Properties

Label 1056.3.p.c
Level $1056$
Weight $3$
Character orbit 1056.p
Analytic conductor $28.774$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,3,Mod(527,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.527"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1056.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,0,0,0,0,-14,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7739159164\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{3} + (2 \beta - 7) q^{9} + ( - 3 \beta - 7) q^{11} + 2 q^{17} + 6 \beta q^{19} - 25 q^{25} + (5 \beta + 23) q^{27} + (10 \beta - 17) q^{33} + 46 q^{41} + 30 \beta q^{43} - 49 q^{49}+ \cdots + (7 \beta + 97) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 14 q^{9} - 14 q^{11} + 4 q^{17} - 50 q^{25} + 46 q^{27} - 34 q^{33} + 92 q^{41} - 98 q^{49} - 4 q^{51} + 96 q^{57} - 124 q^{67} + 50 q^{75} + 34 q^{81} + 316 q^{83} + 188 q^{97} + 194 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1056\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(353\) \(673\) \(991\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
527.1
1.41421i
1.41421i
0 −1.00000 2.82843i 0 0 0 0 0 −7.00000 + 5.65685i 0
527.2 0 −1.00000 + 2.82843i 0 0 0 0 0 −7.00000 5.65685i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
33.d even 2 1 inner
264.p odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1056.3.p.c 2
3.b odd 2 1 1056.3.p.d 2
4.b odd 2 1 264.3.p.e yes 2
8.b even 2 1 264.3.p.e yes 2
8.d odd 2 1 CM 1056.3.p.c 2
11.b odd 2 1 1056.3.p.d 2
12.b even 2 1 264.3.p.b 2
24.f even 2 1 1056.3.p.d 2
24.h odd 2 1 264.3.p.b 2
33.d even 2 1 inner 1056.3.p.c 2
44.c even 2 1 264.3.p.b 2
88.b odd 2 1 264.3.p.b 2
88.g even 2 1 1056.3.p.d 2
132.d odd 2 1 264.3.p.e yes 2
264.m even 2 1 264.3.p.e yes 2
264.p odd 2 1 inner 1056.3.p.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
264.3.p.b 2 12.b even 2 1
264.3.p.b 2 24.h odd 2 1
264.3.p.b 2 44.c even 2 1
264.3.p.b 2 88.b odd 2 1
264.3.p.e yes 2 4.b odd 2 1
264.3.p.e yes 2 8.b even 2 1
264.3.p.e yes 2 132.d odd 2 1
264.3.p.e yes 2 264.m even 2 1
1056.3.p.c 2 1.a even 1 1 trivial
1056.3.p.c 2 8.d odd 2 1 CM
1056.3.p.c 2 33.d even 2 1 inner
1056.3.p.c 2 264.p odd 2 1 inner
1056.3.p.d 2 3.b odd 2 1
1056.3.p.d 2 11.b odd 2 1
1056.3.p.d 2 24.f even 2 1
1056.3.p.d 2 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1056, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 14T + 121 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 288 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T - 46)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 7200 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 7200 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T + 62)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1152 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T - 158)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 10368 \) Copy content Toggle raw display
$97$ \( (T - 94)^{2} \) Copy content Toggle raw display
show more
show less