 + 128.440i 0.159615 + 0.136059i
\(945\) −782.591 + 1184.02i −0.828139 + 1.25293i
\(946\) 160.174 35.1835i 0.169317 0.0371918i
\(947\) −1167.17 1390.98i −1.23250 1.46883i −0.834097 0.551618i \(-0.814011\pi\)
−0.398399 0.917212i \(-0.630434\pi\)
\(948\) 907.739 57.4774i 0.957530 0.0606302i
\(949\) −78.2097 + 443.550i −0.0824128 + 0.467386i
\(950\) −44.9571 70.8719i −0.0473233 0.0746020i
\(951\) 516.825 591.314i 0.543455 0.621782i
\(952\) −821.874 + 886.494i −0.863313 + 0.931191i
\(953\) −541.513 937.929i −0.568220 0.984185i −0.996742 0.0806543i \(-0.974299\pi\)
0.428522 0.903531i \(-0.359034\pi\)
\(954\) −98.8241 117.441i −0.103589 0.123103i
\(955\) −19.1068 11.0313i −0.0200071 0.0115511i
\(956\) −156.017 1866.76i −0.163198 1.95267i
\(957\) −104.909 + 173.537i −0.109623 + 0.181335i
\(958\) −507.960 + 971.173i −0.530230 + 1.01375i
\(959\) −755.728 + 900.642i −0.788038 + 0.939147i
\(960\) 199.842 + 853.501i 0.208169 + 0.889064i
\(961\) −815.593 296.852i −0.848692 0.308899i
\(962\) 642.070 2022.68i 0.667432 2.10258i
\(963\) 1144.57 + 249.740i 1.18855 + 0.259336i
\(964\) −472.549 333.625i −0.490196 0.346084i
\(965\) 88.0670 + 499.453i 0.0912611 + 0.517568i
\(966\) −1426.37 + 30.7339i −1.47657 + 0.0318156i
\(967\) 93.2391 + 256.172i 0.0964210 + 0.264915i 0.978521 0.206148i \(-0.0660928\pi\)
−0.882100 + 0.471063i \(0.843871\pi\)
\(968\) 197.747 + 385.332i 0.204284 + 0.398070i
\(969\) −309.649 + 249.370i −0.319555 + 0.257348i
\(970\) 175.201 227.410i 0.180619 0.234444i
\(971\) 1287.81i 1.32627i −0.748498 0.663137i \(-0.769225\pi\)
0.748498 0.663137i \(-0.230775\pi\)
\(972\) −850.084 + 471.318i −0.874572 + 0.484895i
\(973\) 1826.87 1.87756
\(974\) −302.099 232.742i −0.310163 0.238955i
\(975\) 193.299 + 240.024i 0.198255 + 0.246178i
\(976\) 350.100 + 423.877i 0.358709 + 0.434300i
\(977\) −286.009 + 104.099i −0.292742 + 0.106549i −0.484216 0.874948i \(-0.660895\pi\)
0.191475 + 0.981498i \(0.438673\pi\)
\(978\) 2.99455 + 138.978i 0.00306191 + 0.142104i
\(979\) 211.237 37.2467i 0.215768 0.0380457i
\(980\) −1246.66 880.154i −1.27210 0.898116i
\(981\) −49.5421 + 227.054i −0.0505016 + 0.231452i
\(982\) 655.622 + 208.117i 0.667640 + 0.211932i
\(983\) 368.108 1011.37i 0.374474 1.02886i −0.599138 0.800646i \(-0.704490\pi\)
0.973611 0.228212i \(-0.0732880\pi\)
\(984\) 430.488 967.430i 0.437488 0.983161i
\(985\) −723.872 607.400i −0.734895 0.616650i
\(986\) −192.273 100.566i −0.195003 0.101994i
\(987\) −2612.87 1579.57i −2.64729 1.60037i
\(988\) 83.1552 + 994.960i 0.0841652 + 1.00704i
\(989\) −103.549 + 179.352i −0.104701 + 0.181347i
\(990\) 514.158 432.655i 0.519352 0.437025i
\(991\) 616.046 355.674i 0.621641 0.358904i −0.155867 0.987778i \(-0.549817\pi\)
0.777508 + 0.628874i \(0.216484\pi\)
\(992\) −95.6829 + 293.500i −0.0964545 + 0.295867i
\(993\) 144.895 + 126.643i 0.145917 + 0.127535i
\(994\) 494.577 313.732i 0.497563 0.315626i
\(995\) 495.655 + 87.3973i 0.498146 + 0.0878365i
\(996\) 380.853 24.1154i 0.382383 0.0242122i
\(997\) −128.599 + 107.907i −0.128985 + 0.108232i −0.704998 0.709209i \(-0.749052\pi\)
0.576013 + 0.817441i \(0.304608\pi\)
\(998\) 191.340 + 871.080i 0.191723 + 0.872825i
\(999\) −70.0097 + 1156.86i −0.0700798 + 1.15802i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 108.3.j.a.103.10 yes 204
3.2 odd 2 324.3.j.a.199.25 204
4.3 odd 2 inner 108.3.j.a.103.6 yes 204
12.11 even 2 324.3.j.a.199.29 204
27.11 odd 18 324.3.j.a.127.29 204
27.16 even 9 inner 108.3.j.a.43.6 204
108.11 even 18 324.3.j.a.127.25 204
108.43 odd 18 inner 108.3.j.a.43.10 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.3.j.a.43.6 204 27.16 even 9 inner
108.3.j.a.43.10 yes 204 108.43 odd 18 inner
108.3.j.a.103.6 yes 204 4.3 odd 2 inner
108.3.j.a.103.10 yes 204 1.1 even 1 trivial
324.3.j.a.127.25 204 108.11 even 18
324.3.j.a.127.29 204 27.11 odd 18
324.3.j.a.199.25 204 3.2 odd 2
324.3.j.a.199.29 204 12.11 even 2