Properties

Label 1056.2.a.l.1.1
Level $1056$
Weight $2$
Character 1056.1
Self dual yes
Analytic conductor $8.432$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,2,Mod(1,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1056.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.43220245345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1056.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.23607 q^{5} +3.23607 q^{7} +1.00000 q^{9} -1.00000 q^{11} +5.23607 q^{13} -1.23607 q^{15} -4.47214 q^{17} +6.47214 q^{19} +3.23607 q^{21} -5.70820 q^{23} -3.47214 q^{25} +1.00000 q^{27} +8.47214 q^{29} -1.00000 q^{33} -4.00000 q^{35} +6.00000 q^{37} +5.23607 q^{39} +10.9443 q^{41} -12.9443 q^{43} -1.23607 q^{45} +5.70820 q^{47} +3.47214 q^{49} -4.47214 q^{51} +6.76393 q^{53} +1.23607 q^{55} +6.47214 q^{57} -5.52786 q^{59} +11.7082 q^{61} +3.23607 q^{63} -6.47214 q^{65} +8.00000 q^{67} -5.70820 q^{69} -5.70820 q^{71} -6.00000 q^{73} -3.47214 q^{75} -3.23607 q^{77} +1.70820 q^{79} +1.00000 q^{81} +4.94427 q^{83} +5.52786 q^{85} +8.47214 q^{87} +2.00000 q^{89} +16.9443 q^{91} -8.00000 q^{95} -8.47214 q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} - 2 q^{11} + 6 q^{13} + 2 q^{15} + 4 q^{19} + 2 q^{21} + 2 q^{23} + 2 q^{25} + 2 q^{27} + 8 q^{29} - 2 q^{33} - 8 q^{35} + 12 q^{37} + 6 q^{39} + 4 q^{41} - 8 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) 0 0
\(7\) 3.23607 1.22312 0.611559 0.791199i \(-0.290543\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 5.23607 1.45222 0.726112 0.687576i \(-0.241325\pi\)
0.726112 + 0.687576i \(0.241325\pi\)
\(14\) 0 0
\(15\) −1.23607 −0.319151
\(16\) 0 0
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) 6.47214 1.48481 0.742405 0.669951i \(-0.233685\pi\)
0.742405 + 0.669951i \(0.233685\pi\)
\(20\) 0 0
\(21\) 3.23607 0.706168
\(22\) 0 0
\(23\) −5.70820 −1.19024 −0.595121 0.803636i \(-0.702896\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) 0 0
\(25\) −3.47214 −0.694427
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.47214 1.57324 0.786618 0.617440i \(-0.211830\pi\)
0.786618 + 0.617440i \(0.211830\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 5.23607 0.838442
\(40\) 0 0
\(41\) 10.9443 1.70921 0.854604 0.519280i \(-0.173800\pi\)
0.854604 + 0.519280i \(0.173800\pi\)
\(42\) 0 0
\(43\) −12.9443 −1.97398 −0.986991 0.160773i \(-0.948601\pi\)
−0.986991 + 0.160773i \(0.948601\pi\)
\(44\) 0 0
\(45\) −1.23607 −0.184262
\(46\) 0 0
\(47\) 5.70820 0.832627 0.416314 0.909221i \(-0.363322\pi\)
0.416314 + 0.909221i \(0.363322\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) −4.47214 −0.626224
\(52\) 0 0
\(53\) 6.76393 0.929098 0.464549 0.885548i \(-0.346217\pi\)
0.464549 + 0.885548i \(0.346217\pi\)
\(54\) 0 0
\(55\) 1.23607 0.166671
\(56\) 0 0
\(57\) 6.47214 0.857255
\(58\) 0 0
\(59\) −5.52786 −0.719667 −0.359833 0.933017i \(-0.617166\pi\)
−0.359833 + 0.933017i \(0.617166\pi\)
\(60\) 0 0
\(61\) 11.7082 1.49908 0.749541 0.661958i \(-0.230274\pi\)
0.749541 + 0.661958i \(0.230274\pi\)
\(62\) 0 0
\(63\) 3.23607 0.407706
\(64\) 0 0
\(65\) −6.47214 −0.802770
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −5.70820 −0.687187
\(70\) 0 0
\(71\) −5.70820 −0.677439 −0.338720 0.940887i \(-0.609994\pi\)
−0.338720 + 0.940887i \(0.609994\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) −3.47214 −0.400928
\(76\) 0 0
\(77\) −3.23607 −0.368784
\(78\) 0 0
\(79\) 1.70820 0.192188 0.0960940 0.995372i \(-0.469365\pi\)
0.0960940 + 0.995372i \(0.469365\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.94427 0.542704 0.271352 0.962480i \(-0.412529\pi\)
0.271352 + 0.962480i \(0.412529\pi\)
\(84\) 0 0
\(85\) 5.52786 0.599581
\(86\) 0 0
\(87\) 8.47214 0.908308
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 16.9443 1.77624
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −8.47214 −0.860215 −0.430108 0.902778i \(-0.641524\pi\)
