Properties

Label 1056.3.p.d.527.1
Level $1056$
Weight $3$
Character 1056.527
Analytic conductor $28.774$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,3,Mod(527,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.527"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1056.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,0,0,0,0,-14,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7739159164\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 527.1
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1056.527
Dual form 1056.3.p.d.527.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 2.82843i) q^{3} +(-7.00000 + 5.65685i) q^{9} +(7.00000 - 8.48528i) q^{11} -2.00000 q^{17} -16.9706i q^{19} -25.0000 q^{25} +(23.0000 + 14.1421i) q^{27} +(-31.0000 - 11.3137i) q^{33} -46.0000 q^{41} -84.8528i q^{43} -49.0000 q^{49} +(2.00000 + 5.65685i) q^{51} +(-48.0000 + 16.9706i) q^{57} +84.8528i q^{59} -62.0000 q^{67} +33.9411i q^{73} +(25.0000 + 70.7107i) q^{75} +(17.0000 - 79.1960i) q^{81} -158.000 q^{83} +101.823i q^{89} +94.0000 q^{97} +(-1.00000 + 98.9949i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 14 q^{9} + 14 q^{11} - 4 q^{17} - 50 q^{25} + 46 q^{27} - 62 q^{33} - 92 q^{41} - 98 q^{49} + 4 q^{51} - 96 q^{57} - 124 q^{67} + 50 q^{75} + 34 q^{81} - 316 q^{83} + 188 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1056\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(353\) \(673\) \(991\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 2.82843i −0.333333 0.942809i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(10\) 0 0
\(11\) 7.00000 8.48528i 0.636364 0.771389i
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.117647 −0.0588235 0.998268i \(-0.518735\pi\)
−0.0588235 + 0.998268i \(0.518735\pi\)
\(18\) 0 0
\(19\) 16.9706i 0.893188i −0.894737 0.446594i \(-0.852637\pi\)
0.894737 0.446594i \(-0.147363\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −31.0000 11.3137i −0.939394 0.342840i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −46.0000 −1.12195 −0.560976 0.827832i \(-0.689574\pi\)
−0.560976 + 0.827832i \(0.689574\pi\)
\(42\) 0 0
\(43\) 84.8528i 1.97332i −0.162791 0.986661i \(-0.552050\pi\)
0.162791 0.986661i \(-0.447950\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −49.0000 −1.00000
\(50\) 0 0
\(51\) 2.00000 + 5.65685i 0.0392157 + 0.110919i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −48.0000 + 16.9706i −0.842105 + 0.297729i
\(58\) 0 0
\(59\) 84.8528i 1.43818i 0.694915 + 0.719092i \(0.255442\pi\)
−0.694915 + 0.719092i \(0.744558\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −62.0000 −0.925373 −0.462687 0.886522i \(-0.653114\pi\)
−0.462687 + 0.886522i \(0.653114\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 33.9411i 0.464947i 0.972603 + 0.232473i \(0.0746819\pi\)
−0.972603 + 0.232473i \(0.925318\pi\)
\(74\) 0 0
\(75\) 25.0000 + 70.7107i 0.333333 + 0.942809i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 17.0000 79.1960i 0.209877 0.977728i
\(82\) 0 0
\(83\) −158.000 −1.90361 −0.951807 0.306697i \(-0.900776\pi\)
−0.951807 + 0.306697i \(0.900776\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 101.823i 1.14408i 0.820225 + 0.572041i \(0.193848\pi\)
−0.820225 + 0.572041i \(0.806152\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 94.0000 0.969072 0.484536 0.874771i \(-0.338988\pi\)
0.484536 + 0.874771i \(0.338988\pi\)
\(98\) 0 0
\(99\) −1.00000 + 98.9949i −0.0101010 + 0.999949i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −178.000 −1.66355 −0.831776 0.555112i \(-0.812675\pi\)
−0.831776 + 0.555112i \(0.812675\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 203.647i 1.80218i 0.433628 + 0.901092i \(0.357233\pi\)
−0.433628 + 0.901092i \(0.642767\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −23.0000 118.794i −0.190083 0.981768i
\(122\) 0 0
\(123\) 46.0000 + 130.108i 0.373984 + 1.05779i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −240.000 + 84.8528i −1.86047 + 0.657774i
\(130\) 0 0
