Properties

Label 1050.3.p.f.451.4
Level $1050$
Weight $3$
Character 1050.451
Analytic conductor $28.610$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,3,Mod(451,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,18,-12,0,0,8,0,18,0,-4,-36,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 56 x^{10} + 300 x^{9} + 1007 x^{8} + 12456 x^{7} + 209990 x^{6} - 250384 x^{5} + \cdots + 6882692292 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.4
Root \(-0.0663422 - 7.58000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.451
Dual form 1050.3.p.f.901.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} +2.44949i q^{6} +(-6.80475 + 1.64177i) q^{7} -2.82843 q^{8} +(1.50000 + 2.59808i) q^{9} +(8.87741 - 15.3761i) q^{11} +(-3.00000 + 1.73205i) q^{12} +2.00882i q^{13} +(-6.82244 - 7.17317i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-18.3681 - 10.6048i) q^{17} +(-2.12132 + 3.67423i) q^{18} +(-5.70198 + 3.29204i) q^{19} +(-11.6289 - 3.43042i) q^{21} +25.1091 q^{22} +(-19.7033 - 34.1271i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(-2.46029 + 1.42045i) q^{26} +5.19615i q^{27} +(3.96111 - 13.4279i) q^{28} -25.1091 q^{29} +(4.76798 + 2.75280i) q^{31} +(2.82843 - 4.89898i) q^{32} +(26.6322 - 15.3761i) q^{33} -29.9950i q^{34} -6.00000 q^{36} +(-5.87580 - 10.1772i) q^{37} +(-8.06382 - 4.65565i) q^{38} +(-1.73969 + 3.01323i) q^{39} +16.8812i q^{41} +(-4.02151 - 16.6682i) q^{42} -27.7474 q^{43} +(17.7548 + 30.7523i) q^{44} +(27.8647 - 48.2631i) q^{46} +(-39.5579 + 22.8388i) q^{47} -6.92820i q^{48} +(43.6092 - 22.3437i) q^{49} +(-18.3681 - 31.8145i) q^{51} +(-3.47938 - 2.00882i) q^{52} +(49.2261 - 85.2621i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(19.2467 - 4.64364i) q^{56} -11.4040 q^{57} +(-17.7548 - 30.7523i) q^{58} +(10.9872 + 6.34348i) q^{59} +(82.0429 - 47.3675i) q^{61} +7.78609i q^{62} +(-14.4726 - 15.2166i) q^{63} +8.00000 q^{64} +(37.6637 + 21.7451i) q^{66} +(4.17603 - 7.23310i) q^{67} +(36.7362 - 21.2096i) q^{68} -68.2543i q^{69} +71.8225 q^{71} +(-4.24264 - 7.34847i) q^{72} +(0.697968 + 0.402972i) q^{73} +(8.30963 - 14.3927i) q^{74} -13.1682i q^{76} +(-35.1644 + 119.205i) q^{77} -4.92058 q^{78} +(-58.1846 - 100.779i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-20.6752 + 11.9368i) q^{82} -50.1243i q^{83} +(17.5706 - 16.7115i) q^{84} +(-19.6204 - 33.9835i) q^{86} +(-37.6637 - 21.7451i) q^{87} +(-25.1091 + 43.4903i) q^{88} +(74.9322 - 43.2621i) q^{89} +(-3.29803 - 13.6695i) q^{91} +78.8133 q^{92} +(4.76798 + 8.25839i) q^{93} +(-55.9433 - 32.2989i) q^{94} +(8.48528 - 4.89898i) q^{96} +165.642i q^{97} +(58.2017 + 37.6107i) q^{98} +53.2645 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 18 q^{3} - 12 q^{4} + 8 q^{7} + 18 q^{9} - 4 q^{11} - 36 q^{12} + 8 q^{14} - 24 q^{16} - 24 q^{17} + 12 q^{19} + 18 q^{21} + 24 q^{22} - 60 q^{23} - 24 q^{26} + 4 q^{28} - 24 q^{29} - 198 q^{31}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) 1.50000 + 0.866025i 0.500000 + 0.288675i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) −6.80475 + 1.64177i −0.972107 + 0.234539i
\(8\) −2.82843 −0.353553
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 8.87741 15.3761i 0.807038 1.39783i −0.107869 0.994165i \(-0.534403\pi\)
0.914907 0.403665i \(-0.132264\pi\)
\(12\) −3.00000 + 1.73205i −0.250000 + 0.144338i
\(13\) 2.00882i 0.154525i 0.997011 + 0.0772623i \(0.0246179\pi\)
−0.997011 + 0.0772623i \(0.975382\pi\)
\(14\) −6.82244 7.17317i −0.487317 0.512369i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −18.3681 10.6048i −1.08048 0.623813i −0.149451 0.988769i \(-0.547751\pi\)
−0.931025 + 0.364956i \(0.881084\pi\)
\(18\) −2.12132 + 3.67423i −0.117851 + 0.204124i
\(19\) −5.70198 + 3.29204i −0.300104 + 0.173265i −0.642490 0.766294i \(-0.722098\pi\)
0.342386 + 0.939560i \(0.388765\pi\)
\(20\) 0 0
\(21\) −11.6289 3.43042i −0.553759 0.163353i
\(22\) 25.1091 1.14132
\(23\) −19.7033 34.1271i −0.856666 1.48379i −0.875091 0.483959i \(-0.839199\pi\)
0.0184250 0.999830i \(-0.494135\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 0 0
\(26\) −2.46029 + 1.42045i −0.0946266 + 0.0546327i
\(27\) 5.19615i 0.192450i
\(28\) 3.96111 13.4279i 0.141468 0.479569i
\(29\) −25.1091 −0.865832 −0.432916 0.901434i \(-0.642515\pi\)
−0.432916 + 0.901434i \(0.642515\pi\)
\(30\) 0 0
\(31\) 4.76798 + 2.75280i 0.153806 + 0.0887999i 0.574928 0.818204i \(-0.305030\pi\)
−0.421122 + 0.907004i \(0.638363\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 26.6322 15.3761i 0.807038 0.465943i
\(34\) 29.9950i 0.882205i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) −5.87580 10.1772i −0.158805 0.275059i 0.775633 0.631184i \(-0.217431\pi\)
−0.934438 + 0.356125i \(0.884098\pi\)
\(38\) −8.06382 4.65565i −0.212206 0.122517i
\(39\) −1.73969 + 3.01323i −0.0446074 + 0.0772623i
\(40\) 0 0
\(41\) 16.8812i 0.411737i 0.978580 + 0.205868i \(0.0660019\pi\)
−0.978580 + 0.205868i \(0.933998\pi\)
\(42\) −4.02151 16.6682i −0.0957502 0.396861i
\(43\) −27.7474 −0.645290 −0.322645 0.946520i \(-0.604572\pi\)
−0.322645 + 0.946520i \(0.604572\pi\)
\(44\) 17.7548 + 30.7523i 0.403519 + 0.698915i
\(45\) 0 0
\(46\) 27.8647 48.2631i 0.605754 1.04920i
\(47\) −39.5579 + 22.8388i −0.841657 + 0.485931i −0.857827 0.513938i \(-0.828186\pi\)
0.0161700 + 0.999869i \(0.494853\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 43.6092 22.3437i 0.889983 0.455994i
\(50\) 0 0
\(51\) −18.3681 31.8145i −0.360159 0.623813i
\(52\) −3.47938 2.00882i −0.0669111 0.0386311i
\(53\) 49.2261 85.2621i 0.928794 1.60872i 0.143451 0.989657i \(-0.454180\pi\)
0.785343 0.619061i \(-0.212487\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) 0 0
\(56\) 19.2467 4.64364i 0.343692 0.0829221i
\(57\) −11.4040 −0.200069
\(58\) −17.7548 30.7523i −0.306118 0.530211i
