Properties

Label 1058.2.a.j.1.3
Level $1058$
Weight $2$
Character 1058.1
Self dual yes
Analytic conductor $8.448$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1058,2,Mod(1,1058)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1058.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1058, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-5,0,5,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.44817253385\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 1058.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.609264 q^{3} +1.00000 q^{4} +0.372786 q^{5} +0.609264 q^{6} +2.05954 q^{7} -1.00000 q^{8} -2.62880 q^{9} -0.372786 q^{10} +2.46519 q^{11} -0.609264 q^{12} -3.73269 q^{13} -2.05954 q^{14} -0.227125 q^{15} +1.00000 q^{16} -6.30909 q^{17} +2.62880 q^{18} -3.28887 q^{19} +0.372786 q^{20} -1.25480 q^{21} -2.46519 q^{22} +0.609264 q^{24} -4.86103 q^{25} +3.73269 q^{26} +3.42943 q^{27} +2.05954 q^{28} +7.13278 q^{29} +0.227125 q^{30} +5.84511 q^{31} -1.00000 q^{32} -1.50195 q^{33} +6.30909 q^{34} +0.767766 q^{35} -2.62880 q^{36} -4.67961 q^{37} +3.28887 q^{38} +2.27420 q^{39} -0.372786 q^{40} -4.78084 q^{41} +1.25480 q^{42} -11.1379 q^{43} +2.46519 q^{44} -0.979978 q^{45} +2.44502 q^{47} -0.609264 q^{48} -2.75831 q^{49} +4.86103 q^{50} +3.84391 q^{51} -3.73269 q^{52} +6.04752 q^{53} -3.42943 q^{54} +0.918986 q^{55} -2.05954 q^{56} +2.00379 q^{57} -7.13278 q^{58} -11.8100 q^{59} -0.227125 q^{60} +1.68675 q^{61} -5.84511 q^{62} -5.41411 q^{63} +1.00000 q^{64} -1.39149 q^{65} +1.50195 q^{66} -14.0947 q^{67} -6.30909 q^{68} -0.767766 q^{70} +4.03869 q^{71} +2.62880 q^{72} +8.69002 q^{73} +4.67961 q^{74} +2.96165 q^{75} -3.28887 q^{76} +5.07714 q^{77} -2.27420 q^{78} -2.38398 q^{79} +0.372786 q^{80} +5.79696 q^{81} +4.78084 q^{82} +4.23705 q^{83} -1.25480 q^{84} -2.35194 q^{85} +11.1379 q^{86} -4.34575 q^{87} -2.46519 q^{88} -9.03115 q^{89} +0.979978 q^{90} -7.68762 q^{91} -3.56122 q^{93} -2.44502 q^{94} -1.22605 q^{95} +0.609264 q^{96} -11.3067 q^{97} +2.75831 q^{98} -6.48047 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 5 q^{4} - 2 q^{5} - 9 q^{7} - 5 q^{8} + 7 q^{9} + 2 q^{10} - q^{11} + q^{13} + 9 q^{14} - 11 q^{15} + 5 q^{16} + q^{17} - 7 q^{18} - 10 q^{19} - 2 q^{20} + q^{22} - 11 q^{25} - q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.609264 −0.351759 −0.175880 0.984412i \(-0.556277\pi\)
−0.175880 + 0.984412i \(0.556277\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.372786 0.166715 0.0833574 0.996520i \(-0.473436\pi\)
0.0833574 + 0.996520i \(0.473436\pi\)
\(6\) 0.609264 0.248731
\(7\) 2.05954 0.778432 0.389216 0.921147i \(-0.372746\pi\)
0.389216 + 0.921147i \(0.372746\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.62880 −0.876266
\(10\) −0.372786 −0.117885
\(11\) 2.46519 0.743282 0.371641 0.928377i \(-0.378795\pi\)
0.371641 + 0.928377i \(0.378795\pi\)
\(12\) −0.609264 −0.175880
\(13\) −3.73269 −1.03526 −0.517631 0.855604i \(-0.673186\pi\)
−0.517631 + 0.855604i \(0.673186\pi\)
\(14\) −2.05954 −0.550435
\(15\) −0.227125 −0.0586434
\(16\) 1.00000 0.250000
\(17\) −6.30909 −1.53018 −0.765090 0.643924i \(-0.777305\pi\)
−0.765090 + 0.643924i \(0.777305\pi\)
\(18\) 2.62880 0.619613
\(19\) −3.28887 −0.754520 −0.377260 0.926107i \(-0.623134\pi\)
−0.377260 + 0.926107i \(0.623134\pi\)
\(20\) 0.372786 0.0833574
\(21\) −1.25480 −0.273820
\(22\) −2.46519 −0.525579
\(23\) 0 0
\(24\) 0.609264 0.124366
\(25\) −4.86103 −0.972206
\(26\) 3.73269 0.732041
\(27\) 3.42943 0.659993
\(28\) 2.05954 0.389216
\(29\) 7.13278 1.32452 0.662262 0.749272i \(-0.269597\pi\)
0.662262 + 0.749272i \(0.269597\pi\)
\(30\) 0.227125 0.0414672
\(31\) 5.84511 1.04981 0.524907 0.851160i \(-0.324100\pi\)
0.524907 + 0.851160i \(0.324100\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.50195 −0.261456
\(34\) 6.30909 1.08200
\(35\) 0.767766 0.129776
\(36\) −2.62880 −0.438133
\(37\) −4.67961 −0.769323 −0.384662 0.923058i \(-0.625682\pi\)
−0.384662 + 0.923058i \(0.625682\pi\)
\(38\) 3.28887 0.533526
\(39\) 2.27420 0.364163
\(40\) −0.372786 −0.0589426
\(41\) −4.78084 −0.746642 −0.373321 0.927702i \(-0.621781\pi\)
−0.373321 + 0.927702i \(0.621781\pi\)
\(42\) 1.25480 0.193620
\(43\) −11.1379 −1.69851 −0.849256 0.527981i \(-0.822949\pi\)
−0.849256 + 0.527981i \(0.822949\pi\)
\(44\) 2.46519 0.371641
\(45\) −0.979978 −0.146086
\(46\) 0 0
\(47\) 2.44502 0.356643 0.178322 0.983972i \(-0.442933\pi\)
0.178322 + 0.983972i \(0.442933\pi\)
\(48\) −0.609264 −0.0879398
\(49\) −2.75831 −0.394044
\(50\) 4.86103 0.687454
\(51\) 3.84391 0.538254
\(52\) −3.73269 −0.517631
\(53\) 6.04752 0.830691 0.415345 0.909664i \(-0.363661\pi\)
0.415345 + 0.909664i \(0.363661\pi\)
\(54\) −3.42943 −0.466686
\(55\) 0.918986 0.123916
\(56\) −2.05954 −0.275217
\(57\) 2.00379 0.265409
\(58\) −7.13278 −0.936580
\(59\) −11.8100 −1.53754 −0.768768 0.639528i \(-0.779130\pi\)
−0.768768 + 0.639528i \(0.779130\pi\)
\(60\) −0.227125 −0.0293217
\(61\) 1.68675 0.215966 0.107983 0.994153i \(-0.465561\pi\)
0.107983 + 0.994153i \(0.465561\pi\)
\(62\) −5.84511 −0.742330
\(63\) −5.41411 −0.682113
\(64\) 1.00000 0.125000
\(65\) −1.39149 −0.172594
\(66\) 1.50195 0.184877