\(131\) −62.0000 −0.473282 −0.236641 0.971597i \(-0.576047\pi\)
−0.236641 + 0.971597i \(0.576047\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 135.765i 0.990982i 0.868613 + 0.495491i \(0.165012\pi\)
−0.868613 + 0.495491i \(0.834988\pi\)
\(138\) 0 0
\(139\) 186.676i 1.34299i −0.741007 0.671497i \(-0.765652\pi\)
0.741007 0.671497i \(-0.234348\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 49.0000 + 138.593i 0.333333 + 0.942809i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 14.0000 11.3137i 0.0915033 0.0739458i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −322.000 −1.97546 −0.987730 0.156171i \(-0.950085\pi\)
−0.987730 + 0.156171i \(0.950085\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 96.0000 + 118.794i 0.561404 + 0.694701i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 240.000 84.8528i 1.35593 0.479394i
\(178\) 0 0
\(179\) 356.382i 1.99096i −0.0949721 0.995480i \(-0.530276\pi\)
0.0949721 0.995480i \(-0.469724\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −14.0000 + 16.9706i −0.0748663 + 0.0907517i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 373.352i 1.93447i −0.253886 0.967234i \(-0.581709\pi\)
0.253886 0.967234i \(-0.418291\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 62.0000 + 175.362i 0.308458 + 0.872450i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −144.000 118.794i −0.688995 0.568392i
\(210\) 0 0
\(211\) 356.382i 1.68901i 0.535545 + 0.844507i \(0.320106\pi\)
−0.535545 + 0.844507i \(0.679894\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 96.0000 33.9411i 0.438356 0.154982i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 175.000 141.421i 0.777778 0.628539i
\(226\) 0 0
\(227\) 446.000 1.96476 0.982379 0.186900i \(-0.0598442\pi\)
0.982379 + 0.186900i \(0.0598442\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 434.000 1.86266 0.931330 0.364175i \(-0.118649\pi\)
0.931330 + 0.364175i \(0.118649\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 441.235i 1.83085i −0.402490 0.915425i \(-0.631855\pi\)
0.402490 0.915425i \(-0.368145\pi\)
\(242\) 0 0
\(243\) −241.000 + 31.1127i −0.991770 + 0.128036i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 158.000 + 446.891i 0.634538 + 1.79474i
\(250\) 0 0
\(251\) 186.676i 0.743730i −0.928287 0.371865i \(-0.878718\pi\)
0.928287 0.371865i \(-0.121282\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 339.411i 1.32067i −0.750973 0.660333i \(-0.770415\pi\)
0.750973 0.660333i \(-0.229585\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 288.000 101.823i 1.07865 0.381361i
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −175.000 + 212.132i −0.636364 + 0.771389i
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 238.000 0.846975 0.423488 0.905902i \(-0.360806\pi\)
0.423488 + 0.905902i \(0.360806\pi\)
\(282\) 0 0
\(283\) 560.029i 1.97890i −0.144876 0.989450i \(-0.546278\pi\)
0.144876 0.989450i \(-0.453722\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −285.000 −0.986159
\(290\) 0 0
\(291\) −94.0000 265.872i −0.323024 0.913650i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 281.000 96.1665i 0.946128 0.323793i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 288.500i 0.939738i −0.882736 0.469869i \(-0.844301\pi\)
0.882736 0.469869i \(-0.155699\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −526.000 −1.68051 −0.840256 0.542191i \(-0.817595\pi\)
−0.840256 + 0.542191i \(0.817595\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 178.000 + 503.460i 0.554517 + 1.56841i
\(322\) 0 0
\(323\) 33.9411i 0.105081i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 14.0000 0.0422961 0.0211480 0.999776i \(-0.493268\pi\)
0.0211480 + 0.999776i \(0.493268\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 475.176i 1.41002i 0.709199 + 0.705009i \(0.249057\pi\)
−0.709199 + 0.705009i \(0.750943\pi\)
\(338\) 0 0
\(339\) 576.000 203.647i 1.69912 0.600728i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 658.000 1.89625 0.948127 0.317892i \(-0.102975\pi\)