\(59\) 10.9872 + 6.34348i 0.186224 + 0.107517i 0.590214 0.807247i \(-0.299043\pi\)
−0.403990 + 0.914764i \(0.632377\pi\)
\(60\) 0 0
\(61\) 82.0429 47.3675i 1.34497 0.776517i 0.357435 0.933938i \(-0.383652\pi\)
0.987531 + 0.157422i \(0.0503182\pi\)
\(62\) 7.78609i 0.125582i
\(63\) −14.4726 15.2166i −0.229723 0.241533i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 37.6637 + 21.7451i 0.570662 + 0.329472i
\(67\) 4.17603 7.23310i 0.0623289 0.107957i −0.833177 0.553006i \(-0.813481\pi\)
0.895506 + 0.445049i \(0.146814\pi\)
\(68\) 36.7362 21.2096i 0.540238 0.311907i
\(69\) 68.2543i 0.989193i
\(70\) 0 0
\(71\) 71.8225 1.01158 0.505792 0.862655i \(-0.331200\pi\)
0.505792 + 0.862655i \(0.331200\pi\)
\(72\) −4.24264 7.34847i −0.0589256 0.102062i
\(73\) 0.697968 + 0.402972i 0.00956121 + 0.00552017i 0.504773 0.863252i \(-0.331576\pi\)
−0.495212 + 0.868772i \(0.664910\pi\)
\(74\) 8.30963 14.3927i 0.112292 0.194496i
\(75\) 0 0
\(76\) 13.1682i 0.173265i
\(77\) −35.1644 + 119.205i −0.456681 + 1.54812i
\(78\) −4.92058 −0.0630844
\(79\) −58.1846 100.779i −0.736514 1.27568i −0.954056 0.299628i \(-0.903137\pi\)
0.217542 0.976051i \(-0.430196\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −20.6752 + 11.9368i −0.252136 + 0.145571i
\(83\) 50.1243i 0.603907i −0.953323 0.301953i \(-0.902361\pi\)
0.953323 0.301953i \(-0.0976387\pi\)
\(84\) 17.5706 16.7115i 0.209174 0.198946i
\(85\) 0 0
\(86\) −19.6204 33.9835i −0.228144 0.395158i
\(87\) −37.6637 21.7451i −0.432916 0.249944i
\(88\) −25.1091 + 43.4903i −0.285331 + 0.494208i
\(89\) 74.9322 43.2621i 0.841935 0.486091i −0.0159868 0.999872i \(-0.505089\pi\)
0.857921 + 0.513781i \(0.171756\pi\)
\(90\) 0 0
\(91\) −3.29803 13.6695i −0.0362420 0.150214i
\(92\) 78.8133 0.856666
\(93\) 4.76798 + 8.25839i 0.0512687 + 0.0887999i
\(94\) −55.9433 32.2989i −0.595141 0.343605i
\(95\) 0 0
\(96\) 8.48528 4.89898i 0.0883883 0.0510310i
\(97\) 165.642i 1.70765i 0.520563 + 0.853823i \(0.325722\pi\)
−0.520563 + 0.853823i \(0.674278\pi\)
\(98\) 58.2017 + 37.6107i 0.593895 + 0.383783i
\(99\) 53.2645 0.538025
\(100\) 0 0
\(101\) −170.953 98.7000i −1.69261 0.977227i −0.952401 0.304847i \(-0.901395\pi\)
−0.740206 0.672380i \(-0.765272\pi\)
\(102\) 25.9764 44.9925i 0.254671 0.441103i
\(103\) −61.2474 + 35.3612i −0.594635 + 0.343313i −0.766928 0.641733i \(-0.778216\pi\)
0.172293 + 0.985046i \(0.444882\pi\)
\(104\) 5.68180i 0.0546327i
\(105\) 0 0
\(106\) 139.232 1.31351
\(107\) 15.9804 + 27.6788i 0.149349 + 0.258680i 0.930987 0.365052i \(-0.118949\pi\)
−0.781638 + 0.623732i \(0.785615\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) −106.026 + 183.643i −0.972717 + 1.68479i −0.285444 + 0.958396i \(0.592141\pi\)
−0.687273 + 0.726399i \(0.741192\pi\)
\(110\) 0 0
\(111\) 20.3544i 0.183373i
\(112\) 19.2968 + 20.2888i 0.172293 + 0.181150i
\(113\) −91.0393 −0.805657 −0.402829 0.915275i \(-0.631973\pi\)
−0.402829 + 0.915275i \(0.631973\pi\)
\(114\) −8.06382 13.9669i −0.0707352 0.122517i
\(115\) 0 0
\(116\) 25.1091 43.4903i 0.216458 0.374916i
\(117\) −5.21906 + 3.01323i −0.0446074 + 0.0257541i
\(118\) 17.9421i 0.152051i
\(119\) 142.401 + 42.0069i 1.19665 + 0.352999i
\(120\) 0 0
\(121\) −97.1170 168.212i −0.802620 1.39018i
\(122\) 116.026 + 66.9878i 0.951035 + 0.549080i
\(123\) −14.6195 + 25.3218i −0.118858 + 0.205868i
\(124\) −9.53597 + 5.50559i −0.0769030 + 0.0444000i
\(125\) 0 0
\(126\) 8.40279 28.4850i 0.0666888 0.226071i
\(127\) −160.943 −1.26727 −0.633635 0.773632i \(-0.718438\pi\)
−0.633635 + 0.773632i \(0.718438\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) −41.6212 24.0300i −0.322645 0.186279i
\(130\) 0 0
\(131\) −14.4620 + 8.34962i −0.110397 + 0.0637375i −0.554182 0.832396i \(-0.686969\pi\)
0.443785 + 0.896133i \(0.353635\pi\)
\(132\) 61.5045i 0.465943i
\(133\) 33.3957 31.7629i 0.251096 0.238818i
\(134\) 11.8116 0.0881463
\(135\) 0 0
\(136\) 51.9528 + 29.9950i 0.382006 + 0.220551i
\(137\) −63.2788 + 109.602i −0.461889 + 0.800015i −0.999055 0.0434613i \(-0.986161\pi\)
0.537166 + 0.843476i \(0.319495\pi\)
\(138\) 83.5941 48.2631i 0.605754 0.349732i
\(139\) 135.361i 0.973820i −0.873452 0.486910i \(-0.838124\pi\)
0.873452 0.486910i \(-0.161876\pi\)
\(140\) 0 0
\(141\) −79.1158 −0.561105
\(142\) 50.7862 + 87.9643i 0.357649 + 0.619467i
\(143\) 30.8879 + 17.8331i 0.215999 + 0.124707i
\(144\) 6.00000 10.3923i 0.0416667 0.0721688i
\(145\) 0 0
\(146\) 1.13978i 0.00780669i
\(147\) 84.7640 + 4.25108i 0.576626 + 0.0289189i
\(148\) 23.5032 0.158805
\(149\) 40.3068 + 69.8135i 0.270516 + 0.468547i 0.968994 0.247084i \(-0.0794725\pi\)
−0.698478 + 0.715631i \(0.746139\pi\)
\(150\) 0 0
\(151\) 6.96796 12.0689i 0.0461454 0.0799262i −0.842030 0.539430i \(-0.818640\pi\)
0.888176 + 0.459504i \(0.151973\pi\)
\(152\) 16.1276 9.31129i 0.106103 0.0612585i
\(153\) 63.6289i 0.415875i
\(154\) −170.861 + 41.2235i −1.10949 + 0.267685i
\(155\) 0 0
\(156\) −3.47938 6.02646i −0.0223037 0.0386311i
\(157\) 21.8815 + 12.6333i 0.139373 + 0.0804669i 0.568065 0.822984i \(-0.307692\pi\)
−0.428692 + 0.903451i \(0.641026\pi\)
\(158\) 82.2854 142.523i 0.520794 0.902041i
\(159\) 147.678 85.2621i 0.928794 0.536239i
\(160\) 0 0
\(161\) 190.105 + 199.878i 1.18078 + 1.24148i
\(162\) −12.7279 −0.0785674
\(163\) 27.8663 + 48.2658i 0.170959 + 0.296109i 0.938755 0.344585i \(-0.111980\pi\)
−0.767797 + 0.640694i \(0.778647\pi\)
\(164\) −29.2391 16.8812i −0.178287 0.102934i
\(165\) 0 0
\(166\) 61.3895 35.4432i 0.369816 0.213513i
\(167\) 262.461i 1.57163i −0.618464 0.785813i \(-0.712245\pi\)
0.618464 0.785813i \(-0.287755\pi\)
\(168\) 32.8916 + 9.70270i 0.195783 + 0.0577542i
\(169\) 164.965 0.976122
\(170\) 0 0
\(171\) −17.1059 9.87612i −0.100035 0.0577551i
\(172\) 27.7474 48.0600i 0.161322 0.279419i