−0.430108 + 0.902778i \(0.641524\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 3.52786 0.351036 0.175518 0.984476i \(-0.443840\pi\)
0.175518 + 0.984476i \(0.443840\pi\)
\(102\) 0 0
\(103\) −6.47214 −0.637719 −0.318859 0.947802i \(-0.603300\pi\)
−0.318859 + 0.947802i \(0.603300\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −16.9443 −1.63806 −0.819032 0.573747i \(-0.805489\pi\)
−0.819032 + 0.573747i \(0.805489\pi\)
\(108\) 0 0
\(109\) −20.6525 −1.97815 −0.989074 0.147418i \(-0.952904\pi\)
−0.989074 + 0.147418i \(0.952904\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 6.94427 0.653262 0.326631 0.945152i \(-0.394087\pi\)
0.326631 + 0.945152i \(0.394087\pi\)
\(114\) 0 0
\(115\) 7.05573 0.657950
\(116\) 0 0
\(117\) 5.23607 0.484075
\(118\) 0 0
\(119\) −14.4721 −1.32666
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 10.9443 0.986812
\(124\) 0 0
\(125\) 10.4721 0.936656
\(126\) 0 0
\(127\) −8.18034 −0.725888 −0.362944 0.931811i \(-0.618228\pi\)
−0.362944 + 0.931811i \(0.618228\pi\)
\(128\) 0 0
\(129\) −12.9443 −1.13968
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) 0 0
\(133\) 20.9443 1.81610
\(134\) 0 0
\(135\) −1.23607 −0.106384
\(136\) 0 0
\(137\) −7.52786 −0.643149 −0.321574 0.946884i \(-0.604212\pi\)
−0.321574 + 0.946884i \(0.604212\pi\)
\(138\) 0 0
\(139\) 1.52786 0.129592 0.0647959 0.997899i \(-0.479360\pi\)
0.0647959 + 0.997899i \(0.479360\pi\)
\(140\) 0 0
\(141\) 5.70820 0.480717
\(142\) 0 0
\(143\) −5.23607 −0.437862
\(144\) 0 0
\(145\) −10.4721 −0.869664
\(146\) 0 0
\(147\) 3.47214 0.286377
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −11.2361 −0.914378 −0.457189 0.889369i \(-0.651144\pi\)
−0.457189 + 0.889369i \(0.651144\pi\)
\(152\) 0 0
\(153\) −4.47214 −0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.4721 −1.31462 −0.657310 0.753620i \(-0.728306\pi\)
−0.657310 + 0.753620i \(0.728306\pi\)
\(158\) 0 0
\(159\) 6.76393 0.536415
\(160\) 0 0
\(161\) −18.4721 −1.45581
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 1.23607 0.0962278
\(166\) 0 0
\(167\) 24.3607 1.88509 0.942543 0.334085i \(-0.108427\pi\)
0.942543 + 0.334085i \(0.108427\pi\)
\(168\) 0 0
\(169\) 14.4164 1.10895
\(170\) 0 0
\(171\) 6.47214 0.494937
\(172\) 0 0
\(173\) −7.52786 −0.572333 −0.286166 0.958180i \(-0.592381\pi\)
−0.286166 + 0.958180i \(0.592381\pi\)
\(174\) 0 0
\(175\) −11.2361 −0.849367
\(176\) 0 0
\(177\) −5.52786 −0.415500
\(178\) 0 0
\(179\) −10.4721 −0.782724 −0.391362 0.920237i \(-0.627996\pi\)
−0.391362 + 0.920237i \(0.627996\pi\)
\(180\) 0 0
\(181\) −8.47214 −0.629729 −0.314864 0.949137i \(-0.601959\pi\)
−0.314864 + 0.949137i \(0.601959\pi\)
\(182\) 0 0
\(183\) 11.7082 0.865495
\(184\) 0 0
\(185\) −7.41641 −0.545265
\(186\) 0 0
\(187\) 4.47214 0.327035
\(188\) 0 0
\(189\) 3.23607 0.235389
\(190\) 0 0
\(191\) −7.23607 −0.523584 −0.261792 0.965124i \(-0.584313\pi\)
−0.261792 + 0.965124i \(0.584313\pi\)
\(192\) 0 0
\(193\) −7.52786 −0.541868 −0.270934 0.962598i \(-0.587332\pi\)
−0.270934 + 0.962598i \(0.587332\pi\)
\(194\) 0 0
\(195\) −6.47214 −0.463479
\(196\) 0 0
\(197\) 5.41641 0.385903 0.192952 0.981208i \(-0.438194\pi\)
0.192952 + 0.981208i \(0.438194\pi\)
\(198\) 0 0
\(199\) −3.41641 −0.242183 −0.121091 0.992641i \(-0.538639\pi\)
−0.121091 + 0.992641i \(0.538639\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 27.4164 1.92425
\(204\) 0 0
\(205\) −13.5279 −0.944827
\(206\) 0 0
\(207\) −5.70820 −0.396748
\(208\) 0 0
\(209\) −6.47214 −0.447687
\(210\) 0 0
\(211\) 3.05573 0.210365 0.105182 0.994453i \(-0.466457\pi\)
0.105182 + 0.994453i \(0.466457\pi\)
\(212\) 0 0
\(213\) −5.70820 −0.391120
\(214\) 0 0
\(215\) 16.0000 1.09119
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) −23.4164 −1.57516
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −3.47214 −0.231476
\(226\) 0 0
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 9.41641 0.622254 0.311127 0.950368i \(-0.399294\pi\)