0.948127 + 0.317892i \(0.102975\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 678.823i 1.92301i −0.274788 0.961505i \(-0.588608\pi\)
0.274788 0.961505i \(-0.411392\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 73.0000 0.202216
\(362\) 0 0
\(363\) −313.000 + 183.848i −0.862259 + 0.506468i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 322.000 260.215i 0.872629 0.705191i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 686.000 1.81003 0.905013 0.425383i \(-0.139861\pi\)
0.905013 + 0.425383i \(0.139861\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 480.000 + 593.970i 1.24031 + 1.53481i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 62.0000 + 175.362i 0.157761 + 0.446215i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 237.588i 0.592488i 0.955112 + 0.296244i \(0.0957342\pi\)
−0.955112 + 0.296244i \(0.904266\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 746.705i 1.82568i 0.408313 + 0.912842i \(0.366117\pi\)
−0.408313 + 0.912842i \(0.633883\pi\)
\(410\) 0 0
\(411\) 384.000 135.765i 0.934307 0.330327i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −528.000 + 186.676i −1.26619 + 0.447665i
\(418\) 0 0
\(419\) 661.852i 1.57960i 0.613365 + 0.789799i \(0.289815\pi\)
−0.613365 + 0.789799i \(0.710185\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 50.0000 0.117647
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 578.000 1.33487 0.667436 0.744667i \(-0.267392\pi\)
0.667436 + 0.744667i \(0.267392\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 343.000 277.186i 0.777778 0.628539i
\(442\) 0 0
\(443\) 118.794i 0.268158i −0.990971 0.134079i \(-0.957192\pi\)
0.990971 0.134079i \(-0.0428076\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 237.588i 0.529149i 0.964365 + 0.264574i \(0.0852315\pi\)
−0.964365 + 0.264574i \(0.914769\pi\)
\(450\) 0 0
\(451\) −322.000 + 390.323i −0.713969 + 0.865461i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 882.469i 1.93100i −0.260394 0.965502i \(-0.583852\pi\)
0.260394 0.965502i \(-0.416148\pi\)
\(458\) 0 0
\(459\) −46.0000 28.2843i −0.100218 0.0616215i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 933.381i 1.99867i −0.0364026 0.999337i \(-0.511590\pi\)
0.0364026 0.999337i \(-0.488410\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −720.000 593.970i −1.52220 1.25575i
\(474\) 0 0
\(475\) 424.264i 0.893188i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 322.000 + 910.754i 0.658487 + 1.86248i
\(490\) 0 0
\(491\) 782.000 1.59267 0.796334 0.604857i \(-0.206770\pi\)
0.796334 + 0.604857i \(0.206770\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −802.000 −1.60721 −0.803607 0.595160i \(-0.797089\pi\)
−0.803607 + 0.595160i \(0.797089\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 169.000 + 478.004i 0.333333 + 0.942809i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 240.000 390.323i 0.467836 0.760863i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 271.529i 0.521169i 0.965451 + 0.260584i \(0.0839152\pi\)
−0.965451 + 0.260584i \(0.916085\pi\)
\(522\) 0 0
\(523\) 967.322i 1.84956i −0.380497 0.924782i \(-0.624247\pi\)
0.380497 0.924782i \(-0.375753\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) −480.000 593.970i −0.903955 1.11859i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1008.00 + 356.382i −1.87709 + 0.663653i
\(538\) 0 0
\(539\) −343.000 + 415.779i −0.636364 + 0.771389i
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 390.323i 0.713570i 0.934186 + 0.356785i \(0.116127\pi\)
−0.934186 + 0.356785i \(0.883873\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 62.0000 + 22.6274i 0.110517 + 0.0403341i
\(562\) 0 0
\(563\) −226.000 −0.401421 −0.200710 0.979651i \(-0.564325\pi\)
−0.200710 + 0.979651i \(0.564325\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −626.000 −1.10018 −0.550088 0.835107i \(-0.685406\pi\)
−0.550088 + 0.835107i \(0.685406\pi\)
\(570\) 0 0
\(571\) 933.381i 1.63464i −0.576182 0.817321i \(-0.695458\pi\)