\(173\) 137.125 79.1694i 0.792632 0.457627i −0.0482560 0.998835i \(-0.515366\pi\)
0.840888 + 0.541208i \(0.182033\pi\)
\(174\) 61.5045i 0.353474i
\(175\) 0 0
\(176\) −71.0193 −0.403519
\(177\) 10.9872 + 19.0304i 0.0620747 + 0.107517i
\(178\) 105.970 + 61.1819i 0.595338 + 0.343718i
\(179\) 5.01415 8.68475i 0.0280120 0.0485182i −0.851680 0.524063i \(-0.824416\pi\)
0.879692 + 0.475545i \(0.157749\pi\)
\(180\) 0 0
\(181\) 318.143i 1.75770i −0.477101 0.878848i \(-0.658312\pi\)
0.477101 0.878848i \(-0.341688\pi\)
\(182\) 14.4096 13.7050i 0.0791736 0.0753024i
\(183\) 164.086 0.896644
\(184\) 55.7294 + 96.5261i 0.302877 + 0.524599i
\(185\) 0 0
\(186\) −6.74295 + 11.6791i −0.0362524 + 0.0627910i
\(187\) −326.122 + 188.287i −1.74397 + 1.00688i
\(188\) 91.3550i 0.485931i
\(189\) −8.53091 35.3585i −0.0451371 0.187082i
\(190\) 0 0
\(191\) 1.85642 + 3.21541i 0.00971946 + 0.0168346i 0.870844 0.491559i \(-0.163573\pi\)
−0.861125 + 0.508394i \(0.830239\pi\)
\(192\) 12.0000 + 6.92820i 0.0625000 + 0.0360844i
\(193\) −147.770 + 255.946i −0.765649 + 1.32614i 0.174253 + 0.984701i \(0.444249\pi\)
−0.939903 + 0.341443i \(0.889084\pi\)
\(194\) −202.869 + 117.126i −1.04572 + 0.603744i
\(195\) 0 0
\(196\) −4.90872 + 97.8770i −0.0250445 + 0.499372i
\(197\) −231.134 −1.17327 −0.586635 0.809852i \(-0.699548\pi\)
−0.586635 + 0.809852i \(0.699548\pi\)
\(198\) 37.6637 + 65.2354i 0.190221 + 0.329472i
\(199\) −25.3639 14.6438i −0.127457 0.0735871i 0.434916 0.900471i \(-0.356778\pi\)
−0.562373 + 0.826884i \(0.690111\pi\)
\(200\) 0 0
\(201\) 12.5281 7.23310i 0.0623289 0.0359856i
\(202\) 279.166i 1.38201i
\(203\) 170.861 41.2235i 0.841681 0.203071i
\(204\) 73.4724 0.360159
\(205\) 0 0
\(206\) −86.6169 50.0083i −0.420470 0.242759i
\(207\) 59.1099 102.381i 0.285555 0.494596i
\(208\) 6.95875 4.01764i 0.0334555 0.0193156i
\(209\) 116.899i 0.559326i
\(210\) 0 0
\(211\) −254.413 −1.20575 −0.602874 0.797836i \(-0.705978\pi\)
−0.602874 + 0.797836i \(0.705978\pi\)
\(212\) 98.4522 + 170.524i 0.464397 + 0.804359i
\(213\) 107.734 + 62.2001i 0.505792 + 0.292019i
\(214\) −22.5996 + 39.1437i −0.105606 + 0.182915i
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) −36.9644 10.9041i −0.170343 0.0502495i
\(218\) −299.887 −1.37563
\(219\) 0.697968 + 1.20892i 0.00318707 + 0.00552017i
\(220\) 0 0
\(221\) 21.3032 36.8982i 0.0963944 0.166960i
\(222\) 24.9289 14.3927i 0.112292 0.0648320i
\(223\) 197.116i 0.883927i 0.897033 + 0.441964i \(0.145718\pi\)
−0.897033 + 0.441964i \(0.854282\pi\)
\(224\) −11.2037 + 37.9800i −0.0500166 + 0.169553i
\(225\) 0 0
\(226\) −64.3745 111.500i −0.284843 0.493362i
\(227\) 248.054 + 143.214i 1.09275 + 0.630900i 0.934308 0.356468i \(-0.116019\pi\)
0.158443 + 0.987368i \(0.449352\pi\)
\(228\) 11.4040 19.7522i 0.0500174 0.0866326i
\(229\) −178.628 + 103.131i −0.780034 + 0.450353i −0.836442 0.548055i \(-0.815368\pi\)
0.0564084 + 0.998408i \(0.482035\pi\)
\(230\) 0 0
\(231\) −155.982 + 148.355i −0.675245 + 0.642229i
\(232\) 71.0193 0.306118
\(233\) 3.44650 + 5.96951i 0.0147918 + 0.0256202i 0.873327 0.487135i \(-0.161958\pi\)
−0.858535 + 0.512755i \(0.828625\pi\)
\(234\) −7.38087 4.26135i −0.0315422 0.0182109i
\(235\) 0 0
\(236\) −21.9744 + 12.6870i −0.0931121 + 0.0537583i
\(237\) 201.557i 0.850453i
\(238\) 49.2450 + 204.108i 0.206912 + 0.857598i
\(239\) 289.962 1.21323 0.606615 0.794995i \(-0.292527\pi\)
0.606615 + 0.794995i \(0.292527\pi\)
\(240\) 0 0
\(241\) 282.791 + 163.270i 1.17341 + 0.677467i 0.954480 0.298274i \(-0.0964110\pi\)
0.218927 + 0.975741i \(0.429744\pi\)
\(242\) 137.344 237.887i 0.567538 0.983004i
\(243\) −13.5000 + 7.79423i −0.0555556 + 0.0320750i
\(244\) 189.470i 0.776517i
\(245\) 0 0
\(246\) −41.3503 −0.168091
\(247\) −6.61311 11.4542i −0.0267737 0.0463735i
\(248\) −13.4859 7.78609i −0.0543786 0.0313955i
\(249\) 43.4089 75.1864i 0.174333 0.301953i
\(250\) 0 0
\(251\) 341.759i 1.36159i 0.732474 + 0.680795i \(0.238366\pi\)
−0.732474 + 0.680795i \(0.761634\pi\)
\(252\) 40.8285 9.85064i 0.162018 0.0390898i
\(253\) −699.658 −2.76545
\(254\) −113.804 197.115i −0.448048 0.776042i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −168.741 + 97.4226i −0.656579 + 0.379076i −0.790972 0.611852i \(-0.790425\pi\)
0.134393 + 0.990928i \(0.457092\pi\)
\(258\) 67.9671i 0.263438i
\(259\) 56.6920 + 59.6064i 0.218888 + 0.230141i
\(260\) 0 0
\(261\) −37.6637 65.2354i −0.144305 0.249944i
\(262\) −20.4523 11.8081i −0.0780622 0.0450692i
\(263\) 69.0324 119.568i 0.262481 0.454630i −0.704420 0.709783i \(-0.748793\pi\)
0.966900 + 0.255154i \(0.0821261\pi\)
\(264\) −75.3274 + 43.4903i −0.285331 + 0.164736i
\(265\) 0 0
\(266\) 62.5157 + 18.4415i 0.235022 + 0.0693291i
\(267\) 149.864 0.561290
\(268\) 8.35207 + 14.4662i 0.0311644 + 0.0539784i
\(269\) 8.57284 + 4.94953i 0.0318693 + 0.0183998i 0.515850 0.856679i \(-0.327476\pi\)
−0.483981 + 0.875079i \(0.660810\pi\)
\(270\) 0 0
\(271\) −16.4712 + 9.50963i −0.0607792 + 0.0350909i −0.530082 0.847947i \(-0.677839\pi\)
0.469302 + 0.883037i \(0.344505\pi\)
\(272\) 84.8386i 0.311907i
\(273\) 6.89110 23.3604i 0.0252421 0.0855693i
\(274\) −178.979 −0.653210
\(275\) 0 0
\(276\) 118.220 + 68.2543i 0.428333 + 0.247298i
\(277\) 102.731 177.936i 0.370871 0.642367i −0.618829 0.785526i \(-0.712393\pi\)
0.989700 + 0.143159i \(0.0457260\pi\)
\(278\) 165.783 95.7147i 0.596340 0.344297i
\(279\) 16.5168i 0.0591999i
\(280\) 0 0
\(281\) −449.661 −1.60022 −0.800109 0.599854i \(-0.795225\pi\)
−0.800109 + 0.599854i \(0.795225\pi\)
\(282\) −55.9433 96.8966i −0.198380 0.343605i
\(283\) −137.762 79.5371i −0.486792 0.281050i 0.236450 0.971644i \(-0.424016\pi\)
−0.723243 + 0.690594i \(0.757349\pi\)
\(284\) −71.8225 + 124.400i −0.252896 + 0.438029i
\(285\) 0 0
\(286\) 50.4397i 0.176363i
\(287\) −27.7151 114.872i −0.0965683 0.400252i