0.311127 + 0.950368i \(0.399294\pi\)
\(230\) 0 0
\(231\) −3.23607 −0.212918
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) −7.05573 −0.460265
\(236\) 0 0
\(237\) 1.70820 0.110960
\(238\) 0 0
\(239\) −17.5279 −1.13378 −0.566892 0.823792i \(-0.691854\pi\)
−0.566892 + 0.823792i \(0.691854\pi\)
\(240\) 0 0
\(241\) 18.3607 1.18272 0.591358 0.806409i \(-0.298592\pi\)
0.591358 + 0.806409i \(0.298592\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −4.29180 −0.274193
\(246\) 0 0
\(247\) 33.8885 2.15628
\(248\) 0 0
\(249\) 4.94427 0.313331
\(250\) 0 0
\(251\) −20.3607 −1.28515 −0.642577 0.766221i \(-0.722135\pi\)
−0.642577 + 0.766221i \(0.722135\pi\)
\(252\) 0 0
\(253\) 5.70820 0.358872
\(254\) 0 0
\(255\) 5.52786 0.346168
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 19.4164 1.20648
\(260\) 0 0
\(261\) 8.47214 0.524412
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) −8.36068 −0.513592
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) −4.29180 −0.261675 −0.130838 0.991404i \(-0.541767\pi\)
−0.130838 + 0.991404i \(0.541767\pi\)
\(270\) 0 0
\(271\) −12.7639 −0.775354 −0.387677 0.921795i \(-0.626722\pi\)
−0.387677 + 0.921795i \(0.626722\pi\)
\(272\) 0 0
\(273\) 16.9443 1.02551
\(274\) 0 0
\(275\) 3.47214 0.209378
\(276\) 0 0
\(277\) −1.23607 −0.0742681 −0.0371341 0.999310i \(-0.511823\pi\)
−0.0371341 + 0.999310i \(0.511823\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.3607 −0.856686 −0.428343 0.903616i \(-0.640903\pi\)
−0.428343 + 0.903616i \(0.640903\pi\)
\(282\) 0 0
\(283\) 20.9443 1.24501 0.622504 0.782617i \(-0.286115\pi\)
0.622504 + 0.782617i \(0.286115\pi\)
\(284\) 0 0
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 35.4164 2.09056
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) −8.47214 −0.496645
\(292\) 0 0
\(293\) −7.88854 −0.460854 −0.230427 0.973090i \(-0.574012\pi\)
−0.230427 + 0.973090i \(0.574012\pi\)
\(294\) 0 0
\(295\) 6.83282 0.397822
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) −29.8885 −1.72850
\(300\) 0 0
\(301\) −41.8885 −2.41442
\(302\) 0 0
\(303\) 3.52786 0.202670
\(304\) 0 0
\(305\) −14.4721 −0.828672
\(306\) 0 0
\(307\) −30.4721 −1.73914 −0.869568 0.493813i \(-0.835603\pi\)
−0.869568 + 0.493813i \(0.835603\pi\)
\(308\) 0 0
\(309\) −6.47214 −0.368187
\(310\) 0 0
\(311\) 2.29180 0.129956 0.0649779 0.997887i \(-0.479302\pi\)
0.0649779 + 0.997887i \(0.479302\pi\)
\(312\) 0 0
\(313\) −15.8885 −0.898074 −0.449037 0.893513i \(-0.648233\pi\)
−0.449037 + 0.893513i \(0.648233\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) −7.70820 −0.432936 −0.216468 0.976290i \(-0.569454\pi\)
−0.216468 + 0.976290i \(0.569454\pi\)
\(318\) 0 0
\(319\) −8.47214 −0.474349
\(320\) 0 0
\(321\) −16.9443 −0.945737
\(322\) 0 0
\(323\) −28.9443 −1.61050
\(324\) 0 0
\(325\) −18.1803 −1.00846
\(326\) 0 0
\(327\) −20.6525 −1.14208
\(328\) 0 0
\(329\) 18.4721 1.01840
\(330\) 0 0
\(331\) −16.9443 −0.931341 −0.465671 0.884958i \(-0.654187\pi\)
−0.465671 + 0.884958i \(0.654187\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) −9.88854 −0.540269
\(336\) 0 0
\(337\) −26.9443 −1.46775 −0.733874 0.679286i \(-0.762290\pi\)
−0.733874 + 0.679286i \(0.762290\pi\)
\(338\) 0 0
\(339\) 6.94427 0.377161
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −11.4164 −0.616428
\(344\) 0 0
\(345\) 7.05573 0.379868
\(346\) 0 0
\(347\) −17.8885 −0.960307 −0.480154 0.877184i \(-0.659419\pi\)
−0.480154 + 0.877184i \(0.659419\pi\)
\(348\) 0 0
\(349\) 16.2918 0.872080 0.436040 0.899927i \(-0.356381\pi\)
0.436040 + 0.899927i \(0.356381\pi\)
\(350\) 0 0
\(351\) 5.23607 0.279481
\(352\) 0 0
\(353\) 24.8328 1.32172 0.660859 0.750510i \(-0.270192\pi\)
0.660859 + 0.750510i \(0.270192\pi\)
\(354\) 0 0
\(355\) 7.05573 0.374479
\(356\) 0 0
\(357\) −14.4721 −0.765947
\(358\) 0 0
\(359\) −11.4164 −0.602535 −0.301267 0.953540i \(-0.597410\pi\)