\(67\) −14.0947 −1.72194 −0.860969 0.508658i \(-0.830142\pi\)
−0.860969 + 0.508658i \(0.830142\pi\)
\(68\) −6.30909 −0.765090
\(69\) 0 0
\(70\) −0.767766 −0.0917656
\(71\) 4.03869 0.479304 0.239652 0.970859i \(-0.422967\pi\)
0.239652 + 0.970859i \(0.422967\pi\)
\(72\) 2.62880 0.309807
\(73\) 8.69002 1.01709 0.508545 0.861035i \(-0.330183\pi\)
0.508545 + 0.861035i \(0.330183\pi\)
\(74\) 4.67961 0.543994
\(75\) 2.96165 0.341982
\(76\) −3.28887 −0.377260
\(77\) 5.07714 0.578594
\(78\) −2.27420 −0.257502
\(79\) −2.38398 −0.268218 −0.134109 0.990967i \(-0.542817\pi\)
−0.134109 + 0.990967i \(0.542817\pi\)
\(80\) 0.372786 0.0416787
\(81\) 5.79696 0.644107
\(82\) 4.78084 0.527956
\(83\) 4.23705 0.465076 0.232538 0.972587i \(-0.425297\pi\)
0.232538 + 0.972587i \(0.425297\pi\)
\(84\) −1.25480 −0.136910
\(85\) −2.35194 −0.255104
\(86\) 11.1379 1.20103
\(87\) −4.34575 −0.465913
\(88\) −2.46519 −0.262790
\(89\) −9.03115 −0.957300 −0.478650 0.878006i \(-0.658874\pi\)
−0.478650 + 0.878006i \(0.658874\pi\)
\(90\) 0.979978 0.103299
\(91\) −7.68762 −0.805881
\(92\) 0 0
\(93\) −3.56122 −0.369281
\(94\) −2.44502 −0.252185
\(95\) −1.22605 −0.125790
\(96\) 0.609264 0.0621828
\(97\) −11.3067 −1.14802 −0.574010 0.818848i \(-0.694613\pi\)
−0.574010 + 0.818848i \(0.694613\pi\)
\(98\) 2.75831 0.278631
\(99\) −6.48047 −0.651312
\(100\) −4.86103 −0.486103
\(101\) −8.05177 −0.801181 −0.400590 0.916257i \(-0.631195\pi\)
−0.400590 + 0.916257i \(0.631195\pi\)
\(102\) −3.84391 −0.380603
\(103\) −14.7518 −1.45354 −0.726771 0.686879i \(-0.758980\pi\)
−0.726771 + 0.686879i \(0.758980\pi\)
\(104\) 3.73269 0.366020
\(105\) −0.467772 −0.0456499
\(106\) −6.04752 −0.587387
\(107\) −6.68158 −0.645932 −0.322966 0.946411i \(-0.604680\pi\)
−0.322966 + 0.946411i \(0.604680\pi\)
\(108\) 3.42943 0.329997
\(109\) −4.07970 −0.390764 −0.195382 0.980727i \(-0.562595\pi\)
−0.195382 + 0.980727i \(0.562595\pi\)
\(110\) −0.918986 −0.0876219
\(111\) 2.85112 0.270616
\(112\) 2.05954 0.194608
\(113\) 5.58523 0.525414 0.262707 0.964876i \(-0.415385\pi\)
0.262707 + 0.964876i \(0.415385\pi\)
\(114\) −2.00379 −0.187673
\(115\) 0 0
\(116\) 7.13278 0.662262
\(117\) 9.81249 0.907165
\(118\) 11.8100 1.08720
\(119\) −12.9938 −1.19114
\(120\) 0.227125 0.0207336
\(121\) −4.92286 −0.447532
\(122\) −1.68675 −0.152711
\(123\) 2.91280 0.262638
\(124\) 5.84511 0.524907
\(125\) −3.67605 −0.328796
\(126\) 5.41411 0.482327
\(127\) −7.54884 −0.669851 −0.334926 0.942245i \(-0.608711\pi\)
−0.334926 + 0.942245i \(0.608711\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 6.78592 0.597467
\(130\) 1.39149 0.122042
\(131\) −3.27067 −0.285760 −0.142880 0.989740i \(-0.545636\pi\)
−0.142880 + 0.989740i \(0.545636\pi\)
\(132\) −1.50195 −0.130728
\(133\) −6.77356 −0.587342
\(134\) 14.0947 1.21759
\(135\) 1.27844 0.110031
\(136\) 6.30909 0.541000
\(137\) 15.9297 1.36096 0.680482 0.732765i \(-0.261771\pi\)
0.680482 + 0.732765i \(0.261771\pi\)
\(138\) 0 0
\(139\) −2.85447 −0.242113 −0.121056 0.992646i \(-0.538628\pi\)
−0.121056 + 0.992646i \(0.538628\pi\)
\(140\) 0.767766 0.0648881
\(141\) −1.48967 −0.125453
\(142\) −4.03869 −0.338919
\(143\) −9.20178 −0.769491
\(144\) −2.62880 −0.219066
\(145\) 2.65900 0.220818
\(146\) −8.69002 −0.719191
\(147\) 1.68054 0.138608
\(148\) −4.67961 −0.384662
\(149\) −2.91873 −0.239112 −0.119556 0.992827i \(-0.538147\pi\)
−0.119556 + 0.992827i \(0.538147\pi\)
\(150\) −2.96165 −0.241818
\(151\) 24.5622 1.99884 0.999421 0.0340202i \(-0.0108311\pi\)
0.999421 + 0.0340202i \(0.0108311\pi\)
\(152\) 3.28887 0.266763
\(153\) 16.5853 1.34084
\(154\) −5.07714 −0.409128
\(155\) 2.17897 0.175019
\(156\) 2.27420 0.182081
\(157\) −13.1045 −1.04585 −0.522927 0.852378i \(-0.675160\pi\)
−0.522927 + 0.852378i \(0.675160\pi\)
\(158\) 2.38398 0.189659
\(159\) −3.68454 −0.292203
\(160\) −0.372786 −0.0294713
\(161\) 0 0
\(162\) −5.79696 −0.455452
\(163\) 4.61907 0.361793 0.180897 0.983502i \(-0.442100\pi\)
0.180897 + 0.983502i \(0.442100\pi\)
\(164\) −4.78084 −0.373321
\(165\) −0.559905 −0.0435886
\(166\) −4.23705 −0.328859
\(167\) −3.93949 −0.304847 −0.152424 0.988315i \(-0.548708\pi\)
−0.152424 + 0.988315i \(0.548708\pi\)
\(168\) 1.25480 0.0968102
\(169\) 0.932979 0.0717677
\(170\) 2.35194 0.180385
\(171\) 8.64578 0.661160
\(172\) −11.1379 −0.849256
\(173\) 19.0007 1.44460 0.722298 0.691582i \(-0.243086\pi\)
0.722298 + 0.691582i \(0.243086\pi\)
\(174\) 4.34575 0.329450
\(175\) −10.0115 −0.756796
\(176\) 2.46519 0.185820
\(177\) 7.19544 0.540842
\(178\) 9.03115 0.676914
\(179\) 2.39943 0.179342 0.0896708 0.995971i \(-0.471419\pi\)
0.0896708 + 0.995971i \(0.471419\pi\)
\(180\) −0.979978 −0.0730432
\(181\) 26.0063 1.93304 0.966518 0.256600i \(-0.0826024\pi\)
0.966518 + 0.256600i \(0.0826024\pi\)
\(182\) 7.68762 0.569844
\(183\) −1.02768 −0.0759681
\(184\) 0 0
\(185\) −1.74449 −0.128258
\(186\) 3.56122 0.261121
\(187\) −15.5531 −1.13735
\(188\) 2.44502 0.178322
\(189\) 7.06303 0.513760
\(190\) 1.22605 0.0889467
\(191\) −10.4691 −0.757521 −0.378760 0.925495i \(-0.623650\pi\)
−0.378760 + 0.925495i \(0.623650\pi\)
\(192\) −0.609264 −0.0439699
\(193\) 0.771242 0.0555152 0.0277576 0.999615i \(-0.491163\pi\)