\(288\) 16.9706 0.0589256
\(289\) 80.4246 + 139.300i 0.278286 + 0.482005i
\(290\) 0 0
\(291\) −143.450 + 248.463i −0.492955 + 0.853823i
\(292\) −1.39594 + 0.805944i −0.00478060 + 0.00276008i
\(293\) 451.939i 1.54245i 0.636560 + 0.771227i \(0.280357\pi\)
−0.636560 + 0.771227i \(0.719643\pi\)
\(294\) 54.7307 + 106.820i 0.186159 + 0.363334i
\(295\) 0 0
\(296\) 16.6193 + 28.7854i 0.0561462 + 0.0972480i
\(297\) 79.8967 + 46.1284i 0.269013 + 0.155314i
\(298\) −57.0024 + 98.7311i −0.191283 + 0.331313i
\(299\) 68.5553 39.5804i 0.229282 0.132376i
\(300\) 0 0
\(301\) 188.814 45.5550i 0.627290 0.151346i
\(302\) 19.7084 0.0652595
\(303\) −170.953 296.100i −0.564202 0.977227i
\(304\) 22.8079 + 13.1682i 0.0750260 + 0.0433163i
\(305\) 0 0
\(306\) 77.9292 44.9925i 0.254671 0.147034i
\(307\) 555.454i 1.80930i −0.426158 0.904649i \(-0.640133\pi\)
0.426158 0.904649i \(-0.359867\pi\)
\(308\) −171.305 180.112i −0.556186 0.584779i
\(309\) −122.495 −0.396423
\(310\) 0 0
\(311\) 146.444 + 84.5493i 0.470880 + 0.271863i 0.716608 0.697476i \(-0.245694\pi\)
−0.245728 + 0.969339i \(0.579027\pi\)
\(312\) 4.92058 8.52270i 0.0157711 0.0273163i
\(313\) −507.192 + 292.828i −1.62042 + 0.935552i −0.633617 + 0.773647i \(0.718430\pi\)
−0.986806 + 0.161905i \(0.948236\pi\)
\(314\) 35.7324i 0.113797i
\(315\) 0 0
\(316\) 232.738 0.736514
\(317\) −130.614 226.230i −0.412032 0.713660i 0.583080 0.812415i \(-0.301847\pi\)
−0.995112 + 0.0987546i \(0.968514\pi\)
\(318\) 208.849 + 120.579i 0.656756 + 0.379179i
\(319\) −222.904 + 386.081i −0.698759 + 1.21029i
\(320\) 0 0
\(321\) 55.3576i 0.172454i
\(322\) −110.375 + 374.165i −0.342780 + 1.16200i
\(323\) 139.646 0.432341
\(324\) −9.00000 15.5885i −0.0277778 0.0481125i
\(325\) 0 0
\(326\) −39.4088 + 68.2581i −0.120886 + 0.209381i
\(327\) −318.078 + 183.643i −0.972717 + 0.561598i
\(328\) 47.7472i 0.145571i
\(329\) 231.685 220.357i 0.704211 0.669778i
\(330\) 0 0
\(331\) −95.4984 165.408i −0.288515 0.499722i 0.684941 0.728599i \(-0.259828\pi\)
−0.973455 + 0.228877i \(0.926495\pi\)
\(332\) 86.8178 + 50.1243i 0.261499 + 0.150977i
\(333\) 17.6274 30.5315i 0.0529351 0.0916863i
\(334\) 321.448 185.588i 0.962420 0.555654i
\(335\) 0 0
\(336\) 11.3745 + 47.1447i 0.0338528 + 0.140312i
\(337\) −226.109 −0.670947 −0.335474 0.942050i \(-0.608896\pi\)
−0.335474 + 0.942050i \(0.608896\pi\)
\(338\) 116.648 + 202.040i 0.345111 + 0.597750i
\(339\) −136.559 78.8423i −0.402829 0.232573i
\(340\) 0 0
\(341\) 84.6548 48.8754i 0.248254 0.143330i
\(342\) 27.9339i 0.0816780i
\(343\) −260.066 + 223.640i −0.758210 + 0.652011i
\(344\) 78.4816 0.228144
\(345\) 0 0
\(346\) 193.925 + 111.962i 0.560476 + 0.323591i
\(347\) 331.636 574.410i 0.955723 1.65536i 0.223020 0.974814i \(-0.428409\pi\)
0.732704 0.680548i \(-0.238258\pi\)
\(348\) 75.3274 43.4903i 0.216458 0.124972i
\(349\) 293.777i 0.841769i −0.907114 0.420884i \(-0.861720\pi\)
0.907114 0.420884i \(-0.138280\pi\)
\(350\) 0 0
\(351\) −10.4381 −0.0297383
\(352\) −50.2182 86.9805i −0.142665 0.247104i
\(353\) 310.089 + 179.030i 0.878439 + 0.507167i 0.870144 0.492798i \(-0.164026\pi\)
0.00829580 + 0.999966i \(0.497359\pi\)
\(354\) −15.5383 + 26.9131i −0.0438934 + 0.0760257i
\(355\) 0 0
\(356\) 173.048i 0.486091i
\(357\) 177.222 + 186.333i 0.496421 + 0.521942i
\(358\) 14.1821 0.0396149
\(359\) 28.2996 + 49.0164i 0.0788291 + 0.136536i 0.902745 0.430176i \(-0.141549\pi\)
−0.823916 + 0.566712i \(0.808215\pi\)
\(360\) 0 0
\(361\) −158.825 + 275.093i −0.439958 + 0.762030i
\(362\) 389.644 224.961i 1.07637 0.621440i
\(363\) 336.423i 0.926785i
\(364\) 26.9743 + 7.95716i 0.0741052 + 0.0218603i
\(365\) 0 0
\(366\) 116.026 + 200.963i 0.317012 + 0.549080i
\(367\) 419.473 + 242.183i 1.14298 + 0.659898i 0.947166 0.320743i \(-0.103933\pi\)
0.195811 + 0.980642i \(0.437266\pi\)
\(368\) −78.8133 + 136.509i −0.214166 + 0.370947i
\(369\) −43.8586 + 25.3218i −0.118858 + 0.0686228i
\(370\) 0 0
\(371\) −194.990 + 661.005i −0.525579 + 1.78168i
\(372\) −19.0719 −0.0512687
\(373\) −176.452 305.623i −0.473061 0.819365i 0.526464 0.850198i \(-0.323518\pi\)
−0.999525 + 0.0308322i \(0.990184\pi\)
\(374\) −461.207 266.278i −1.23317 0.711973i
\(375\) 0 0
\(376\) 111.887 64.5978i 0.297571 0.171803i
\(377\) 50.4397i 0.133792i
\(378\) 37.2729 35.4504i 0.0986055 0.0937842i
\(379\) −129.666 −0.342126 −0.171063 0.985260i \(-0.554720\pi\)
−0.171063 + 0.985260i \(0.554720\pi\)
\(380\) 0 0
\(381\) −241.415 139.381i −0.633635 0.365830i
\(382\) −2.62537 + 4.54727i −0.00687269 + 0.0119039i
\(383\) 363.416 209.819i 0.948868 0.547829i 0.0561389 0.998423i \(-0.482121\pi\)
0.892729 + 0.450594i \(0.148788\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) −417.958 −1.08279
\(387\) −41.6212 72.0900i −0.107548 0.186279i
\(388\) −286.900 165.642i −0.739433 0.426912i
\(389\) −49.2202 + 85.2518i −0.126530 + 0.219156i −0.922330 0.386403i \(-0.873717\pi\)
0.795800 + 0.605560i \(0.207051\pi\)
\(390\) 0 0
\(391\) 835.801i 2.13760i
\(392\) −123.345 + 63.1975i −0.314656 + 0.161218i
\(393\) −28.9239 −0.0735978
\(394\) −163.437 283.080i −0.414814 0.718478i
\(395\) 0 0
\(396\) −53.2645 + 92.2568i −0.134506 + 0.232972i
\(397\) 160.707 92.7842i 0.404804 0.233713i −0.283751 0.958898i \(-0.591579\pi\)
0.688555 + 0.725185i \(0.258246\pi\)
\(398\) 41.4190i 0.104068i
\(399\) 77.6010 18.7227i 0.194489 0.0469241i
\(400\) 0 0
\(401\) 93.6753 + 162.250i 0.233604 + 0.404614i 0.958866 0.283859i \(-0.0916147\pi\)
−0.725262 + 0.688473i \(0.758281\pi\)
\(402\) 17.7174 + 10.2292i 0.0440732 + 0.0254457i
\(403\) −5.52987 + 9.57802i −0.0137218 + 0.0237668i
\(404\) 341.907 197.400i 0.846304 0.488614i
\(405\) 0 0
\(406\) 171.305 + 180.112i 0.421934 + 0.443626i
\(407\) −208.648 −0.512648
\(408\) 51.9528 + 89.9849i 0.127335 + 0.220551i
\(409\) −182.953 105.628i −0.447319 0.258260i 0.259378 0.965776i \(-0.416482\pi\)