−0.301267 + 0.953540i \(0.597410\pi\)
\(360\) 0 0
\(361\) 22.8885 1.20466
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) 7.41641 0.388193
\(366\) 0 0
\(367\) −36.9443 −1.92848 −0.964238 0.265039i \(-0.914615\pi\)
−0.964238 + 0.265039i \(0.914615\pi\)
\(368\) 0 0
\(369\) 10.9443 0.569736
\(370\) 0 0
\(371\) 21.8885 1.13640
\(372\) 0 0
\(373\) 18.1803 0.941342 0.470671 0.882309i \(-0.344012\pi\)
0.470671 + 0.882309i \(0.344012\pi\)
\(374\) 0 0
\(375\) 10.4721 0.540779
\(376\) 0 0
\(377\) 44.3607 2.28469
\(378\) 0 0
\(379\) 29.8885 1.53527 0.767636 0.640886i \(-0.221433\pi\)
0.767636 + 0.640886i \(0.221433\pi\)
\(380\) 0 0
\(381\) −8.18034 −0.419092
\(382\) 0 0
\(383\) 30.0689 1.53645 0.768224 0.640181i \(-0.221141\pi\)
0.768224 + 0.640181i \(0.221141\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) −12.9443 −0.657994
\(388\) 0 0
\(389\) 27.7082 1.40486 0.702431 0.711752i \(-0.252098\pi\)
0.702431 + 0.711752i \(0.252098\pi\)
\(390\) 0 0
\(391\) 25.5279 1.29100
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) −2.11146 −0.106239
\(396\) 0 0
\(397\) 14.3607 0.720742 0.360371 0.932809i \(-0.382650\pi\)
0.360371 + 0.932809i \(0.382650\pi\)
\(398\) 0 0
\(399\) 20.9443 1.04853
\(400\) 0 0
\(401\) 13.4164 0.669983 0.334992 0.942221i \(-0.391266\pi\)
0.334992 + 0.942221i \(0.391266\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.23607 −0.0614207
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 32.4721 1.60564 0.802822 0.596219i \(-0.203331\pi\)
0.802822 + 0.596219i \(0.203331\pi\)
\(410\) 0 0
\(411\) −7.52786 −0.371322
\(412\) 0 0
\(413\) −17.8885 −0.880238
\(414\) 0 0
\(415\) −6.11146 −0.300000
\(416\) 0 0
\(417\) 1.52786 0.0748198
\(418\) 0 0
\(419\) 7.41641 0.362315 0.181158 0.983454i \(-0.442016\pi\)
0.181158 + 0.983454i \(0.442016\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 5.70820 0.277542
\(424\) 0 0
\(425\) 15.5279 0.753212
\(426\) 0 0
\(427\) 37.8885 1.83356
\(428\) 0 0
\(429\) −5.23607 −0.252800
\(430\) 0 0
\(431\) 19.0557 0.917882 0.458941 0.888467i \(-0.348229\pi\)
0.458941 + 0.888467i \(0.348229\pi\)
\(432\) 0 0
\(433\) −36.8328 −1.77007 −0.885036 0.465522i \(-0.845866\pi\)
−0.885036 + 0.465522i \(0.845866\pi\)
\(434\) 0 0
\(435\) −10.4721 −0.502100
\(436\) 0 0
\(437\) −36.9443 −1.76728
\(438\) 0 0
\(439\) −27.2361 −1.29991 −0.649953 0.759974i \(-0.725212\pi\)
−0.649953 + 0.759974i \(0.725212\pi\)
\(440\) 0 0
\(441\) 3.47214 0.165340
\(442\) 0 0
\(443\) 29.5279 1.40291 0.701456 0.712713i \(-0.252534\pi\)
0.701456 + 0.712713i \(0.252534\pi\)
\(444\) 0 0
\(445\) −2.47214 −0.117190
\(446\) 0 0
\(447\) 2.00000 0.0945968
\(448\) 0 0
\(449\) 11.5279 0.544034 0.272017 0.962293i \(-0.412309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(450\) 0 0
\(451\) −10.9443 −0.515346
\(452\) 0 0
\(453\) −11.2361 −0.527917
\(454\) 0 0
\(455\) −20.9443 −0.981883
\(456\) 0 0
\(457\) 31.3050 1.46438 0.732192 0.681098i \(-0.238497\pi\)
0.732192 + 0.681098i \(0.238497\pi\)
\(458\) 0 0
\(459\) −4.47214 −0.208741
\(460\) 0 0
\(461\) −18.9443 −0.882323 −0.441161 0.897428i \(-0.645433\pi\)
−0.441161 + 0.897428i \(0.645433\pi\)
\(462\) 0 0
\(463\) 14.4721 0.672577 0.336289 0.941759i \(-0.390828\pi\)
0.336289 + 0.941759i \(0.390828\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.05573 0.326500 0.163250 0.986585i \(-0.447802\pi\)
0.163250 + 0.986585i \(0.447802\pi\)
\(468\) 0 0
\(469\) 25.8885 1.19542
\(470\) 0 0
\(471\) −16.4721 −0.758996
\(472\) 0 0
\(473\) 12.9443 0.595178
\(474\) 0 0
\(475\) −22.4721 −1.03109
\(476\) 0 0
\(477\) 6.76393 0.309699
\(478\) 0 0
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) 31.4164 1.43246
\(482\) 0 0
\(483\) −18.4721 −0.840511
\(484\) 0 0
\(485\) 10.4721 0.475515
\(486\) 0 0
\(487\) 1.52786 0.0692341 0.0346171 0.999401i \(-0.488979\pi\)
0.0346171 + 0.999401i \(0.488979\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) 29.8885 1.34885 0.674426 0.738343i \(-0.264391\pi\)