0.0277576 + 0.999615i \(0.491163\pi\)
\(194\) 11.3067 0.811773
\(195\) 0.847787 0.0607113
\(196\) −2.75831 −0.197022
\(197\) 5.20731 0.371005 0.185503 0.982644i \(-0.440609\pi\)
0.185503 + 0.982644i \(0.440609\pi\)
\(198\) 6.48047 0.460547
\(199\) −23.3427 −1.65472 −0.827361 0.561670i \(-0.810159\pi\)
−0.827361 + 0.561670i \(0.810159\pi\)
\(200\) 4.86103 0.343727
\(201\) 8.58738 0.605707
\(202\) 8.05177 0.566520
\(203\) 14.6902 1.03105
\(204\) 3.84391 0.269127
\(205\) −1.78223 −0.124476
\(206\) 14.7518 1.02781
\(207\) 0 0
\(208\) −3.73269 −0.258816
\(209\) −8.10769 −0.560821
\(210\) 0.467772 0.0322794
\(211\) −8.69603 −0.598659 −0.299330 0.954150i \(-0.596763\pi\)
−0.299330 + 0.954150i \(0.596763\pi\)
\(212\) 6.04752 0.415345
\(213\) −2.46063 −0.168600
\(214\) 6.68158 0.456743
\(215\) −4.15204 −0.283167
\(216\) −3.42943 −0.233343
\(217\) 12.0382 0.817208
\(218\) 4.07970 0.276312
\(219\) −5.29452 −0.357771
\(220\) 0.918986 0.0619580
\(221\) 23.5499 1.58414
\(222\) −2.85112 −0.191355
\(223\) −3.84115 −0.257223 −0.128611 0.991695i \(-0.541052\pi\)
−0.128611 + 0.991695i \(0.541052\pi\)
\(224\) −2.05954 −0.137609
\(225\) 12.7787 0.851911
\(226\) −5.58523 −0.371524
\(227\) 2.03403 0.135003 0.0675016 0.997719i \(-0.478497\pi\)
0.0675016 + 0.997719i \(0.478497\pi\)
\(228\) 2.00379 0.132705
\(229\) 27.4406 1.81333 0.906664 0.421853i \(-0.138620\pi\)
0.906664 + 0.421853i \(0.138620\pi\)
\(230\) 0 0
\(231\) −3.09332 −0.203526
\(232\) −7.13278 −0.468290
\(233\) 7.04480 0.461520 0.230760 0.973011i \(-0.425879\pi\)
0.230760 + 0.973011i \(0.425879\pi\)
\(234\) −9.81249 −0.641462
\(235\) 0.911470 0.0594577
\(236\) −11.8100 −0.768768
\(237\) 1.45247 0.0943482
\(238\) 12.9938 0.842264
\(239\) 26.0807 1.68702 0.843510 0.537113i \(-0.180485\pi\)
0.843510 + 0.537113i \(0.180485\pi\)
\(240\) −0.227125 −0.0146609
\(241\) 1.39021 0.0895515 0.0447757 0.998997i \(-0.485743\pi\)
0.0447757 + 0.998997i \(0.485743\pi\)
\(242\) 4.92286 0.316453
\(243\) −13.8202 −0.886564
\(244\) 1.68675 0.107983
\(245\) −1.02826 −0.0656929
\(246\) −2.91280 −0.185713
\(247\) 12.2764 0.781126
\(248\) −5.84511 −0.371165
\(249\) −2.58148 −0.163595
\(250\) 3.67605 0.232494
\(251\) 26.0912 1.64686 0.823431 0.567416i \(-0.192057\pi\)
0.823431 + 0.567416i \(0.192057\pi\)
\(252\) −5.41411 −0.341057
\(253\) 0 0
\(254\) 7.54884 0.473656
\(255\) 1.43295 0.0897350
\(256\) 1.00000 0.0625000
\(257\) −27.9953 −1.74630 −0.873149 0.487453i \(-0.837926\pi\)
−0.873149 + 0.487453i \(0.837926\pi\)
\(258\) −6.78592 −0.422473
\(259\) −9.63783 −0.598866
\(260\) −1.39149 −0.0862968
\(261\) −18.7506 −1.16063
\(262\) 3.27067 0.202063
\(263\) 9.43346 0.581692 0.290846 0.956770i \(-0.406063\pi\)
0.290846 + 0.956770i \(0.406063\pi\)
\(264\) 1.50195 0.0924387
\(265\) 2.25443 0.138488
\(266\) 6.77356 0.415314
\(267\) 5.50236 0.336739
\(268\) −14.0947 −0.860969
\(269\) 17.3711 1.05914 0.529568 0.848268i \(-0.322354\pi\)
0.529568 + 0.848268i \(0.322354\pi\)
\(270\) −1.27844 −0.0778034
\(271\) 17.9046 1.08763 0.543813 0.839206i \(-0.316980\pi\)
0.543813 + 0.839206i \(0.316980\pi\)
\(272\) −6.30909 −0.382545
\(273\) 4.68379 0.283476
\(274\) −15.9297 −0.962346
\(275\) −11.9833 −0.722623
\(276\) 0 0
\(277\) −15.2821 −0.918212 −0.459106 0.888382i \(-0.651830\pi\)
−0.459106 + 0.888382i \(0.651830\pi\)
\(278\) 2.85447 0.171200
\(279\) −15.3656 −0.919915
\(280\) −0.767766 −0.0458828
\(281\) 5.92708 0.353580 0.176790 0.984249i \(-0.443429\pi\)
0.176790 + 0.984249i \(0.443429\pi\)
\(282\) 1.48967 0.0887083
\(283\) 1.56356 0.0929440 0.0464720 0.998920i \(-0.485202\pi\)
0.0464720 + 0.998920i \(0.485202\pi\)
\(284\) 4.03869 0.239652
\(285\) 0.746986 0.0442476
\(286\) 9.20178 0.544113
\(287\) −9.84632 −0.581210
\(288\) 2.62880 0.154903
\(289\) 22.8046 1.34145
\(290\) −2.65900 −0.156142
\(291\) 6.88876 0.403826
\(292\) 8.69002 0.508545
\(293\) 2.05817 0.120239 0.0601197 0.998191i \(-0.480852\pi\)
0.0601197 + 0.998191i \(0.480852\pi\)
\(294\) −1.68054 −0.0980109
\(295\) −4.40261 −0.256330
\(296\) 4.67961 0.271997
\(297\) 8.45417 0.490561
\(298\) 2.91873 0.169078
\(299\) 0 0
\(300\) 2.96165 0.170991
\(301\) −22.9389 −1.32218
\(302\) −24.5622 −1.41339
\(303\) 4.90566 0.281823
\(304\) −3.28887 −0.188630
\(305\) 0.628797 0.0360048
\(306\) −16.5853 −0.948120
\(307\) 10.8341 0.618333 0.309167 0.951008i \(-0.399950\pi\)
0.309167 + 0.951008i \(0.399950\pi\)
\(308\) 5.07714 0.289297
\(309\) 8.98778 0.511297
\(310\) −2.17897 −0.123757
\(311\) −22.8972 −1.29838 −0.649191 0.760625i \(-0.724893\pi\)
−0.649191 + 0.760625i \(0.724893\pi\)
\(312\) −2.27420 −0.128751
\(313\) −23.3481 −1.31971 −0.659856 0.751392i \(-0.729383\pi\)
−0.659856 + 0.751392i \(0.729383\pi\)
\(314\) 13.1045 0.739530
\(315\) −2.01830 −0.113718
\(316\) −2.38398 −0.134109
\(317\) 0.503430 0.0282754 0.0141377 0.999900i \(-0.495500\pi\)
0.0141377 + 0.999900i \(0.495500\pi\)
\(318\) 3.68454 0.206619
\(319\) 17.5836 0.984494
\(320\) 0.372786 0.0208393
\(321\) 4.07085 0.227213
\(322\) 0 0
\(323\) 20.7498 1.15455
\(324\) 5.79696 0.322053
\(325\) 18.1447 1.00649
\(326\) −4.61907 −0.255827
\(327\) 2.48562 0.137455
\(328\) 4.78084 0.263978
\(329\) 5.03562 0.277623