−0.706697 + 0.707516i \(0.749816\pi\)
\(410\) 0 0
\(411\) −189.836 + 109.602i −0.461889 + 0.266672i
\(412\) 141.445i 0.343313i
\(413\) −85.1798 25.1272i −0.206247 0.0608407i
\(414\) 167.188 0.403836
\(415\) 0 0
\(416\) 9.84116 + 5.68180i 0.0236566 + 0.0136582i
\(417\) 117.226 203.041i 0.281118 0.486910i
\(418\) −143.172 + 82.6602i −0.342516 + 0.197752i
\(419\) 48.9505i 0.116827i −0.998292 0.0584134i \(-0.981396\pi\)
0.998292 0.0584134i \(-0.0186042\pi\)
\(420\) 0 0
\(421\) −166.539 −0.395581 −0.197790 0.980244i \(-0.563376\pi\)
−0.197790 + 0.980244i \(0.563376\pi\)
\(422\) −179.897 311.591i −0.426297 0.738367i
\(423\) −118.674 68.5163i −0.280552 0.161977i
\(424\) −139.232 + 241.158i −0.328378 + 0.568768i
\(425\) 0 0
\(426\) 175.929i 0.412978i
\(427\) −480.515 + 457.020i −1.12533 + 1.07030i
\(428\) −63.9214 −0.149349
\(429\) 30.8879 + 53.4994i 0.0719997 + 0.124707i
\(430\) 0 0
\(431\) −95.9137 + 166.127i −0.222538 + 0.385446i −0.955578 0.294739i \(-0.904767\pi\)
0.733040 + 0.680185i \(0.238101\pi\)
\(432\) 18.0000 10.3923i 0.0416667 0.0240563i
\(433\) 509.172i 1.17592i 0.808891 + 0.587958i \(0.200068\pi\)
−0.808891 + 0.587958i \(0.799932\pi\)
\(434\) −12.7830 52.9823i −0.0294539 0.122079i
\(435\) 0 0
\(436\) −212.052 367.285i −0.486358 0.842397i
\(437\) 224.696 + 129.728i 0.514178 + 0.296861i
\(438\) −0.987076 + 1.70967i −0.00225360 + 0.00390335i
\(439\) −459.149 + 265.090i −1.04590 + 0.603849i −0.921498 0.388383i \(-0.873034\pi\)
−0.124400 + 0.992232i \(0.539701\pi\)
\(440\) 0 0
\(441\) 123.464 + 79.7844i 0.279965 + 0.180917i
\(442\) 60.2545 0.136322
\(443\) −212.946 368.834i −0.480692 0.832583i 0.519063 0.854736i \(-0.326281\pi\)
−0.999755 + 0.0221535i \(0.992948\pi\)
\(444\) 35.2548 + 20.3544i 0.0794027 + 0.0458432i
\(445\) 0 0
\(446\) −241.417 + 139.382i −0.541293 + 0.312516i
\(447\) 139.627i 0.312364i
\(448\) −54.4380 + 13.1342i −0.121513 + 0.0293174i
\(449\) −294.520 −0.655946 −0.327973 0.944687i \(-0.606365\pi\)
−0.327973 + 0.944687i \(0.606365\pi\)
\(450\) 0 0
\(451\) 259.568 + 149.861i 0.575538 + 0.332287i
\(452\) 91.0393 157.685i 0.201414 0.348860i
\(453\) 20.9039 12.0689i 0.0461454 0.0266421i
\(454\) 405.071i 0.892227i
\(455\) 0 0
\(456\) 32.2553 0.0707352
\(457\) 40.9206 + 70.8765i 0.0895418 + 0.155091i 0.907318 0.420446i \(-0.138126\pi\)
−0.817776 + 0.575537i \(0.804793\pi\)
\(458\) −252.618 145.849i −0.551567 0.318448i
\(459\) 55.1043 95.4434i 0.120053 0.207938i
\(460\) 0 0
\(461\) 759.149i 1.64674i −0.567502 0.823372i \(-0.692090\pi\)
0.567502 0.823372i \(-0.307910\pi\)
\(462\) −291.992 86.1349i −0.632018 0.186439i
\(463\) 394.988 0.853105 0.426552 0.904463i \(-0.359728\pi\)
0.426552 + 0.904463i \(0.359728\pi\)
\(464\) 50.2182 + 86.9805i 0.108229 + 0.187458i
\(465\) 0 0
\(466\) −4.87409 + 8.44217i −0.0104594 + 0.0181162i
\(467\) −232.364 + 134.156i −0.497568 + 0.287271i −0.727709 0.685886i \(-0.759415\pi\)
0.230140 + 0.973157i \(0.426081\pi\)
\(468\) 12.0529i 0.0257541i
\(469\) −16.5417 + 56.0755i −0.0352702 + 0.119564i
\(470\) 0 0
\(471\) 21.8815 + 37.8999i 0.0464576 + 0.0804669i
\(472\) −31.0766 17.9421i −0.0658402 0.0380128i
\(473\) −246.326 + 426.648i −0.520773 + 0.902005i
\(474\) 246.856 142.523i 0.520794 0.300680i
\(475\) 0 0
\(476\) −215.159 + 204.639i −0.452015 + 0.429913i
\(477\) 295.356 0.619196
\(478\) 205.034 + 355.130i 0.428942 + 0.742949i
\(479\) −470.659 271.735i −0.982586 0.567296i −0.0795360 0.996832i \(-0.525344\pi\)
−0.903050 + 0.429536i \(0.858677\pi\)
\(480\) 0 0
\(481\) 20.4441 11.8034i 0.0425034 0.0245393i
\(482\) 461.796i 0.958083i
\(483\) 112.058 + 464.453i 0.232004 + 0.961601i
\(484\) 388.468 0.802620
\(485\) 0 0
\(486\) −19.0919 11.0227i −0.0392837 0.0226805i
\(487\) 198.261 343.398i 0.407107 0.705130i −0.587457 0.809255i \(-0.699871\pi\)
0.994564 + 0.104125i \(0.0332043\pi\)
\(488\) −232.052 + 133.976i −0.475517 + 0.274540i
\(489\) 96.5315i 0.197406i
\(490\) 0 0
\(491\) 750.658 1.52883 0.764417 0.644722i \(-0.223027\pi\)
0.764417 + 0.644722i \(0.223027\pi\)
\(492\) −29.2391 50.6436i −0.0594291 0.102934i
\(493\) 461.207 + 266.278i 0.935511 + 0.540117i
\(494\) 9.35235 16.1987i 0.0189319 0.0327910i
\(495\) 0 0
\(496\) 22.0224i 0.0444000i
\(497\) −488.734 + 117.916i −0.983368 + 0.237256i
\(498\) 122.779 0.246544
\(499\) 66.6787 + 115.491i 0.133625 + 0.231445i 0.925071 0.379794i \(-0.124005\pi\)
−0.791447 + 0.611238i \(0.790672\pi\)
\(500\) 0 0
\(501\) 227.298 393.692i 0.453689 0.785813i
\(502\) −418.568 + 241.660i −0.833800 + 0.481395i
\(503\) 226.683i 0.450661i 0.974282 + 0.225331i \(0.0723462\pi\)
−0.974282 + 0.225331i \(0.927654\pi\)
\(504\) 40.9346 + 43.0390i 0.0812195 + 0.0853949i
\(505\) 0 0
\(506\) −494.733 856.903i −0.977733 1.69348i
\(507\) 247.447 + 142.864i 0.488061 + 0.281782i
\(508\) 160.943 278.762i 0.316818 0.548744i
\(509\) 17.6930 10.2151i 0.0347603 0.0200689i −0.482519 0.875885i \(-0.660278\pi\)
0.517279 + 0.855817i \(0.326945\pi\)
\(510\) 0 0
\(511\) −5.41109 1.59622i −0.0105892 0.00312371i
\(512\) −22.6274 −0.0441942
\(513\) −17.1059 29.6284i −0.0333449 0.0577551i
\(514\) −238.636 137.776i −0.464272 0.268047i
\(515\) 0 0
\(516\) 83.2423 48.0600i 0.161322 0.0931395i
\(517\) 810.996i 1.56866i
\(518\) −32.9154 + 111.581i −0.0635432 + 0.215408i
\(519\) 274.251 0.528422
\(520\) 0 0
\(521\) 775.322 + 447.632i 1.48814 + 0.859179i 0.999908 0.0135342i \(-0.00430819\pi\)
0.488233 + 0.872713i \(0.337642\pi\)
\(522\) 53.2645 92.2568i 0.102039 0.176737i
\(523\) 244.761 141.313i 0.467995 0.270197i −0.247405 0.968912i \(-0.579578\pi\)
0.715400 + 0.698715i \(0.246244\pi\)
\(524\) 33.3985i 0.0637375i
\(525\) 0 0
\(526\) 195.253 0.371204
\(527\) −58.3859 101.127i −0.110789 0.191892i
\(528\) −106.529 61.5045i −0.201759 0.116486i