0.674426 + 0.738343i \(0.264391\pi\)
\(492\) 0 0
\(493\) −37.8885 −1.70641
\(494\) 0 0
\(495\) 1.23607 0.0555571
\(496\) 0 0
\(497\) −18.4721 −0.828589
\(498\) 0 0
\(499\) 16.9443 0.758530 0.379265 0.925288i \(-0.376177\pi\)
0.379265 + 0.925288i \(0.376177\pi\)
\(500\) 0 0
\(501\) 24.3607 1.08835
\(502\) 0 0
\(503\) −19.4164 −0.865735 −0.432867 0.901458i \(-0.642498\pi\)
−0.432867 + 0.901458i \(0.642498\pi\)
\(504\) 0 0
\(505\) −4.36068 −0.194048
\(506\) 0 0
\(507\) 14.4164 0.640255
\(508\) 0 0
\(509\) 8.65248 0.383514 0.191757 0.981442i \(-0.438581\pi\)
0.191757 + 0.981442i \(0.438581\pi\)
\(510\) 0 0
\(511\) −19.4164 −0.858931
\(512\) 0 0
\(513\) 6.47214 0.285752
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −5.70820 −0.251047
\(518\) 0 0
\(519\) −7.52786 −0.330437
\(520\) 0 0
\(521\) 16.4721 0.721657 0.360829 0.932632i \(-0.382494\pi\)
0.360829 + 0.932632i \(0.382494\pi\)
\(522\) 0 0
\(523\) −9.88854 −0.432396 −0.216198 0.976350i \(-0.569366\pi\)
−0.216198 + 0.976350i \(0.569366\pi\)
\(524\) 0 0
\(525\) −11.2361 −0.490382
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 9.58359 0.416678
\(530\) 0 0
\(531\) −5.52786 −0.239889
\(532\) 0 0
\(533\) 57.3050 2.48215
\(534\) 0 0
\(535\) 20.9443 0.905500
\(536\) 0 0
\(537\) −10.4721 −0.451906
\(538\) 0 0
\(539\) −3.47214 −0.149555
\(540\) 0 0
\(541\) 8.29180 0.356492 0.178246 0.983986i \(-0.442958\pi\)
0.178246 + 0.983986i \(0.442958\pi\)
\(542\) 0 0
\(543\) −8.47214 −0.363574
\(544\) 0 0
\(545\) 25.5279 1.09349
\(546\) 0 0
\(547\) −3.41641 −0.146075 −0.0730375 0.997329i \(-0.523269\pi\)
−0.0730375 + 0.997329i \(0.523269\pi\)
\(548\) 0 0
\(549\) 11.7082 0.499694
\(550\) 0 0
\(551\) 54.8328 2.33596
\(552\) 0 0
\(553\) 5.52786 0.235069
\(554\) 0 0
\(555\) −7.41641 −0.314809
\(556\) 0 0
\(557\) −31.8885 −1.35116 −0.675580 0.737286i \(-0.736107\pi\)
−0.675580 + 0.737286i \(0.736107\pi\)
\(558\) 0 0
\(559\) −67.7771 −2.86667
\(560\) 0 0
\(561\) 4.47214 0.188814
\(562\) 0 0
\(563\) 7.05573 0.297363 0.148682 0.988885i \(-0.452497\pi\)
0.148682 + 0.988885i \(0.452497\pi\)
\(564\) 0 0
\(565\) −8.58359 −0.361114
\(566\) 0 0
\(567\) 3.23607 0.135902
\(568\) 0 0
\(569\) 19.5279 0.818651 0.409325 0.912389i \(-0.365764\pi\)
0.409325 + 0.912389i \(0.365764\pi\)
\(570\) 0 0
\(571\) −12.5836 −0.526607 −0.263303 0.964713i \(-0.584812\pi\)
−0.263303 + 0.964713i \(0.584812\pi\)
\(572\) 0 0
\(573\) −7.23607 −0.302291
\(574\) 0 0
\(575\) 19.8197 0.826537
\(576\) 0 0
\(577\) 17.4164 0.725055 0.362527 0.931973i \(-0.381914\pi\)
0.362527 + 0.931973i \(0.381914\pi\)
\(578\) 0 0
\(579\) −7.52786 −0.312847
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −6.76393 −0.280133
\(584\) 0 0
\(585\) −6.47214 −0.267590
\(586\) 0 0
\(587\) −0.583592 −0.0240874 −0.0120437 0.999927i \(-0.503834\pi\)
−0.0120437 + 0.999927i \(0.503834\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 5.41641 0.222801
\(592\) 0 0
\(593\) 3.52786 0.144872 0.0724360 0.997373i \(-0.476923\pi\)
0.0724360 + 0.997373i \(0.476923\pi\)
\(594\) 0 0
\(595\) 17.8885 0.733359
\(596\) 0 0
\(597\) −3.41641 −0.139824
\(598\) 0 0
\(599\) 38.0689 1.55545 0.777726 0.628603i \(-0.216373\pi\)
0.777726 + 0.628603i \(0.216373\pi\)
\(600\) 0 0
\(601\) −7.88854 −0.321780 −0.160890 0.986972i \(-0.551437\pi\)
−0.160890 + 0.986972i \(0.551437\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) −1.23607 −0.0502533
\(606\) 0 0
\(607\) 2.87539 0.116708 0.0583542 0.998296i \(-0.481415\pi\)
0.0583542 + 0.998296i \(0.481415\pi\)
\(608\) 0 0
\(609\) 27.4164 1.11097
\(610\) 0 0
\(611\) 29.8885 1.20916
\(612\) 0 0
\(613\) 25.8197 1.04285 0.521423 0.853298i \(-0.325401\pi\)
0.521423 + 0.853298i \(0.325401\pi\)
\(614\) 0 0
\(615\) −13.5279 −0.545496
\(616\) 0 0
\(617\) −23.8885 −0.961717 −0.480858 0.876798i \(-0.659675\pi\)
−0.480858 + 0.876798i \(0.659675\pi\)
\(618\) 0 0