0.576182 0.817321i \(-0.304542\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.00000 −0.00346620 −0.00173310 0.999998i \(-0.500552\pi\)
−0.00173310 + 0.999998i \(0.500552\pi\)
\(578\) 0 0
\(579\) −1056.00 + 373.352i −1.82383 + 0.644823i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 288.500i 0.491481i 0.969336 + 0.245741i \(0.0790312\pi\)
−0.969336 + 0.245741i \(0.920969\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 862.000 1.45363 0.726813 0.686836i \(-0.241001\pi\)
0.726813 + 0.686836i \(0.241001\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 780.646i 1.29891i −0.760399 0.649456i \(-0.774997\pi\)
0.760399 0.649456i \(-0.225003\pi\)
\(602\) 0 0
\(603\) 434.000 350.725i 0.719735 0.581633i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1187.94i 1.92535i −0.270665 0.962674i \(-0.587243\pi\)
0.270665 0.962674i \(-0.412757\pi\)
\(618\) 0 0
\(619\) 562.000 0.907916 0.453958 0.891023i \(-0.350012\pi\)
0.453958 + 0.891023i \(0.350012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) −192.000 + 526.087i −0.306220 + 0.839055i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 1008.00 356.382i 1.59242 0.563004i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1187.94i 1.85326i 0.375975 + 0.926630i \(0.377308\pi\)
−0.375975 + 0.926630i \(0.622692\pi\)
\(642\) 0 0
\(643\) −1214.00 −1.88802 −0.944012 0.329910i \(-0.892982\pi\)
−0.944012 + 0.329910i \(0.892982\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 720.000 + 593.970i 1.10940 + 0.915208i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −192.000 237.588i −0.292237 0.361625i
\(658\) 0 0
\(659\) −994.000 −1.50835 −0.754173 0.656676i \(-0.771962\pi\)
−0.754173 + 0.656676i \(0.771962\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 509.117i 0.756489i 0.925706 + 0.378244i \(0.123472\pi\)
−0.925706 + 0.378244i \(0.876528\pi\)
\(674\) 0 0
\(675\) −575.000 353.553i −0.851852 0.523783i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −446.000 1261.48i −0.654919 1.85239i
\(682\) 0 0
\(683\) 1306.73i 1.91323i 0.291362 + 0.956613i \(0.405892\pi\)
−0.291362 + 0.956613i \(0.594108\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −734.000 −1.06223 −0.531114 0.847300i \(-0.678227\pi\)
−0.531114 + 0.847300i \(0.678227\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 92.0000 0.131994
\(698\) 0 0
\(699\) −434.000 1227.54i −0.620887 1.75613i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1248.00 + 441.235i −1.72614 + 0.610283i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 329.000 + 650.538i 0.451303 + 0.892371i
\(730\) 0 0
\(731\) 169.706i 0.232155i
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −434.000 + 526.087i −0.588874 + 0.713823i
\(738\) 0 0
\(739\) 1442.50i 1.95196i 0.217862 + 0.975980i \(0.430092\pi\)
−0.217862 + 0.975980i \(0.569908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1106.00 893.783i 1.48059 1.19650i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −528.000 + 186.676i −0.701195 + 0.247910i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1394.00 −1.83180 −0.915900 0.401406i \(-0.868522\pi\)
−0.915900 + 0.401406i \(0.868522\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1120.06i 1.45651i −0.685306 0.728256i \(-0.740331\pi\)
0.685306 0.728256i \(-0.259669\pi\)
\(770\) 0 0
\(771\) −960.000 + 339.411i −1.24514 + 0.440222i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 780.646i 1.00211i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1272.79i 1.61727i −0.588310 0.808635i \(-0.700207\pi\)
0.588310 0.808635i \(-0.299793\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −576.000 712.764i −0.719101 0.889842i
\(802\) 0 0
\(803\) 288.000 + 237.588i 0.358655 + 0.295875i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1582.00 −1.95550 −0.977750 0.209772i \(-0.932728\pi\)
−0.977750 + 0.209772i \(0.932728\pi\)
\(810\) 0 0
\(811\) 1612.20i 1.98792i 0.109741 + 0.993960i \(0.464998\pi\)
−0.109741 + 0.993960i \(0.535002\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1440.00 −1.76255