\(330\) 0.559905 0.0308218
\(331\) 20.2032 1.11047 0.555235 0.831694i \(-0.312628\pi\)
0.555235 + 0.831694i \(0.312628\pi\)
\(332\) 4.23705 0.232538
\(333\) 12.3017 0.674131
\(334\) 3.93949 0.215559
\(335\) −5.25429 −0.287072
\(336\) −1.25480 −0.0684551
\(337\) 4.10576 0.223655 0.111827 0.993728i \(-0.464330\pi\)
0.111827 + 0.993728i \(0.464330\pi\)
\(338\) −0.932979 −0.0507474
\(339\) −3.40288 −0.184819
\(340\) −2.35194 −0.127552
\(341\) 14.4093 0.780307
\(342\) −8.64578 −0.467510
\(343\) −20.0976 −1.08517
\(344\) 11.1379 0.600515
\(345\) 0 0
\(346\) −19.0007 −1.02148
\(347\) 24.4155 1.31069 0.655347 0.755328i \(-0.272522\pi\)
0.655347 + 0.755328i \(0.272522\pi\)
\(348\) −4.34575 −0.232957
\(349\) 17.2951 0.925785 0.462893 0.886414i \(-0.346812\pi\)
0.462893 + 0.886414i \(0.346812\pi\)
\(350\) 10.0115 0.535136
\(351\) −12.8010 −0.683266
\(352\) −2.46519 −0.131395
\(353\) −9.57877 −0.509827 −0.254913 0.966964i \(-0.582047\pi\)
−0.254913 + 0.966964i \(0.582047\pi\)
\(354\) −7.19544 −0.382433
\(355\) 1.50557 0.0799071
\(356\) −9.03115 −0.478650
\(357\) 7.91667 0.418994
\(358\) −2.39943 −0.126814
\(359\) 0.125276 0.00661183 0.00330591 0.999995i \(-0.498948\pi\)
0.00330591 + 0.999995i \(0.498948\pi\)
\(360\) 0.979978 0.0516494
\(361\) −8.18330 −0.430700
\(362\) −26.0063 −1.36686
\(363\) 2.99932 0.157424
\(364\) −7.68762 −0.402941
\(365\) 3.23952 0.169564
\(366\) 1.02768 0.0537176
\(367\) −4.23470 −0.221050 −0.110525 0.993873i \(-0.535253\pi\)
−0.110525 + 0.993873i \(0.535253\pi\)
\(368\) 0 0
\(369\) 12.5679 0.654257
\(370\) 1.74449 0.0906918
\(371\) 12.4551 0.646636
\(372\) −3.56122 −0.184641
\(373\) −0.626453 −0.0324365 −0.0162183 0.999868i \(-0.505163\pi\)
−0.0162183 + 0.999868i \(0.505163\pi\)
\(374\) 15.5531 0.804231
\(375\) 2.23969 0.115657
\(376\) −2.44502 −0.126093
\(377\) −26.6245 −1.37123
\(378\) −7.06303 −0.363283
\(379\) −10.5210 −0.540427 −0.270214 0.962800i \(-0.587094\pi\)
−0.270214 + 0.962800i \(0.587094\pi\)
\(380\) −1.22605 −0.0628948
\(381\) 4.59924 0.235626
\(382\) 10.4691 0.535648
\(383\) −15.3699 −0.785364 −0.392682 0.919674i \(-0.628453\pi\)
−0.392682 + 0.919674i \(0.628453\pi\)
\(384\) 0.609264 0.0310914
\(385\) 1.89269 0.0964602
\(386\) −0.771242 −0.0392552
\(387\) 29.2792 1.48835
\(388\) −11.3067 −0.574010
\(389\) 21.7347 1.10200 0.550998 0.834507i \(-0.314247\pi\)
0.550998 + 0.834507i \(0.314247\pi\)
\(390\) −0.847787 −0.0429294
\(391\) 0 0
\(392\) 2.75831 0.139315
\(393\) 1.99270 0.100519
\(394\) −5.20731 −0.262340
\(395\) −0.888712 −0.0447160
\(396\) −6.48047 −0.325656
\(397\) 10.1590 0.509866 0.254933 0.966959i \(-0.417947\pi\)
0.254933 + 0.966959i \(0.417947\pi\)
\(398\) 23.3427 1.17007
\(399\) 4.12689 0.206603
\(400\) −4.86103 −0.243052
\(401\) −31.8980 −1.59291 −0.796456 0.604696i \(-0.793294\pi\)
−0.796456 + 0.604696i \(0.793294\pi\)
\(402\) −8.58738 −0.428300
\(403\) −21.8180 −1.08683
\(404\) −8.05177 −0.400590
\(405\) 2.16102 0.107382
\(406\) −14.6902 −0.729064
\(407\) −11.5361 −0.571824
\(408\) −3.84391 −0.190302
\(409\) −13.2147 −0.653424 −0.326712 0.945124i \(-0.605941\pi\)
−0.326712 + 0.945124i \(0.605941\pi\)
\(410\) 1.78223 0.0880180
\(411\) −9.70538 −0.478731
\(412\) −14.7518 −0.726771
\(413\) −24.3232 −1.19687
\(414\) 0 0
\(415\) 1.57951 0.0775351
\(416\) 3.73269 0.183010
\(417\) 1.73913 0.0851654
\(418\) 8.10769 0.396560
\(419\) 4.20296 0.205328 0.102664 0.994716i \(-0.467263\pi\)
0.102664 + 0.994716i \(0.467263\pi\)
\(420\) −0.467772 −0.0228250
\(421\) 7.03533 0.342881 0.171440 0.985194i \(-0.445158\pi\)
0.171440 + 0.985194i \(0.445158\pi\)
\(422\) 8.69603 0.423316
\(423\) −6.42747 −0.312514
\(424\) −6.04752 −0.293694
\(425\) 30.6687 1.48765
\(426\) 2.46063 0.119218
\(427\) 3.47393 0.168115
\(428\) −6.68158 −0.322966
\(429\) 5.60632 0.270676
\(430\) 4.15204 0.200229
\(431\) 36.8195 1.77353 0.886766 0.462219i \(-0.152947\pi\)
0.886766 + 0.462219i \(0.152947\pi\)
\(432\) 3.42943 0.164998
\(433\) −27.2275 −1.30847 −0.654235 0.756291i \(-0.727009\pi\)
−0.654235 + 0.756291i \(0.727009\pi\)
\(434\) −12.0382 −0.577854
\(435\) −1.62003 −0.0776746
\(436\) −4.07970 −0.195382
\(437\) 0 0
\(438\) 5.29452 0.252982
\(439\) −24.1877 −1.15441 −0.577207 0.816598i \(-0.695857\pi\)
−0.577207 + 0.816598i \(0.695857\pi\)
\(440\) −0.918986 −0.0438109
\(441\) 7.25102 0.345287
\(442\) −23.5499 −1.12015
\(443\) 15.4275 0.732982 0.366491 0.930422i \(-0.380559\pi\)
0.366491 + 0.930422i \(0.380559\pi\)
\(444\) 2.85112 0.135308
\(445\) −3.36668 −0.159596
\(446\) 3.84115 0.181884
\(447\) 1.77828 0.0841097
\(448\) 2.05954 0.0973040
\(449\) 17.3241 0.817574 0.408787 0.912630i \(-0.365952\pi\)
0.408787 + 0.912630i \(0.365952\pi\)
\(450\) −12.7787 −0.602392
\(451\) −11.7857 −0.554965
\(452\) 5.58523 0.262707
\(453\) −14.9649 −0.703111
\(454\) −2.03403 −0.0954617
\(455\) −2.86583 −0.134352
\(456\) −2.00379 −0.0938363
\(457\) −6.86896 −0.321317 −0.160658 0.987010i \(-0.551362\pi\)
−0.160658 + 0.987010i \(0.551362\pi\)
\(458\) −27.4406 −1.28222
\(459\) −21.6366 −1.00991
\(460\) 0 0
\(461\) −0.341091 −0.0158862 −0.00794309 0.999968i \(-0.502528\pi\)
−0.00794309 + 0.999968i \(0.502528\pi\)
\(462\) 3.09332 0.143914