\(529\) −511.941 + 886.708i −0.967753 + 1.67620i
\(530\) 0 0
\(531\) 38.0609i 0.0716777i
\(532\) 21.6191 + 89.6060i 0.0406375 + 0.168432i
\(533\) −33.9113 −0.0636234
\(534\) 105.970 + 183.546i 0.198446 + 0.343718i
\(535\) 0 0
\(536\) −11.8116 + 20.4583i −0.0220366 + 0.0381685i
\(537\) 15.0424 8.68475i 0.0280120 0.0161727i
\(538\) 13.9994i 0.0260212i
\(539\) 43.5768 868.895i 0.0808474 1.61205i
\(540\) 0 0
\(541\) −178.897 309.858i −0.330678 0.572751i 0.651967 0.758247i \(-0.273944\pi\)
−0.982645 + 0.185496i \(0.940611\pi\)
\(542\) −23.2937 13.4486i −0.0429774 0.0248130i
\(543\) 275.520 477.215i 0.507403 0.878848i
\(544\) −103.906 + 59.9899i −0.191003 + 0.110276i
\(545\) 0 0
\(546\) 33.4833 8.07848i 0.0613247 0.0147958i
\(547\) −251.048 −0.458954 −0.229477 0.973314i \(-0.573702\pi\)
−0.229477 + 0.973314i \(0.573702\pi\)
\(548\) −126.558 219.204i −0.230944 0.400008i
\(549\) 246.129 + 142.103i 0.448322 + 0.258839i
\(550\) 0 0
\(551\) 143.172 82.6602i 0.259840 0.150019i
\(552\) 193.052i 0.349732i
\(553\) 561.387 + 590.247i 1.01517 + 1.06736i
\(554\) 290.568 0.524490
\(555\) 0 0
\(556\) 234.452 + 135.361i 0.421676 + 0.243455i
\(557\) 347.274 601.496i 0.623472 1.07989i −0.365362 0.930866i \(-0.619055\pi\)
0.988834 0.149020i \(-0.0476120\pi\)
\(558\) −20.2288 + 11.6791i −0.0362524 + 0.0209303i
\(559\) 55.7396i 0.0997131i
\(560\) 0 0
\(561\) −652.245 −1.16265
\(562\) −317.959 550.721i −0.565763 0.979930i
\(563\) 483.826 + 279.337i 0.859371 + 0.496158i 0.863802 0.503832i \(-0.168077\pi\)
−0.00443074 + 0.999990i \(0.501410\pi\)
\(564\) 79.1158 137.033i 0.140276 0.242965i
\(565\) 0 0
\(566\) 224.965i 0.397464i
\(567\) 17.8250 60.4257i 0.0314374 0.106571i
\(568\) −203.145 −0.357649
\(569\) 270.266 + 468.114i 0.474983 + 0.822696i 0.999590 0.0286496i \(-0.00912069\pi\)
−0.524606 + 0.851345i \(0.675787\pi\)
\(570\) 0 0
\(571\) 462.071 800.331i 0.809232 1.40163i −0.104164 0.994560i \(-0.533217\pi\)
0.913397 0.407071i \(-0.133450\pi\)
\(572\) −61.7757 + 35.6662i −0.108000 + 0.0623536i
\(573\) 6.43081i 0.0112231i
\(574\) 121.092 115.171i 0.210961 0.200646i
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 838.835 + 484.302i 1.45379 + 0.839344i 0.998694 0.0510997i \(-0.0162726\pi\)
0.455093 + 0.890444i \(0.349606\pi\)
\(578\) −113.738 + 196.999i −0.196778 + 0.340829i
\(579\) −443.311 + 255.946i −0.765649 + 0.442048i
\(580\) 0 0
\(581\) 82.2927 + 341.083i 0.141640 + 0.587062i
\(582\) −405.738 −0.697144
\(583\) −874.001 1513.81i −1.49914 2.59659i
\(584\) −1.97415 1.13978i −0.00338040 0.00195167i
\(585\) 0 0
\(586\) −553.510 + 319.569i −0.944556 + 0.545340i
\(587\) 698.278i 1.18957i −0.803885 0.594785i \(-0.797237\pi\)
0.803885 0.594785i \(-0.202763\pi\)
\(588\) −92.1270 + 142.564i −0.156679 + 0.242456i
\(589\) −36.2493 −0.0615437
\(590\) 0 0
\(591\) −346.701 200.168i −0.586635 0.338694i
\(592\) −23.5032 + 40.7087i −0.0397013 + 0.0687647i
\(593\) 607.963 351.007i 1.02523 0.591918i 0.109617 0.993974i \(-0.465038\pi\)
0.915615 + 0.402056i \(0.131704\pi\)
\(594\) 130.471i 0.219648i
\(595\) 0 0
\(596\) −161.227 −0.270516
\(597\) −25.3639 43.9315i −0.0424855 0.0735871i
\(598\) 96.9518 + 55.9751i 0.162127 + 0.0936039i
\(599\) 83.1873 144.085i 0.138877 0.240542i −0.788195 0.615426i \(-0.788984\pi\)
0.927072 + 0.374884i \(0.122317\pi\)
\(600\) 0 0
\(601\) 952.482i 1.58483i −0.609983 0.792415i \(-0.708824\pi\)
0.609983 0.792415i \(-0.291176\pi\)
\(602\) 189.305 + 199.037i 0.314460 + 0.330627i
\(603\) 25.0562 0.0415526
\(604\) 13.9359 + 24.1377i 0.0230727 + 0.0399631i
\(605\) 0 0
\(606\) 241.765 418.748i 0.398951 0.691004i
\(607\) 694.188 400.790i 1.14364 0.660279i 0.196309 0.980542i \(-0.437105\pi\)
0.947329 + 0.320263i \(0.103771\pi\)
\(608\) 37.2452i 0.0612585i
\(609\) 291.992 + 86.1349i 0.479462 + 0.141437i
\(610\) 0 0
\(611\) −45.8789 79.4646i −0.0750883 0.130057i
\(612\) 110.209 + 63.6289i 0.180079 + 0.103969i
\(613\) 368.775 638.737i 0.601591 1.04199i −0.390990 0.920395i \(-0.627867\pi\)
0.992580 0.121590i \(-0.0387994\pi\)
\(614\) 680.290 392.766i 1.10796 0.639683i
\(615\) 0 0
\(616\) 99.4600 337.164i 0.161461 0.547344i
\(617\) −244.329 −0.395995 −0.197997 0.980203i \(-0.563444\pi\)
−0.197997 + 0.980203i \(0.563444\pi\)
\(618\) −86.6169 150.025i −0.140157 0.242759i
\(619\) 409.586 + 236.475i 0.661690 + 0.382027i 0.792920 0.609325i \(-0.208560\pi\)
−0.131231 + 0.991352i \(0.541893\pi\)
\(620\) 0 0
\(621\) 177.330 102.381i 0.285555 0.164865i
\(622\) 239.142i 0.384472i
\(623\) −438.868 + 417.409i −0.704443 + 0.669999i
\(624\) 13.9175 0.0223037
\(625\) 0 0
\(626\) −717.278 414.121i −1.14581 0.661535i
\(627\) −101.238 + 175.349i −0.161464 + 0.279663i
\(628\) −43.7630 + 25.2666i −0.0696863 + 0.0402334i
\(629\) 249.247i 0.396260i
\(630\) 0 0
\(631\) −1204.19 −1.90839 −0.954193 0.299191i \(-0.903283\pi\)
−0.954193 + 0.299191i \(0.903283\pi\)
\(632\) 164.571 + 285.045i 0.260397 + 0.451021i
\(633\) −381.620 220.328i −0.602874 0.348070i
\(634\) 184.716 319.938i 0.291351 0.504634i
\(635\) 0 0
\(636\) 341.048i 0.536239i
\(637\) 44.8845 + 87.6029i 0.0704623 + 0.137524i
\(638\) −630.468 −0.988194
\(639\) 107.734 + 186.600i 0.168597 + 0.292019i
\(640\) 0 0
\(641\) 273.033 472.908i 0.425949 0.737766i −0.570559 0.821256i \(-0.693274\pi\)
0.996509 + 0.0834907i \(0.0266069\pi\)
\(642\) −67.7989 + 39.1437i −0.105606 + 0.0609715i
\(643\) 193.418i 0.300805i −0.988625 0.150403i \(-0.951943\pi\)
0.988625 0.150403i \(-0.0480570\pi\)
\(644\) −536.304 + 129.394i −0.832771 + 0.200922i
\(645\) 0 0
\(646\) 98.7446 + 171.031i 0.152855 + 0.264753i
\(647\) −103.099 59.5245i −0.159350 0.0920007i 0.418205 0.908353i \(-0.362660\pi\)
−0.577554 + 0.816352i \(0.695993\pi\)
\(648\) 12.7279 22.0454i 0.0196419 0.0340207i
\(649\) 195.076 112.627i 0.300580 0.173540i
