gp: [N,k,chi] = [1062,6,Mod(1,1062)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1062.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1062, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
Newform invariants
sage: traces = [1,-4,0,16,-10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
59 59 5 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 5 + 10 T_{5} + 10 T 5 + 1 0
T5 + 10
acting on S 6 n e w ( Γ 0 ( 1062 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(1062)) S 6 n e w ( Γ 0 ( 1 0 6 2 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T T T
T
5 5 5
T + 10 T + 10 T + 1 0
T + 10
7 7 7
T − 144 T - 144 T − 1 4 4
T - 144
11 11 1 1
T + 668 T + 668 T + 6 6 8
T + 668
13 13 1 3
T + 270 T + 270 T + 2 7 0
T + 270
17 17 1 7
T − 758 T - 758 T − 7 5 8
T - 758
19 19 1 9
T − 868 T - 868 T − 8 6 8
T - 868
23 23 2 3
T + 784 T + 784 T + 7 8 4
T + 784
29 29 2 9
T − 4574 T - 4574 T − 4 5 7 4
T - 4574
31 31 3 1
T − 8948 T - 8948 T − 8 9 4 8
T - 8948
37 37 3 7
T + 670 T + 670 T + 6 7 0
T + 670
41 41 4 1
T − 7934 T - 7934 T − 7 9 3 4
T - 7934
43 43 4 3
T − 4884 T - 4884 T − 4 8 8 4
T - 4884
47 47 4 7
T + 24280 T + 24280 T + 2 4 2 8 0
T + 24280
53 53 5 3
T + 28962 T + 28962 T + 2 8 9 6 2
T + 28962
59 59 5 9
T − 3481 T - 3481 T − 3 4 8 1
T - 3481
61 61 6 1
T − 30490 T - 30490 T − 3 0 4 9 0
T - 30490
67 67 6 7
T + 30764 T + 30764 T + 3 0 7 6 4
T + 30764
71 71 7 1
T + 22452 T + 22452 T + 2 2 4 5 2
T + 22452
73 73 7 3
T + 20966 T + 20966 T + 2 0 9 6 6
T + 20966
79 79 7 9
T − 70520 T - 70520 T − 7 0 5 2 0
T - 70520
83 83 8 3
T + 29756 T + 29756 T + 2 9 7 5 6
T + 29756
89 89 8 9
T − 16470 T - 16470 T − 1 6 4 7 0
T - 16470
97 97 9 7
T − 18506 T - 18506 T − 1 8 5 0 6
T - 18506
show more
show less