\(619\) −27.7771 −1.11646 −0.558228 0.829688i \(-0.688518\pi\)
−0.558228 + 0.829688i \(0.688518\pi\)
\(620\) 0 0
\(621\) −5.70820 −0.229062
\(622\) 0 0
\(623\) 6.47214 0.259301
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 0 0
\(627\) −6.47214 −0.258472
\(628\) 0 0
\(629\) −26.8328 −1.06989
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 3.05573 0.121454
\(634\) 0 0
\(635\) 10.1115 0.401261
\(636\) 0 0
\(637\) 18.1803 0.720331
\(638\) 0 0
\(639\) −5.70820 −0.225813
\(640\) 0 0
\(641\) −40.2492 −1.58975 −0.794874 0.606774i \(-0.792463\pi\)
−0.794874 + 0.606774i \(0.792463\pi\)
\(642\) 0 0
\(643\) 27.0557 1.06697 0.533487 0.845808i \(-0.320881\pi\)
0.533487 + 0.845808i \(0.320881\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) −42.6525 −1.67684 −0.838421 0.545023i \(-0.816521\pi\)
−0.838421 + 0.545023i \(0.816521\pi\)
\(648\) 0 0
\(649\) 5.52786 0.216988
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 39.1246 1.53106 0.765532 0.643398i \(-0.222476\pi\)
0.765532 + 0.643398i \(0.222476\pi\)
\(654\) 0 0
\(655\) 19.7771 0.772755
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −48.9443 −1.90660 −0.953299 0.302028i \(-0.902336\pi\)
−0.953299 + 0.302028i \(0.902336\pi\)
\(660\) 0 0
\(661\) 7.52786 0.292800 0.146400 0.989225i \(-0.453231\pi\)
0.146400 + 0.989225i \(0.453231\pi\)
\(662\) 0 0
\(663\) −23.4164 −0.909418
\(664\) 0 0
\(665\) −25.8885 −1.00391
\(666\) 0 0
\(667\) −48.3607 −1.87253
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.7082 −0.451990
\(672\) 0 0
\(673\) 16.4721 0.634954 0.317477 0.948266i \(-0.397164\pi\)
0.317477 + 0.948266i \(0.397164\pi\)
\(674\) 0 0
\(675\) −3.47214 −0.133643
\(676\) 0 0
\(677\) −7.52786 −0.289319 −0.144660 0.989481i \(-0.546209\pi\)
−0.144660 + 0.989481i \(0.546209\pi\)
\(678\) 0 0
\(679\) −27.4164 −1.05215
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) −15.4164 −0.589892 −0.294946 0.955514i \(-0.595302\pi\)
−0.294946 + 0.955514i \(0.595302\pi\)
\(684\) 0 0
\(685\) 9.30495 0.355524
\(686\) 0 0
\(687\) 9.41641 0.359258
\(688\) 0 0
\(689\) 35.4164 1.34926
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) −3.23607 −0.122928
\(694\) 0 0
\(695\) −1.88854 −0.0716366
\(696\) 0 0
\(697\) −48.9443 −1.85390
\(698\) 0 0
\(699\) −2.00000 −0.0756469
\(700\) 0 0
\(701\) 16.8328 0.635767 0.317883 0.948130i \(-0.397028\pi\)
0.317883 + 0.948130i \(0.397028\pi\)
\(702\) 0 0
\(703\) 38.8328 1.46461
\(704\) 0 0
\(705\) −7.05573 −0.265734
\(706\) 0 0
\(707\) 11.4164 0.429358
\(708\) 0 0
\(709\) −10.3607 −0.389103 −0.194552 0.980892i \(-0.562325\pi\)
−0.194552 + 0.980892i \(0.562325\pi\)
\(710\) 0 0
\(711\) 1.70820 0.0640627
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 6.47214 0.242044
\(716\) 0 0
\(717\) −17.5279 −0.654590
\(718\) 0 0
\(719\) 38.0689 1.41973 0.709865 0.704338i \(-0.248756\pi\)
0.709865 + 0.704338i \(0.248756\pi\)
\(720\) 0 0
\(721\) −20.9443 −0.780005
\(722\) 0 0
\(723\) 18.3607 0.682841
\(724\) 0 0
\(725\) −29.4164 −1.09250
\(726\) 0 0
\(727\) 27.4164 1.01682 0.508409 0.861116i \(-0.330234\pi\)
0.508409 + 0.861116i \(0.330234\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 57.8885 2.14109
\(732\) 0 0
\(733\) 31.1246 1.14961 0.574807 0.818289i \(-0.305077\pi\)
0.574807 + 0.818289i \(0.305077\pi\)
\(734\) 0 0
\(735\) −4.29180 −0.158305
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 9.88854 0.363756 0.181878 0.983321i \(-0.441782\pi\)
0.181878 + 0.983321i \(0.441782\pi\)
\(740\) 0 0
\(741\) 33.8885 1.24493
\(742\) 0 0
\(743\) −37.3050 −1.36859 −0.684293 0.729207i \(-0.739889\pi\)
−0.684293 + 0.729207i \(0.739889\pi\)
\(744\) 0 0
\(745\) −2.47214 −0.0905721
\(746\) 0 0
\(747\) 4.94427 0.180901
\(748\) 0 0
\(749\) −54.8328 −2.00355
\(750\) 0 0
\(751\) 33.8885 1.23661 0.618305 0.785938i \(-0.287820\pi\)
0.618305 + 0.785938i \(0.287820\pi\)
\(752\) 0 0
\(753\) −20.3607 −0.741984
\(754\) 0 0
\(755\) 13.8885 0.505456