\(463\) 16.3184 0.758378 0.379189 0.925319i \(-0.376203\pi\)
0.379189 + 0.925319i \(0.376203\pi\)
\(464\) 7.13278 0.331131
\(465\) −1.32757 −0.0615647
\(466\) −7.04480 −0.326344
\(467\) −36.2344 −1.67673 −0.838365 0.545109i \(-0.816488\pi\)
−0.838365 + 0.545109i \(0.816488\pi\)
\(468\) 9.81249 0.453582
\(469\) −29.0285 −1.34041
\(470\) −0.911470 −0.0420430
\(471\) 7.98411 0.367888
\(472\) 11.8100 0.543601
\(473\) −27.4570 −1.26247
\(474\) −1.45247 −0.0667143
\(475\) 15.9873 0.733549
\(476\) −12.9938 −0.595570
\(477\) −15.8977 −0.727906
\(478\) −26.0807 −1.19290
\(479\) −12.7557 −0.582823 −0.291411 0.956598i \(-0.594125\pi\)
−0.291411 + 0.956598i \(0.594125\pi\)
\(480\) 0.227125 0.0103668
\(481\) 17.4675 0.796451
\(482\) −1.39021 −0.0633224
\(483\) 0 0
\(484\) −4.92286 −0.223766
\(485\) −4.21497 −0.191392
\(486\) 13.8202 0.626895
\(487\) 33.5403 1.51985 0.759927 0.650008i \(-0.225235\pi\)
0.759927 + 0.650008i \(0.225235\pi\)
\(488\) −1.68675 −0.0763557
\(489\) −2.81423 −0.127264
\(490\) 1.02826 0.0464519
\(491\) −36.8776 −1.66426 −0.832132 0.554577i \(-0.812880\pi\)
−0.832132 + 0.554577i \(0.812880\pi\)
\(492\) 2.91280 0.131319
\(493\) −45.0014 −2.02676
\(494\) −12.2764 −0.552339
\(495\) −2.41583 −0.108583
\(496\) 5.84511 0.262453
\(497\) 8.31783 0.373106
\(498\) 2.58148 0.115679
\(499\) 1.81660 0.0813223 0.0406611 0.999173i \(-0.487054\pi\)
0.0406611 + 0.999173i \(0.487054\pi\)
\(500\) −3.67605 −0.164398
\(501\) 2.40019 0.107233
\(502\) −26.0912 −1.16451
\(503\) −43.2260 −1.92735 −0.963676 0.267076i \(-0.913943\pi\)
−0.963676 + 0.267076i \(0.913943\pi\)
\(504\) 5.41411 0.241163
\(505\) −3.00158 −0.133569
\(506\) 0 0
\(507\) −0.568431 −0.0252449
\(508\) −7.54884 −0.334926
\(509\) 23.6091 1.04646 0.523228 0.852193i \(-0.324728\pi\)
0.523228 + 0.852193i \(0.324728\pi\)
\(510\) −1.43295 −0.0634522
\(511\) 17.8974 0.791736
\(512\) −1.00000 −0.0441942
\(513\) −11.2790 −0.497978
\(514\) 27.9953 1.23482
\(515\) −5.49928 −0.242327
\(516\) 6.78592 0.298733
\(517\) 6.02744 0.265087
\(518\) 9.63783 0.423462
\(519\) −11.5765 −0.508150
\(520\) 1.39149 0.0610210
\(521\) 13.2531 0.580627 0.290314 0.956932i \(-0.406240\pi\)
0.290314 + 0.956932i \(0.406240\pi\)
\(522\) 18.7506 0.820693
\(523\) −16.5018 −0.721572 −0.360786 0.932649i \(-0.617491\pi\)
−0.360786 + 0.932649i \(0.617491\pi\)
\(524\) −3.27067 −0.142880
\(525\) 6.09964 0.266210
\(526\) −9.43346 −0.411318
\(527\) −36.8774 −1.60640
\(528\) −1.50195 −0.0653640
\(529\) 0 0
\(530\) −2.25443 −0.0979261
\(531\) 31.0462 1.34729
\(532\) −6.77356 −0.293671
\(533\) 17.8454 0.772970
\(534\) −5.50236 −0.238110
\(535\) −2.49080 −0.107686
\(536\) 14.0947 0.608797
\(537\) −1.46189 −0.0630850
\(538\) −17.3711 −0.748922
\(539\) −6.79974 −0.292885
\(540\) 1.27844 0.0550153
\(541\) −17.5752 −0.755615 −0.377808 0.925884i \(-0.623322\pi\)
−0.377808 + 0.925884i \(0.623322\pi\)
\(542\) −17.9046 −0.769068
\(543\) −15.8447 −0.679963
\(544\) 6.30909 0.270500
\(545\) −1.52085 −0.0651462
\(546\) −4.68379 −0.200448
\(547\) −16.7827 −0.717576 −0.358788 0.933419i \(-0.616810\pi\)
−0.358788 + 0.933419i \(0.616810\pi\)
\(548\) 15.9297 0.680482
\(549\) −4.43413 −0.189244
\(550\) 11.9833 0.510972
\(551\) −23.4588 −0.999379
\(552\) 0 0
\(553\) −4.90989 −0.208790
\(554\) 15.2821 0.649274
\(555\) 1.06286 0.0451157
\(556\) −2.85447 −0.121056
\(557\) −7.07870 −0.299934 −0.149967 0.988691i \(-0.547917\pi\)
−0.149967 + 0.988691i \(0.547917\pi\)
\(558\) 15.3656 0.650478
\(559\) 41.5743 1.75841
\(560\) 0.767766 0.0324440
\(561\) 9.47594 0.400075
\(562\) −5.92708 −0.250019
\(563\) 21.1902 0.893061 0.446530 0.894769i \(-0.352660\pi\)
0.446530 + 0.894769i \(0.352660\pi\)
\(564\) −1.48967 −0.0627263
\(565\) 2.08209 0.0875944
\(566\) −1.56356 −0.0657213
\(567\) 11.9391 0.501393
\(568\) −4.03869 −0.169460
\(569\) −13.2182 −0.554134 −0.277067 0.960851i \(-0.589362\pi\)
−0.277067 + 0.960851i \(0.589362\pi\)
\(570\) −0.746986 −0.0312878
\(571\) 22.5366 0.943126 0.471563 0.881832i \(-0.343690\pi\)
0.471563 + 0.881832i \(0.343690\pi\)
\(572\) −9.20178 −0.384746
\(573\) 6.37848 0.266465
\(574\) 9.84632 0.410978
\(575\) 0 0
\(576\) −2.62880 −0.109533
\(577\) −14.7870 −0.615592 −0.307796 0.951452i \(-0.599591\pi\)
−0.307796 + 0.951452i \(0.599591\pi\)
\(578\) −22.8046 −0.948548
\(579\) −0.469890 −0.0195280
\(580\) 2.65900 0.110409
\(581\) 8.72636 0.362030
\(582\) −6.88876 −0.285548
\(583\) 14.9083 0.617437
\(584\) −8.69002 −0.359596
\(585\) 3.65795 0.151238
\(586\) −2.05817 −0.0850221
\(587\) 15.2561 0.629689 0.314844 0.949143i \(-0.398048\pi\)
0.314844 + 0.949143i \(0.398048\pi\)
\(588\) 1.68054 0.0693042
\(589\) −19.2238 −0.792105
\(590\) 4.40261 0.181253
\(591\) −3.17263 −0.130504
\(592\) −4.67961 −0.192331
\(593\) −3.71324 −0.152484 −0.0762422 0.997089i \(-0.524292\pi\)
−0.0762422 + 0.997089i \(0.524292\pi\)
\(594\) −8.45417 −0.346879
\(595\) −4.84391 −0.198581
\(596\) −2.91873 −0.119556
\(597\) 14.2219 0.582063
\(598\) 0 0
\(599\) −8.17752 −0.334124 −0.167062 0.985946i \(-0.553428\pi\)
−0.167062 + 0.985946i \(0.553428\pi\)
\(600\) −2.96165 −0.120909
\(601\) 34.4600 1.40565 0.702825 0.711362i \(-0.251921\pi\)
0.702825 + 0.711362i \(0.251921\pi\)
