Properties

Label 1062.6.a.a
Level 10621062
Weight 66
Character orbit 1062.a
Self dual yes
Analytic conductor 170.328170.328
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1062,6,Mod(1,1062)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1062.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1062, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: N N == 1062=23259 1062 = 2 \cdot 3^{2} \cdot 59
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1062.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,0,16,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 170.327616641170.327616641
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 354)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4q2+16q410q5+144q764q8+40q10668q11270q13576q14+256q16+758q17+868q19160q20+2672q22784q233025q25+15716q98+O(q100) q - 4 q^{2} + 16 q^{4} - 10 q^{5} + 144 q^{7} - 64 q^{8} + 40 q^{10} - 668 q^{11} - 270 q^{13} - 576 q^{14} + 256 q^{16} + 758 q^{17} + 868 q^{19} - 160 q^{20} + 2672 q^{22} - 784 q^{23} - 3025 q^{25}+ \cdots - 15716 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 0 16.0000 −10.0000 0 144.000 −64.0000 0 40.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
5959 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1062.6.a.a 1
3.b odd 2 1 354.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
354.6.a.a 1 3.b odd 2 1
1062.6.a.a 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+10 T_{5} + 10 acting on S6new(Γ0(1062))S_{6}^{\mathrm{new}}(\Gamma_0(1062)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+10 T + 10 Copy content Toggle raw display
77 T144 T - 144 Copy content Toggle raw display
1111 T+668 T + 668 Copy content Toggle raw display
1313 T+270 T + 270 Copy content Toggle raw display
1717 T758 T - 758 Copy content Toggle raw display
1919 T868 T - 868 Copy content Toggle raw display
2323 T+784 T + 784 Copy content Toggle raw display
2929 T4574 T - 4574 Copy content Toggle raw display
3131 T8948 T - 8948 Copy content Toggle raw display
3737 T+670 T + 670 Copy content Toggle raw display
4141 T7934 T - 7934 Copy content Toggle raw display
4343 T4884 T - 4884 Copy content Toggle raw display
4747 T+24280 T + 24280 Copy content Toggle raw display
5353 T+28962 T + 28962 Copy content Toggle raw display
5959 T3481 T - 3481 Copy content Toggle raw display
6161 T30490 T - 30490 Copy content Toggle raw display
6767 T+30764 T + 30764 Copy content Toggle raw display
7171 T+22452 T + 22452 Copy content Toggle raw display
7373 T+20966 T + 20966 Copy content Toggle raw display
7979 T70520 T - 70520 Copy content Toggle raw display
8383 T+29756 T + 29756 Copy content Toggle raw display
8989 T16470 T - 16470 Copy content Toggle raw display
9797 T18506 T - 18506 Copy content Toggle raw display
show more
show less