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 775.000 + 282.843i 0.939394 + 0.342840i
\(826\) 0 0
\(827\) −1262.00 −1.52600 −0.762999 0.646400i \(-0.776274\pi\)
−0.762999 + 0.646400i \(0.776274\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 98.0000 0.117647
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) −238.000 673.166i −0.282325 0.798536i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1584.00 + 560.029i −1.86572 + 0.659633i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1202.00 1.40257 0.701284 0.712882i \(-0.252611\pi\)
0.701284 + 0.712882i \(0.252611\pi\)
\(858\) 0 0
\(859\) 1646.00 1.91618 0.958091 0.286465i \(-0.0924801\pi\)
0.958091 + 0.286465i \(0.0924801\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 285.000 + 806.102i 0.328720 + 0.929760i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −658.000 + 531.744i −0.753723 + 0.609100i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1018.23i 1.15577i 0.816118 + 0.577885i \(0.196122\pi\)
−0.816118 + 0.577885i \(0.803878\pi\)
\(882\) 0 0
\(883\) 1762.00 1.99547 0.997735 0.0672672i \(-0.0214280\pi\)
0.997735 + 0.0672672i \(0.0214280\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −553.000 698.621i −0.620651 0.784087i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1714.00 1.88975 0.944873 0.327436i \(-0.106185\pi\)
0.944873 + 0.327436i \(0.106185\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −1106.00 + 1340.67i −1.21139 + 1.46843i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −816.000 + 288.500i −0.885993 + 0.313246i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1527.35i 1.64408i 0.569429 + 0.822040i \(0.307164\pi\)
−0.569429 + 0.822040i \(0.692836\pi\)
\(930\) 0 0
\(931\) 831.558i 0.893188i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1731.00i 1.84738i 0.383138 + 0.923691i \(0.374843\pi\)
−0.383138 + 0.923691i \(0.625157\pi\)
\(938\) 0 0
\(939\) 526.000 + 1487.75i 0.560170 + 1.58440i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1612.20i 1.70243i −0.524815 0.851216i \(-0.675866\pi\)
0.524815 0.851216i \(-0.324134\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −142.000 −0.149003 −0.0745016 0.997221i \(-0.523737\pi\)
−0.0745016 + 0.997221i \(0.523737\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 1246.00 1006.92i 1.29387 1.04561i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 96.0000 33.9411i 0.0990712 0.0350270i
\(970\) 0 0
\(971\) 1680.09i 1.73026i −0.501545 0.865132i \(-0.667235\pi\)
0.501545 0.865132i \(-0.332765\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 373.352i 0.382142i −0.981576 0.191071i \(-0.938804\pi\)
0.981576 0.191071i \(-0.0611960\pi\)
\(978\) 0 0
\(979\) 864.000 + 712.764i 0.882533 + 0.728053i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −14.0000 39.5980i −0.0140987 0.0398771i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1056.3.p.d.527.1 2
3.2 odd 2 1056.3.p.c.527.2 2
4.3 odd 2 264.3.p.b.131.2 yes 2
8.3 odd 2 CM 1056.3.p.d.527.1 2
8.5 even 2 264.3.p.b.131.2 yes 2
11.10 odd 2 1056.3.p.c.527.1 2
12.11 even 2 264.3.p.e.131.1 yes 2
24.5 odd 2 264.3.p.e.131.1 yes 2
24.11 even 2 1056.3.p.c.527.2 2
33.32 even 2 inner 1056.3.p.d.527.2 2
44.43 even 2 264.3.p.e.131.2 yes 2
88.21 odd 2 264.3.p.e.131.2 yes 2
88.43 even 2 1056.3.p.c.527.1 2
132.131 odd 2 264.3.p.b.131.1 2
264.131 odd 2 inner 1056.3.p.d.527.2 2
264.197 even 2 264.3.p.b.131.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.3.p.b.131.1 2 132.131 odd 2
264.3.p.b.131.1 2 264.197 even 2
264.3.p.b.131.2 yes 2 4.3 odd 2
264.3.p.b.131.2 yes 2 8.5 even 2
264.3.p.e.131.1 yes 2 12.11 even 2
264.3.p.e.131.1 yes 2 24.5 odd 2
264.3.p.e.131.2 yes 2 44.43 even 2
264.3.p.e.131.2 yes 2 88.21 odd 2
1056.3.p.c.527.1 2 11.10 odd 2
1056.3.p.c.527.1 2 88.43 even 2
1056.3.p.c.527.2 2 3.2 odd 2
1056.3.p.c.527.2 2 24.11 even 2
1056.3.p.d.527.1 2 1.1 even 1 trivial
1056.3.p.d.527.1 2 8.3 odd 2 CM
1056.3.p.d.527.2 2 33.32 even 2 inner
1056.3.p.d.527.2 2 264.131 odd 2 inner