\(756\) 0 0
\(757\) −38.9443 −1.41545 −0.707727 0.706486i \(-0.750279\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(758\) 0 0
\(759\) 5.70820 0.207195
\(760\) 0 0
\(761\) −18.5836 −0.673655 −0.336827 0.941566i \(-0.609354\pi\)
−0.336827 + 0.941566i \(0.609354\pi\)
\(762\) 0 0
\(763\) −66.8328 −2.41951
\(764\) 0 0
\(765\) 5.52786 0.199860
\(766\) 0 0
\(767\) −28.9443 −1.04512
\(768\) 0 0
\(769\) 24.4721 0.882488 0.441244 0.897387i \(-0.354537\pi\)
0.441244 + 0.897387i \(0.354537\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 0 0
\(773\) 9.81966 0.353189 0.176594 0.984284i \(-0.443492\pi\)
0.176594 + 0.984284i \(0.443492\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 19.4164 0.696560
\(778\) 0 0
\(779\) 70.8328 2.53785
\(780\) 0 0
\(781\) 5.70820 0.204256
\(782\) 0 0
\(783\) 8.47214 0.302769
\(784\) 0 0
\(785\) 20.3607 0.726704
\(786\) 0 0
\(787\) −22.8328 −0.813902 −0.406951 0.913450i \(-0.633408\pi\)
−0.406951 + 0.913450i \(0.633408\pi\)
\(788\) 0 0
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) 22.4721 0.799017
\(792\) 0 0
\(793\) 61.3050 2.17700
\(794\) 0 0
\(795\) −8.36068 −0.296523
\(796\) 0 0
\(797\) −3.12461 −0.110679 −0.0553397 0.998468i \(-0.517624\pi\)
−0.0553397 + 0.998468i \(0.517624\pi\)
\(798\) 0 0
\(799\) −25.5279 −0.903111
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) 6.00000 0.211735
\(804\) 0 0
\(805\) 22.8328 0.804751
\(806\) 0 0
\(807\) −4.29180 −0.151078
\(808\) 0 0
\(809\) 15.8885 0.558611 0.279306 0.960202i \(-0.409896\pi\)
0.279306 + 0.960202i \(0.409896\pi\)
\(810\) 0 0
\(811\) −41.8885 −1.47091 −0.735453 0.677576i \(-0.763031\pi\)
−0.735453 + 0.677576i \(0.763031\pi\)
\(812\) 0 0
\(813\) −12.7639 −0.447651
\(814\) 0 0
\(815\) −24.7214 −0.865951
\(816\) 0 0
\(817\) −83.7771 −2.93099
\(818\) 0 0
\(819\) 16.9443 0.592081
\(820\) 0 0
\(821\) 50.3607 1.75760 0.878800 0.477190i \(-0.158345\pi\)
0.878800 + 0.477190i \(0.158345\pi\)
\(822\) 0 0
\(823\) −25.8885 −0.902418 −0.451209 0.892418i \(-0.649007\pi\)
−0.451209 + 0.892418i \(0.649007\pi\)
\(824\) 0 0
\(825\) 3.47214 0.120884
\(826\) 0 0
\(827\) 19.7771 0.687717 0.343858 0.939022i \(-0.388266\pi\)
0.343858 + 0.939022i \(0.388266\pi\)
\(828\) 0 0
\(829\) −8.11146 −0.281723 −0.140861 0.990029i \(-0.544987\pi\)
−0.140861 + 0.990029i \(0.544987\pi\)
\(830\) 0 0
\(831\) −1.23607 −0.0428787
\(832\) 0 0
\(833\) −15.5279 −0.538009
\(834\) 0 0
\(835\) −30.1115 −1.04205
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −23.2361 −0.802198 −0.401099 0.916035i \(-0.631372\pi\)
−0.401099 + 0.916035i \(0.631372\pi\)
\(840\) 0 0
\(841\) 42.7771 1.47507
\(842\) 0 0
\(843\) −14.3607 −0.494608
\(844\) 0 0
\(845\) −17.8197 −0.613015
\(846\) 0 0
\(847\) 3.23607 0.111193
\(848\) 0 0
\(849\) 20.9443 0.718806
\(850\) 0 0
\(851\) −34.2492 −1.17405
\(852\) 0 0
\(853\) −54.9017 −1.87980 −0.939899 0.341452i \(-0.889081\pi\)
−0.939899 + 0.341452i \(0.889081\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) −16.1115 −0.550357 −0.275178 0.961393i \(-0.588737\pi\)
−0.275178 + 0.961393i \(0.588737\pi\)
\(858\) 0 0
\(859\) 29.8885 1.01978 0.509892 0.860238i \(-0.329685\pi\)
0.509892 + 0.860238i \(0.329685\pi\)
\(860\) 0 0
\(861\) 35.4164 1.20699
\(862\) 0 0
\(863\) 16.7639 0.570651 0.285325 0.958431i \(-0.407898\pi\)
0.285325 + 0.958431i \(0.407898\pi\)
\(864\) 0 0
\(865\) 9.30495 0.316378
\(866\) 0 0
\(867\) 3.00000 0.101885
\(868\) 0 0
\(869\) −1.70820 −0.0579468
\(870\) 0 0
\(871\) 41.8885 1.41934
\(872\) 0 0
\(873\) −8.47214 −0.286738
\(874\) 0 0
\(875\) 33.8885 1.14564
\(876\) 0 0
\(877\) 29.2361 0.987232 0.493616 0.869680i \(-0.335675\pi\)
0.493616 + 0.869680i \(0.335675\pi\)
\(878\) 0 0
\(879\) −7.88854 −0.266074
\(880\) 0 0
\(881\) −42.9443 −1.44683 −0.723415 0.690414i \(-0.757428\pi\)
−0.723415 + 0.690414i \(0.757428\pi\)
\(882\) 0 0
\(883\) 40.7214 1.37038 0.685191 0.728363i \(-0.259719\pi\)