\(602\) 22.9389 0.934920
\(603\) 37.0520 1.50887
\(604\) 24.5622 0.999421
\(605\) −1.83517 −0.0746103
\(606\) −4.90566 −0.199279
\(607\) 19.0695 0.774009 0.387005 0.922078i \(-0.373510\pi\)
0.387005 + 0.922078i \(0.373510\pi\)
\(608\) 3.28887 0.133381
\(609\) −8.95023 −0.362682
\(610\) −0.628797 −0.0254592
\(611\) −9.12652 −0.369219
\(612\) 16.5853 0.670422
\(613\) 11.8822 0.479916 0.239958 0.970783i \(-0.422866\pi\)
0.239958 + 0.970783i \(0.422866\pi\)
\(614\) −10.8341 −0.437228
\(615\) 1.08585 0.0437856
\(616\) −5.07714 −0.204564
\(617\) −10.7162 −0.431418 −0.215709 0.976458i \(-0.569206\pi\)
−0.215709 + 0.976458i \(0.569206\pi\)
\(618\) −8.98778 −0.361541
\(619\) −5.74573 −0.230940 −0.115470 0.993311i \(-0.536837\pi\)
−0.115470 + 0.993311i \(0.536837\pi\)
\(620\) 2.17897 0.0875097
\(621\) 0 0
\(622\) 22.8972 0.918095
\(623\) −18.6000 −0.745193
\(624\) 2.27420 0.0910407
\(625\) 22.9348 0.917391
\(626\) 23.3481 0.933177
\(627\) 4.93973 0.197274
\(628\) −13.1045 −0.522927
\(629\) 29.5241 1.17720
\(630\) 2.01830 0.0804110
\(631\) −13.7296 −0.546568 −0.273284 0.961933i \(-0.588110\pi\)
−0.273284 + 0.961933i \(0.588110\pi\)
\(632\) 2.38398 0.0948295
\(633\) 5.29818 0.210584
\(634\) −0.503430 −0.0199938
\(635\) −2.81410 −0.111674
\(636\) −3.68454 −0.146102
\(637\) 10.2959 0.407938
\(638\) −17.5836 −0.696143
\(639\) −10.6169 −0.419998
\(640\) −0.372786 −0.0147356
\(641\) 36.2879 1.43328 0.716642 0.697441i \(-0.245678\pi\)
0.716642 + 0.697441i \(0.245678\pi\)
\(642\) −4.07085 −0.160664
\(643\) −14.8477 −0.585535 −0.292768 0.956184i \(-0.594576\pi\)
−0.292768 + 0.956184i \(0.594576\pi\)
\(644\) 0 0
\(645\) 2.52969 0.0996066
\(646\) −20.7498 −0.816390
\(647\) 1.91936 0.0754578 0.0377289 0.999288i \(-0.487988\pi\)
0.0377289 + 0.999288i \(0.487988\pi\)
\(648\) −5.79696 −0.227726
\(649\) −29.1139 −1.14282
\(650\) −18.1447 −0.711695
\(651\) −7.33447 −0.287460
\(652\) 4.61907 0.180897
\(653\) −23.8874 −0.934785 −0.467392 0.884050i \(-0.654806\pi\)
−0.467392 + 0.884050i \(0.654806\pi\)
\(654\) −2.48562 −0.0971953
\(655\) −1.21926 −0.0476404
\(656\) −4.78084 −0.186660
\(657\) −22.8443 −0.891241
\(658\) −5.03562 −0.196309
\(659\) −1.74417 −0.0679431 −0.0339716 0.999423i \(-0.510816\pi\)
−0.0339716 + 0.999423i \(0.510816\pi\)
\(660\) −0.559905 −0.0217943
\(661\) 30.7040 1.19425 0.597124 0.802149i \(-0.296310\pi\)
0.597124 + 0.802149i \(0.296310\pi\)
\(662\) −20.2032 −0.785221
\(663\) −14.3481 −0.557234
\(664\) −4.23705 −0.164429
\(665\) −2.52509 −0.0979186
\(666\) −12.3017 −0.476683
\(667\) 0 0
\(668\) −3.93949 −0.152424
\(669\) 2.34028 0.0904804
\(670\) 5.25429 0.202991
\(671\) 4.15816 0.160524
\(672\) 1.25480 0.0484051
\(673\) 11.7825 0.454181 0.227091 0.973874i \(-0.427079\pi\)
0.227091 + 0.973874i \(0.427079\pi\)
\(674\) −4.10576 −0.158148
\(675\) −16.6705 −0.641650
\(676\) 0.932979 0.0358838
\(677\) 28.5452 1.09708 0.548541 0.836124i \(-0.315183\pi\)
0.548541 + 0.836124i \(0.315183\pi\)
\(678\) 3.40288 0.130687
\(679\) −23.2865 −0.893655
\(680\) 2.35194 0.0901927
\(681\) −1.23926 −0.0474886
\(682\) −14.4093 −0.551760
\(683\) 15.0197 0.574712 0.287356 0.957824i \(-0.407224\pi\)
0.287356 + 0.957824i \(0.407224\pi\)
\(684\) 8.64578 0.330580
\(685\) 5.93835 0.226893
\(686\) 20.0976 0.767330
\(687\) −16.7186 −0.637855
\(688\) −11.1379 −0.424628
\(689\) −22.5735 −0.859983
\(690\) 0 0
\(691\) 20.7588 0.789701 0.394851 0.918745i \(-0.370796\pi\)
0.394851 + 0.918745i \(0.370796\pi\)
\(692\) 19.0007 0.722298
\(693\) −13.3468 −0.507002
\(694\) −24.4155 −0.926801
\(695\) −1.06410 −0.0403638
\(696\) 4.34575 0.164725
\(697\) 30.1628 1.14250
\(698\) −17.2951 −0.654629
\(699\) −4.29215 −0.162344
\(700\) −10.0115 −0.378398
\(701\) 23.8262 0.899902 0.449951 0.893053i \(-0.351441\pi\)
0.449951 + 0.893053i \(0.351441\pi\)
\(702\) 12.8010 0.483142
\(703\) 15.3906 0.580469
\(704\) 2.46519 0.0929102
\(705\) −0.555326 −0.0209148
\(706\) 9.57877 0.360502
\(707\) −16.5829 −0.623665
\(708\) 7.19544 0.270421
\(709\) −18.2057 −0.683731 −0.341865 0.939749i \(-0.611059\pi\)
−0.341865 + 0.939749i \(0.611059\pi\)
\(710\) −1.50557 −0.0565029
\(711\) 6.26699 0.235031
\(712\) 9.03115 0.338457
\(713\) 0 0
\(714\) −7.91667 −0.296274
\(715\) −3.43029 −0.128286
\(716\) 2.39943 0.0896708
\(717\) −15.8900 −0.593425
\(718\) −0.125276 −0.00467527
\(719\) −12.5234 −0.467043 −0.233521 0.972352i \(-0.575025\pi\)
−0.233521 + 0.972352i \(0.575025\pi\)
\(720\) −0.979978 −0.0365216
\(721\) −30.3820 −1.13148
\(722\) 8.18330 0.304551
\(723\) −0.847007 −0.0315005
\(724\) 26.0063 0.966518
\(725\) −34.6727 −1.28771
\(726\) −2.99932 −0.111315
\(727\) −12.3982 −0.459823 −0.229911 0.973212i \(-0.573844\pi\)
−0.229911 + 0.973212i \(0.573844\pi\)
\(728\) 7.68762 0.284922
\(729\) −8.97076 −0.332250
\(730\) −3.23952 −0.119900
\(731\) 70.2700 2.59903
\(732\) −1.02768 −0.0379841
\(733\) −16.4066 −0.605992 −0.302996 0.952992i \(-0.597987\pi\)
−0.302996 + 0.952992i \(0.597987\pi\)
\(734\) 4.23470 0.156306
\(735\) 0.626480 0.0231081
\(736\) 0 0
\(737\) −34.7460 −1.27988
\(738\) −12.5679 −0.462629
\(739\) −42.2265 −1.55333 −0.776663 0.629916i \(-0.783089\pi\)
−0.776663 + 0.629916i \(0.783089\pi\)