\(650\) 0 0
\(651\) −46.0033 48.3683i −0.0706657 0.0742985i
\(652\) −111.465 −0.170959
\(653\) 293.854 + 508.970i 0.450006 + 0.779433i 0.998386 0.0567963i \(-0.0180886\pi\)
−0.548380 + 0.836229i \(0.684755\pi\)
\(654\) −449.831 259.710i −0.687815 0.397110i
\(655\) 0 0
\(656\) 58.4782 33.7624i 0.0891436 0.0514671i
\(657\) 2.41783i 0.00368011i
\(658\) 433.707 + 127.939i 0.659130 + 0.194437i
\(659\) −36.3580 −0.0551714 −0.0275857 0.999619i \(-0.508782\pi\)
−0.0275857 + 0.999619i \(0.508782\pi\)
\(660\) 0 0
\(661\) 279.780 + 161.531i 0.423268 + 0.244374i 0.696475 0.717582i \(-0.254751\pi\)
−0.273207 + 0.961955i \(0.588084\pi\)
\(662\) 135.055 233.922i 0.204011 0.353357i
\(663\) 63.9095 36.8982i 0.0963944 0.0556534i
\(664\) 141.773i 0.213513i
\(665\) 0 0
\(666\) 49.8578 0.0748616
\(667\) 494.733 + 856.903i 0.741729 + 1.28471i
\(668\) 454.597 + 262.461i 0.680534 + 0.392906i
\(669\) −170.707 + 295.674i −0.255168 + 0.441964i
\(670\) 0 0
\(671\) 1682.00i 2.50671i
\(672\) −49.6972 + 47.2672i −0.0739541 + 0.0703381i
\(673\) 705.426 1.04818 0.524091 0.851663i \(-0.324405\pi\)
0.524091 + 0.851663i \(0.324405\pi\)
\(674\) −159.883 276.926i −0.237216 0.410870i
\(675\) 0 0
\(676\) −164.965 + 285.727i −0.244031 + 0.422673i
\(677\) −720.152 + 415.780i −1.06374 + 0.614151i −0.926465 0.376382i \(-0.877168\pi\)
−0.137276 + 0.990533i \(0.543835\pi\)
\(678\) 223.000i 0.328908i
\(679\) −271.946 1127.15i −0.400510 1.66001i
\(680\) 0 0
\(681\) 248.054 + 429.643i 0.364250 + 0.630900i
\(682\) 119.720 + 69.1203i 0.175542 + 0.101349i
\(683\) 486.271 842.246i 0.711964 1.23316i −0.252155 0.967687i \(-0.581139\pi\)
0.964119 0.265470i \(-0.0855272\pi\)
\(684\) 34.2119 19.7522i 0.0500174 0.0288775i
\(685\) 0 0
\(686\) −457.796 160.377i −0.667341 0.233786i
\(687\) −357.256 −0.520023
\(688\) 55.4949 + 96.1200i 0.0806612 + 0.139709i
\(689\) 171.276 + 98.8863i 0.248586 + 0.143521i
\(690\) 0 0
\(691\) 443.849 256.256i 0.642328 0.370848i −0.143183 0.989696i \(-0.545734\pi\)
0.785511 + 0.618848i \(0.212400\pi\)
\(692\) 316.678i 0.457627i
\(693\) −362.451 + 87.4482i −0.523018 + 0.126188i
\(694\) 938.008 1.35160
\(695\) 0 0
\(696\) 106.529 + 61.5045i 0.153059 + 0.0883686i
\(697\) 179.022 310.076i 0.256847 0.444872i
\(698\) 359.802 207.732i 0.515476 0.297610i
\(699\) 11.9390i 0.0170802i
\(700\) 0 0
\(701\) −259.526 −0.370223 −0.185111 0.982718i \(-0.559265\pi\)
−0.185111 + 0.982718i \(0.559265\pi\)
\(702\) −7.38087 12.7840i −0.0105141 0.0182109i
\(703\) 67.0074 + 38.6867i 0.0953163 + 0.0550309i
\(704\) 71.0193 123.009i 0.100880 0.174729i
\(705\) 0 0
\(706\) 506.373i 0.717243i
\(707\) 1325.34 + 390.962i 1.87459 + 0.552987i
\(708\) −43.9489 −0.0620747
\(709\) −138.685 240.210i −0.195607 0.338801i 0.751492 0.659742i \(-0.229334\pi\)
−0.947099 + 0.320941i \(0.896001\pi\)
\(710\) 0 0
\(711\) 174.554 302.336i 0.245505 0.425226i
\(712\) −211.940 + 122.364i −0.297669 + 0.171859i
\(713\) 216.957i 0.304287i
\(714\) −102.895 + 348.810i −0.144111 + 0.488529i
\(715\) 0 0
\(716\) 10.0283 + 17.3695i 0.0140060 + 0.0242591i
\(717\) 434.943 + 251.115i 0.606615 + 0.350230i
\(718\) −40.0217 + 69.3197i −0.0557406 + 0.0965455i
\(719\) 1165.19 672.723i 1.62057 0.935638i 0.633805 0.773493i \(-0.281492\pi\)
0.986767 0.162144i \(-0.0518410\pi\)
\(720\) 0 0
\(721\) 358.718 341.178i 0.497528 0.473202i
\(722\) −449.225 −0.622195
\(723\) 282.791 + 489.809i 0.391136 + 0.677467i
\(724\) 551.040 + 318.143i 0.761105 + 0.439424i
\(725\) 0 0
\(726\) 412.032 237.887i 0.567538 0.327668i
\(727\) 1143.24i 1.57255i −0.617876 0.786275i \(-0.712007\pi\)
0.617876 0.786275i \(-0.287993\pi\)
\(728\) 9.32823 + 38.6632i 0.0128135 + 0.0531088i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 509.668 + 294.257i 0.697220 + 0.402540i
\(732\) −164.086 + 284.205i −0.224161 + 0.388258i
\(733\) −1181.32 + 682.037i −1.61163 + 0.930474i −0.622634 + 0.782513i \(0.713938\pi\)
−0.988993 + 0.147961i \(0.952729\pi\)
\(734\) 684.996i 0.933237i
\(735\) 0 0
\(736\) −222.918 −0.302877
\(737\) −74.1448 128.423i −0.100603 0.174250i
\(738\) −62.0255 35.8104i −0.0840454 0.0485236i
\(739\) 101.096 175.103i 0.136801 0.236946i −0.789483 0.613772i \(-0.789651\pi\)
0.926284 + 0.376827i \(0.122985\pi\)
\(740\) 0 0
\(741\) 22.9085i 0.0309156i
\(742\) −947.441 + 228.588i −1.27687 + 0.308070i
\(743\) 344.793 0.464055 0.232028 0.972709i \(-0.425464\pi\)
0.232028 + 0.972709i \(0.425464\pi\)
\(744\) −13.4859 23.3583i −0.0181262 0.0313955i
\(745\) 0 0
\(746\) 249.540 432.217i 0.334505 0.579379i
\(747\) 130.227 75.1864i 0.174333 0.100651i
\(748\) 753.147i 1.00688i
\(749\) −154.185 162.111i −0.205854 0.216437i
\(750\) 0 0
\(751\) −110.795 191.903i −0.147530 0.255530i 0.782784 0.622294i \(-0.213799\pi\)
−0.930314 + 0.366764i \(0.880466\pi\)
\(752\) 158.232 + 91.3550i 0.210414 + 0.121483i
\(753\) −295.972 + 512.639i −0.393057 + 0.680795i
\(754\) 61.7757 35.6662i 0.0819307 0.0473027i
\(755\) 0 0
\(756\) 69.7736 + 20.5825i 0.0922932 + 0.0272256i
\(757\) −1006.02 −1.32895 −0.664476 0.747310i \(-0.731345\pi\)
−0.664476 + 0.747310i \(0.731345\pi\)
\(758\) −91.6875 158.807i −0.120960 0.209508i
\(759\) −1049.49 605.922i −1.38272 0.798316i
\(760\) 0 0
\(761\) 981.832 566.861i 1.29019 0.744889i 0.311499 0.950246i \(-0.399169\pi\)
0.978687 + 0.205357i \(0.0658355\pi\)
\(762\) 394.229i 0.517361i
\(763\) 419.981 1423.71i 0.550434 1.86594i
\(764\) −7.42566 −0.00971946
\(765\) 0 0
\(766\) 513.948 + 296.728i 0.670951 + 0.387374i
\(767\) −12.7429 + 22.0713i −0.0166139 + 0.0287762i
\(768\) −24.0000 + 13.8564i −0.0312500 + 0.0180422i
\(769\) 206.796i 0.268915i 0.990919 + 0.134458i \(0.0429292\pi\)
−0.990919 + 0.134458i \(0.957071\pi\)
\(770\) 0 0
\(771\) −337.482 −0.437719
\(772\) −295.541 511.891i −0.382825 0.663072i