0.685191 + 0.728363i \(0.259719\pi\)
\(884\) 0 0
\(885\) 6.83282 0.229683
\(886\) 0 0
\(887\) −24.3607 −0.817952 −0.408976 0.912545i \(-0.634114\pi\)
−0.408976 + 0.912545i \(0.634114\pi\)
\(888\) 0 0
\(889\) −26.4721 −0.887847
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 36.9443 1.23629
\(894\) 0 0
\(895\) 12.9443 0.432679
\(896\) 0 0
\(897\) −29.8885 −0.997949
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −30.2492 −1.00775
\(902\) 0 0
\(903\) −41.8885 −1.39396
\(904\) 0 0
\(905\) 10.4721 0.348106
\(906\) 0 0
\(907\) −3.05573 −0.101464 −0.0507319 0.998712i \(-0.516155\pi\)
−0.0507319 + 0.998712i \(0.516155\pi\)
\(908\) 0 0
\(909\) 3.52786 0.117012
\(910\) 0 0
\(911\) 20.1803 0.668604 0.334302 0.942466i \(-0.391499\pi\)
0.334302 + 0.942466i \(0.391499\pi\)
\(912\) 0 0
\(913\) −4.94427 −0.163632
\(914\) 0 0
\(915\) −14.4721 −0.478434
\(916\) 0 0
\(917\) −51.7771 −1.70983
\(918\) 0 0
\(919\) 14.2918 0.471443 0.235721 0.971821i \(-0.424255\pi\)
0.235721 + 0.971821i \(0.424255\pi\)
\(920\) 0 0
\(921\) −30.4721 −1.00409
\(922\) 0 0
\(923\) −29.8885 −0.983793
\(924\) 0 0
\(925\) −20.8328 −0.684979
\(926\) 0 0
\(927\) −6.47214 −0.212573
\(928\) 0 0
\(929\) −38.3607 −1.25857 −0.629287 0.777173i \(-0.716653\pi\)
−0.629287 + 0.777173i \(0.716653\pi\)
\(930\) 0 0
\(931\) 22.4721 0.736495
\(932\) 0 0
\(933\) 2.29180 0.0750300
\(934\) 0 0
\(935\) −5.52786 −0.180780
\(936\) 0 0
\(937\) 27.8885 0.911079 0.455540 0.890216i \(-0.349446\pi\)
0.455540 + 0.890216i \(0.349446\pi\)
\(938\) 0 0
\(939\) −15.8885 −0.518503
\(940\) 0 0
\(941\) 5.41641 0.176570 0.0882849 0.996095i \(-0.471861\pi\)
0.0882849 + 0.996095i \(0.471861\pi\)
\(942\) 0 0
\(943\) −62.4721 −2.03437
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) −36.7214 −1.19328 −0.596642 0.802508i \(-0.703499\pi\)
−0.596642 + 0.802508i \(0.703499\pi\)
\(948\) 0 0
\(949\) −31.4164 −1.01982
\(950\) 0 0
\(951\) −7.70820 −0.249956
\(952\) 0 0
\(953\) 31.8885 1.03297 0.516486 0.856296i \(-0.327240\pi\)
0.516486 + 0.856296i \(0.327240\pi\)
\(954\) 0 0
\(955\) 8.94427 0.289430
\(956\) 0 0
\(957\) −8.47214 −0.273865
\(958\) 0 0
\(959\) −24.3607 −0.786647
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −16.9443 −0.546022
\(964\) 0 0
\(965\) 9.30495 0.299537
\(966\) 0 0
\(967\) 18.8754 0.606992 0.303496 0.952833i \(-0.401846\pi\)
0.303496 + 0.952833i \(0.401846\pi\)
\(968\) 0 0
\(969\) −28.9443 −0.929824
\(970\) 0 0
\(971\) 44.3607 1.42360 0.711801 0.702381i \(-0.247880\pi\)
0.711801 + 0.702381i \(0.247880\pi\)
\(972\) 0 0
\(973\) 4.94427 0.158506
\(974\) 0 0
\(975\) −18.1803 −0.582237
\(976\) 0 0
\(977\) −23.5279 −0.752723 −0.376362 0.926473i \(-0.622825\pi\)
−0.376362 + 0.926473i \(0.622825\pi\)
\(978\) 0 0
\(979\) −2.00000 −0.0639203
\(980\) 0 0
\(981\) −20.6525 −0.659383
\(982\) 0 0
\(983\) 47.9574 1.52960 0.764802 0.644265i \(-0.222837\pi\)
0.764802 + 0.644265i \(0.222837\pi\)
\(984\) 0 0
\(985\) −6.69505 −0.213322
\(986\) 0 0
\(987\) 18.4721 0.587975
\(988\) 0 0
\(989\) 73.8885 2.34952
\(990\) 0 0
\(991\) 25.8885 0.822377 0.411188 0.911550i \(-0.365114\pi\)
0.411188 + 0.911550i \(0.365114\pi\)
\(992\) 0 0
\(993\) −16.9443 −0.537710
\(994\) 0 0
\(995\) 4.22291 0.133875
\(996\) 0 0
\(997\) −39.7082 −1.25757 −0.628786 0.777579i \(-0.716448\pi\)
−0.628786 + 0.777579i \(0.716448\pi\)
\(998\) 0 0
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1056.2.a.l.1.1 yes 2
3.2 odd 2 3168.2.a.bf.1.2 2
4.3 odd 2 1056.2.a.k.1.1 2
8.3 odd 2 2112.2.a.bf.1.2 2
8.5 even 2 2112.2.a.be.1.2 2
12.11 even 2 3168.2.a.be.1.2 2
24.5 odd 2 6336.2.a.ct.1.1 2
24.11 even 2 6336.2.a.cs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1056.2.a.k.1.1 2 4.3 odd 2
1056.2.a.l.1.1 yes 2 1.1 even 1 trivial
2112.2.a.be.1.2 2 8.5 even 2
2112.2.a.bf.1.2 2 8.3 odd 2
3168.2.a.be.1.2 2 12.11 even 2
3168.2.a.bf.1.2 2 3.2 odd 2
6336.2.a.cs.1.1 2 24.11 even 2
6336.2.a.ct.1.1 2 24.5 odd 2