\(740\) −1.74449 −0.0641288
\(741\) −7.47954 −0.274768
\(742\) −12.4551 −0.457241
\(743\) −14.4754 −0.531052 −0.265526 0.964104i \(-0.585546\pi\)
−0.265526 + 0.964104i \(0.585546\pi\)
\(744\) 3.56122 0.130561
\(745\) −1.08806 −0.0398635
\(746\) 0.626453 0.0229361
\(747\) −11.1383 −0.407530
\(748\) −15.5531 −0.568677
\(749\) −13.7610 −0.502814
\(750\) −2.23969 −0.0817818
\(751\) −29.1984 −1.06547 −0.532733 0.846283i \(-0.678835\pi\)
−0.532733 + 0.846283i \(0.678835\pi\)
\(752\) 2.44502 0.0891609
\(753\) −15.8964 −0.579299
\(754\) 26.6245 0.969606
\(755\) 9.15643 0.333237
\(756\) 7.06303 0.256880
\(757\) −16.3495 −0.594233 −0.297116 0.954841i \(-0.596025\pi\)
−0.297116 + 0.954841i \(0.596025\pi\)
\(758\) 10.5210 0.382140
\(759\) 0 0
\(760\) 1.22605 0.0444733
\(761\) −5.10898 −0.185201 −0.0926003 0.995703i \(-0.529518\pi\)
−0.0926003 + 0.995703i \(0.529518\pi\)
\(762\) −4.59924 −0.166613
\(763\) −8.40229 −0.304183
\(764\) −10.4691 −0.378760
\(765\) 6.18277 0.223538
\(766\) 15.3699 0.555336
\(767\) 44.0832 1.59175
\(768\) −0.609264 −0.0219849
\(769\) 28.6372 1.03269 0.516343 0.856382i \(-0.327293\pi\)
0.516343 + 0.856382i \(0.327293\pi\)
\(770\) −1.89269 −0.0682077
\(771\) 17.0565 0.614276
\(772\) 0.771242 0.0277576
\(773\) 24.9280 0.896599 0.448299 0.893884i \(-0.352030\pi\)
0.448299 + 0.893884i \(0.352030\pi\)
\(774\) −29.2792 −1.05242
\(775\) −28.4133 −1.02064
\(776\) 11.3067 0.405886
\(777\) 5.87199 0.210656
\(778\) −21.7347 −0.779228
\(779\) 15.7236 0.563356
\(780\) 0.847787 0.0303557
\(781\) 9.95612 0.356258
\(782\) 0 0
\(783\) 24.4613 0.874177
\(784\) −2.75831 −0.0985109
\(785\) −4.88517 −0.174359
\(786\) −1.99270 −0.0710773
\(787\) −5.13189 −0.182932 −0.0914660 0.995808i \(-0.529155\pi\)
−0.0914660 + 0.995808i \(0.529155\pi\)
\(788\) 5.20731 0.185503
\(789\) −5.74747 −0.204615
\(790\) 0.888712 0.0316190
\(791\) 11.5030 0.408999
\(792\) 6.48047 0.230274
\(793\) −6.29612 −0.223582
\(794\) −10.1590 −0.360530
\(795\) −1.37354 −0.0487146
\(796\) −23.3427 −0.827361
\(797\) −9.52437 −0.337371 −0.168685 0.985670i \(-0.553952\pi\)
−0.168685 + 0.985670i \(0.553952\pi\)
\(798\) −4.12689 −0.146090
\(799\) −15.4259 −0.545729
\(800\) 4.86103 0.171863
\(801\) 23.7411 0.838849
\(802\) 31.8980 1.12636
\(803\) 21.4225 0.755985
\(804\) 8.58738 0.302854
\(805\) 0 0
\(806\) 21.8180 0.768506
\(807\) −10.5836 −0.372560
\(808\) 8.05177 0.283260
\(809\) −10.6104 −0.373042 −0.186521 0.982451i \(-0.559721\pi\)
−0.186521 + 0.982451i \(0.559721\pi\)
\(810\) −2.16102 −0.0759307
\(811\) −30.8198 −1.08223 −0.541116 0.840948i \(-0.681998\pi\)
−0.541116 + 0.840948i \(0.681998\pi\)
\(812\) 14.6902 0.515526
\(813\) −10.9086 −0.382582
\(814\) 11.5361 0.404340
\(815\) 1.72192 0.0603163
\(816\) 3.84391 0.134564
\(817\) 36.6311 1.28156
\(818\) 13.2147 0.462041
\(819\) 20.2092 0.706166
\(820\) −1.78223 −0.0622381
\(821\) 42.0134 1.46628 0.733139 0.680079i \(-0.238054\pi\)
0.733139 + 0.680079i \(0.238054\pi\)
\(822\) 9.70538 0.338514
\(823\) −28.0616 −0.978165 −0.489082 0.872238i \(-0.662668\pi\)
−0.489082 + 0.872238i \(0.662668\pi\)
\(824\) 14.7518 0.513905
\(825\) 7.30103 0.254189
\(826\) 24.3232 0.846313
\(827\) 36.3429 1.26377 0.631883 0.775064i \(-0.282282\pi\)
0.631883 + 0.775064i \(0.282282\pi\)
\(828\) 0 0
\(829\) 30.0375 1.04325 0.521623 0.853176i \(-0.325327\pi\)
0.521623 + 0.853176i \(0.325327\pi\)
\(830\) −1.57951 −0.0548256
\(831\) 9.31083 0.322989
\(832\) −3.73269 −0.129408
\(833\) 17.4024 0.602958
\(834\) −1.73913 −0.0602210
\(835\) −1.46859 −0.0508225
\(836\) −8.10769 −0.280410
\(837\) 20.0454 0.692870
\(838\) −4.20296 −0.145189
\(839\) −33.4245 −1.15394 −0.576971 0.816765i \(-0.695765\pi\)
−0.576971 + 0.816765i \(0.695765\pi\)
\(840\) 0.467772 0.0161397
\(841\) 21.8766 0.754364
\(842\) −7.03533 −0.242453
\(843\) −3.61116 −0.124375
\(844\) −8.69603 −0.299330
\(845\) 0.347801 0.0119647
\(846\) 6.42747 0.220981
\(847\) −10.1388 −0.348374
\(848\) 6.04752 0.207673
\(849\) −0.952622 −0.0326939
\(850\) −30.6687 −1.05193
\(851\) 0 0
\(852\) −2.46063 −0.0842998
\(853\) 5.87395 0.201120 0.100560 0.994931i \(-0.467937\pi\)
0.100560 + 0.994931i \(0.467937\pi\)
\(854\) −3.47393 −0.118875
\(855\) 3.22302 0.110225
\(856\) 6.68158 0.228372
\(857\) 14.8919 0.508699 0.254349 0.967112i \(-0.418139\pi\)
0.254349 + 0.967112i \(0.418139\pi\)
\(858\) −5.60632 −0.191396
\(859\) −7.91064 −0.269908 −0.134954 0.990852i \(-0.543089\pi\)
−0.134954 + 0.990852i \(0.543089\pi\)
\(860\) −4.15204 −0.141584
\(861\) 5.99901 0.204446
\(862\) −36.8195 −1.25408
\(863\) −4.03424 −0.137327 −0.0686636 0.997640i \(-0.521874\pi\)
−0.0686636 + 0.997640i \(0.521874\pi\)
\(864\) −3.42943 −0.116671
\(865\) 7.08319 0.240836
\(866\) 27.2275 0.925228
\(867\) −13.8941 −0.471867
\(868\) 12.0382 0.408604
\(869\) −5.87695 −0.199362
\(870\) 1.62003 0.0549243
\(871\) 52.6110 1.78266
\(872\) 4.07970 0.138156
\(873\) 29.7230 1.00597
\(874\) 0 0
\(875\) −7.57096 −0.255945
\(876\) −5.29452 −0.178885
\(877\) −51.8651 −1.75136 −0.875680 0.482892i \(-0.839586\pi\)
−0.875680 + 0.482892i \(0.839586\pi\)
\(878\) 24.1877 0.816294
\(879\) −1.25397 −0.0422953
\(880\) 0.918986 0.0309790
\(881\) −32.4415 −1.09298 −0.546491 0.837465i \(-0.684037\pi\)
−0.546491 + 0.837465i \(0.684037\pi\)
\(882\) −7.25102 −0.244155
\(883\) −6.65684 −0.224021 −0.112010 0.993707i \(-0.535729\pi\)
−0.112010 + 0.993707i \(0.535729\pi\)
\(884\) 23.5499 0.792068
\(885\) 2.68236 0.0901664
\(886\) −15.4275 −0.518297
\(887\) 42.6040 1.43050 0.715252 0.698867i \(-0.246312\pi\)
0.715252 + 0.698867i \(0.246312\pi\)
\(888\) −2.85112 −0.0956773
\(889\) −15.5471 −0.521434
\(890\) 3.36668 0.112852
\(891\) 14.2906 0.478753
\(892\) −3.84115 −0.128611
\(893\) −8.04138 −0.269094
\(894\) −1.77828 −0.0594745
\(895\) 0.894472 0.0298989
\(896\) −2.05954 −0.0688043
\(897\) 0 0
\(898\) −17.3241 −0.578112
\(899\) 41.6919 1.39050
\(900\) 12.7787 0.425955
\(901\) −38.1544 −1.27111
\(902\) 11.7857 0.392420
\(903\) 13.9759 0.465087
\(904\) −5.58523 −0.185762
\(905\) 9.69479 0.322266
\(906\) 14.9649 0.497174
\(907\) 34.2518 1.13731 0.568656 0.822576i \(-0.307464\pi\)
0.568656 + 0.822576i \(0.307464\pi\)
\(908\) 2.03403 0.0675016
\(909\) 21.1665 0.702047
\(910\) 2.86583 0.0950014
\(911\) −35.2535 −1.16800 −0.584001 0.811753i \(-0.698514\pi\)
−0.584001 + 0.811753i \(0.698514\pi\)
\(912\) 2.00379 0.0663523
\(913\) 10.4451 0.345683
\(914\) 6.86896 0.227205
\(915\) −0.383104 −0.0126650
\(916\) 27.4406 0.906664
\(917\) −6.73607 −0.222444
\(918\) 21.6366 0.714113
\(919\) 34.5723 1.14043 0.570217 0.821494i \(-0.306859\pi\)
0.570217 + 0.821494i \(0.306859\pi\)
\(920\) 0 0
\(921\) −6.60081 −0.217504
\(922\) 0.341091 0.0112332
\(923\) −15.0752 −0.496206
\(924\) −3.09332 −0.101763
\(925\) 22.7477 0.747941
\(926\) −16.3184 −0.536254
\(927\) 38.7796 1.27369
\(928\) −7.13278 −0.234145
\(929\) 30.8336 1.01162 0.505809 0.862646i \(-0.331194\pi\)
0.505809 + 0.862646i \(0.331194\pi\)
\(930\) 1.32757 0.0435328
\(931\) 9.07172 0.297314
\(932\) 7.04480 0.230760
\(933\) 13.9505 0.456718
\(934\) 36.2344 1.18563
\(935\) −5.79797 −0.189614
\(936\) −9.81249 −0.320731
\(937\) −4.56731 −0.149207 −0.0746037 0.997213i \(-0.523769\pi\)
−0.0746037 + 0.997213i \(0.523769\pi\)
\(938\) 29.0285 0.947814
\(939\) 14.2252 0.464220
\(940\) 0.911470 0.0297289
\(941\) 11.5271 0.375773 0.187886 0.982191i \(-0.439836\pi\)
0.187886 + 0.982191i \(0.439836\pi\)
\(942\) −7.98411 −0.260136
\(943\) 0 0
\(944\) −11.8100 −0.384384
\(945\) 2.63300 0.0856514
\(946\) 27.4570 0.892703
\(947\) −60.0335 −1.95083 −0.975413 0.220386i \(-0.929268\pi\)
−0.975413 + 0.220386i \(0.929268\pi\)
\(948\) 1.45247 0.0471741
\(949\) −32.4372 −1.05296
\(950\) −15.9873 −0.518697
\(951\) −0.306722 −0.00994614
\(952\) 12.9938 0.421132
\(953\) −9.45086 −0.306143 −0.153072 0.988215i \(-0.548917\pi\)
−0.153072 + 0.988215i \(0.548917\pi\)
\(954\) 15.8977 0.514707
\(955\) −3.90275 −0.126290
\(956\) 26.0807 0.843510
\(957\) −10.7131 −0.346305
\(958\) 12.7557 0.412118
\(959\) 32.8077 1.05942
\(960\) −0.227125 −0.00733043
\(961\) 3.16535 0.102108
\(962\) −17.4675 −0.563176
\(963\) 17.5645 0.566008
\(964\) 1.39021 0.0447757
\(965\) 0.287508 0.00925520
\(966\) 0 0
\(967\) −39.0760 −1.25660 −0.628300 0.777971i \(-0.716249\pi\)
−0.628300 + 0.777971i \(0.716249\pi\)
\(968\) 4.92286 0.158227
\(969\) −12.6421 −0.406123
\(970\) 4.21497 0.135335
\(971\) −41.4820 −1.33122 −0.665610 0.746299i \(-0.731829\pi\)
−0.665610 + 0.746299i \(0.731829\pi\)
\(972\) −13.8202 −0.443282
\(973\) −5.87888 −0.188468
\(974\) −33.5403 −1.07470
\(975\) −11.0549 −0.354041
\(976\) 1.68675 0.0539916
\(977\) −20.7125 −0.662651 −0.331326 0.943516i \(-0.607496\pi\)
−0.331326 + 0.943516i \(0.607496\pi\)
\(978\) 2.81423 0.0899893
\(979\) −22.2635 −0.711544
\(980\) −1.02826 −0.0328465
\(981\) 10.7247 0.342413
\(982\) 36.8776 1.17681
\(983\) −24.8727 −0.793315 −0.396658 0.917967i \(-0.629830\pi\)
−0.396658 + 0.917967i \(0.629830\pi\)
\(984\) −2.91280 −0.0928566
\(985\) 1.94121 0.0618521
\(986\) 45.0014 1.43314
\(987\) −3.06802 −0.0976563
\(988\) 12.2764 0.390563
\(989\) 0 0
\(990\) 2.41583 0.0767800
\(991\) −9.20609 −0.292441 −0.146221 0.989252i \(-0.546711\pi\)
−0.146221 + 0.989252i \(0.546711\pi\)
\(992\) −5.84511 −0.185583
\(993\) −12.3091 −0.390618
\(994\) −8.31783 −0.263826
\(995\) −8.70183 −0.275867
\(996\) −2.58148 −0.0817974
\(997\) 42.7206 1.35298 0.676488 0.736454i \(-0.263501\pi\)
0.676488 + 0.736454i \(0.263501\pi\)
\(998\) −1.81660 −0.0575035
\(999\) −16.0484 −0.507748
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.2.a.j.1.3 5
3.2 odd 2 9522.2.a.bz.1.3 5
4.3 odd 2 8464.2.a.bu.1.3 5
23.4 even 11 46.2.c.b.39.1 yes 10
23.6 even 11 46.2.c.b.13.1 10
23.22 odd 2 1058.2.a.k.1.3 5
69.29 odd 22 414.2.i.c.289.1 10
69.50 odd 22 414.2.i.c.361.1 10
69.68 even 2 9522.2.a.bw.1.3 5
92.27 odd 22 368.2.m.a.177.1 10
92.75 odd 22 368.2.m.a.289.1 10
92.91 even 2 8464.2.a.bv.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.2.c.b.13.1 10 23.6 even 11
46.2.c.b.39.1 yes 10 23.4 even 11
368.2.m.a.177.1 10 92.27 odd 22
368.2.m.a.289.1 10 92.75 odd 22
414.2.i.c.289.1 10 69.29 odd 22
414.2.i.c.361.1 10 69.50 odd 22
1058.2.a.j.1.3 5 1.1 even 1 trivial
1058.2.a.k.1.3 5 23.22 odd 2
8464.2.a.bu.1.3 5 4.3 odd 2
8464.2.a.bv.1.3 5 92.91 even 2
9522.2.a.bw.1.3 5 69.68 even 2
9522.2.a.bz.1.3 5 3.2 odd 2