\(773\) 663.637 + 383.151i 0.858521 + 0.495668i 0.863517 0.504320i \(-0.168257\pi\)
−0.00499551 + 0.999988i \(0.501590\pi\)
\(774\) 58.8612 101.951i 0.0760481 0.131719i
\(775\) 0 0
\(776\) 468.506i 0.603744i
\(777\) 33.4173 + 138.506i 0.0430081 + 0.178258i
\(778\) −139.216 −0.178940
\(779\) −55.5736 96.2563i −0.0713396 0.123564i
\(780\) 0 0
\(781\) 637.598 1104.35i 0.816387 1.41402i
\(782\) −1023.64 + 591.000i −1.30901 + 0.755755i
\(783\) 130.471i 0.166629i
\(784\) −164.619 106.379i −0.209973 0.135688i
\(785\) 0 0
\(786\) −20.4523 35.4244i −0.0260207 0.0450692i
\(787\) 763.935 + 441.058i 0.970693 + 0.560430i 0.899447 0.437029i \(-0.143969\pi\)
0.0712454 + 0.997459i \(0.477303\pi\)
\(788\) 231.134 400.336i 0.293317 0.508041i
\(789\) 207.097 119.568i 0.262481 0.151543i
\(790\) 0 0
\(791\) 619.499 149.466i 0.783185 0.188958i
\(792\) −150.655 −0.190221
\(793\) 95.1527 + 164.809i 0.119991 + 0.207830i
\(794\) 227.274 + 131.217i 0.286239 + 0.165260i
\(795\) 0 0
\(796\) 50.7277 29.2877i 0.0637283 0.0367936i
\(797\) 1202.53i 1.50882i 0.656406 + 0.754408i \(0.272076\pi\)
−0.656406 + 0.754408i \(0.727924\pi\)
\(798\) 77.8028 + 81.8025i 0.0974972 + 0.102509i
\(799\) 968.804 1.21252
\(800\) 0 0
\(801\) 224.797 + 129.786i 0.280645 + 0.162030i
\(802\) −132.477 + 229.457i −0.165183 + 0.286106i
\(803\) 12.3923 7.15470i 0.0154325 0.00890997i
\(804\) 28.9324i 0.0359856i
\(805\) 0 0
\(806\) −15.6408 −0.0194055
\(807\) 8.57284 + 14.8486i 0.0106231 + 0.0183998i
\(808\) 483.529 + 279.166i 0.598427 + 0.345502i
\(809\) −693.426 + 1201.05i −0.857140 + 1.48461i 0.0175061 + 0.999847i \(0.494427\pi\)
−0.874646 + 0.484763i \(0.838906\pi\)
\(810\) 0 0
\(811\) 987.281i 1.21736i 0.793415 + 0.608681i \(0.208301\pi\)
−0.793415 + 0.608681i \(0.791699\pi\)
\(812\) −99.4600 + 337.164i −0.122488 + 0.415226i
\(813\) −32.9423 −0.0405195
\(814\) −147.536 255.540i −0.181248 0.313931i
\(815\) 0 0
\(816\) −73.4724 + 127.258i −0.0900397 + 0.155953i
\(817\) 158.215 91.3457i 0.193654 0.111806i
\(818\) 298.762i 0.365234i
\(819\) 30.5674 29.0728i 0.0373228 0.0354979i
\(820\) 0 0
\(821\) 223.132 + 386.477i 0.271781 + 0.470739i 0.969318 0.245810i \(-0.0790539\pi\)
−0.697537 + 0.716549i \(0.745721\pi\)
\(822\) −268.469 155.001i −0.326605 0.188565i
\(823\) 413.931 716.949i 0.502954 0.871141i −0.497040 0.867727i \(-0.665580\pi\)
0.999994 0.00341406i \(-0.00108673\pi\)
\(824\) 173.234 100.017i 0.210235 0.121379i
\(825\) 0 0
\(826\) −29.4568 122.091i −0.0356620 0.147810i
\(827\) −1333.16 −1.61204 −0.806022 0.591885i \(-0.798384\pi\)
−0.806022 + 0.591885i \(0.798384\pi\)
\(828\) 118.220 + 204.763i 0.142778 + 0.247298i
\(829\) −1257.72 726.147i −1.51716 0.875931i −0.999797 0.0201631i \(-0.993581\pi\)
−0.517360 0.855768i \(-0.673085\pi\)
\(830\) 0 0
\(831\) 308.194 177.936i 0.370871 0.214122i
\(832\) 16.0706i 0.0193156i
\(833\) −1037.97 52.0561i −1.24606 0.0624924i
\(834\) 331.565 0.397560
\(835\) 0 0
\(836\) −202.475 116.899i −0.242195 0.139832i
\(837\) −14.3040 + 24.7752i −0.0170896 + 0.0296000i
\(838\) 59.9518 34.6132i 0.0715416 0.0413045i
\(839\) 602.259i 0.717830i 0.933370 + 0.358915i \(0.116853\pi\)
−0.933370 + 0.358915i \(0.883147\pi\)
\(840\) 0 0
\(841\) −210.532 −0.250335
\(842\) −117.761 203.968i −0.139859 0.242243i
\(843\) −674.492 389.418i −0.800109 0.461943i
\(844\) 254.413 440.656i 0.301437 0.522105i
\(845\) 0 0
\(846\) 193.793i 0.229070i
\(847\) 937.022 + 985.193i 1.10628 + 1.16316i
\(848\) −393.809 −0.464397
\(849\) −137.762 238.611i −0.162264 0.281050i
\(850\) 0 0
\(851\) −231.545 + 401.048i −0.272086 + 0.471267i
\(852\) −215.468 + 124.400i −0.252896 + 0.146010i
\(853\) 487.049i 0.570983i 0.958381 + 0.285492i \(0.0921569\pi\)
−0.958381 + 0.285492i \(0.907843\pi\)
\(854\) −899.508 265.346i −1.05329 0.310710i
\(855\) 0 0
\(856\) −45.1993 78.2875i −0.0528029 0.0914573i
\(857\) 1199.88 + 692.754i 1.40010 + 0.808347i 0.994402 0.105661i \(-0.0336957\pi\)
0.405696 + 0.914008i \(0.367029\pi\)
\(858\) −43.6820 + 75.6595i −0.0509115 + 0.0881813i
\(859\) 1165.46 672.881i 1.35677 0.783331i 0.367582 0.929991i \(-0.380186\pi\)
0.989187 + 0.146660i \(0.0468523\pi\)
\(860\) 0 0
\(861\) 57.9097 196.310i 0.0672586 0.228003i
\(862\) −271.285 −0.314716
\(863\) −124.905 216.341i −0.144733 0.250685i 0.784540 0.620078i \(-0.212899\pi\)
−0.929273 + 0.369393i \(0.879566\pi\)
\(864\) 25.4558 + 14.6969i 0.0294628 + 0.0170103i
\(865\) 0 0
\(866\) −623.605 + 360.039i −0.720099 + 0.415749i
\(867\) 278.599i 0.321337i
\(868\) 55.8509 53.1201i 0.0643444 0.0611983i
\(869\) −2066.11 −2.37758
\(870\) 0 0
\(871\) 14.5300 + 8.38890i 0.0166820 + 0.00963134i
\(872\) 299.887 519.420i 0.343907 0.595665i
\(873\) −430.350 + 248.463i −0.492955 + 0.284608i
\(874\) 366.927i 0.419825i
\(875\) 0 0
\(876\) −2.79187 −0.00318707
\(877\) 354.104 + 613.327i 0.403768 + 0.699346i 0.994177 0.107757i \(-0.0343670\pi\)
−0.590409 + 0.807104i \(0.701034\pi\)
\(878\) −649.335 374.894i −0.739562 0.426986i
\(879\) −391.391 + 677.908i −0.445268 + 0.771227i
\(880\) 0 0
\(881\) 83.7844i 0.0951014i 0.998869 + 0.0475507i \(0.0151416\pi\)
−0.998869 + 0.0475507i \(0.984858\pi\)
\(882\) −10.4130 + 207.628i −0.0118061 + 0.235406i
\(883\) 1155.05 1.30810 0.654051 0.756450i \(-0.273068\pi\)
0.654051 + 0.756450i \(0.273068\pi\)
\(884\) 42.6063 + 73.7964i 0.0481972 + 0.0834800i
\(885\) 0 0
\(886\) 301.152 521.610i 0.339900 0.588725i
\(887\) 278.227 160.634i 0.313672 0.181098i −0.334897 0.942255i \(-0.608701\pi\)
0.648568 + 0.761157i \(0.275368\pi\)
\(888\) 57.5708i 0.0648320i
\(889\) 1095.18 264.233i 1.23192 0.297225i
\(890\) 0 0
\(891\) 79.8967 + 138.385i 0.0896709 + 0.155314i
\(892\) −341.415 197.116i −0.382752 0.220982i
\(893\) 150.372 260.452i 0.168390 0.291660i
\(894\) −171.007 + 98.7311i −0.191283 + 0.110438i
\(895\) 0 0
\(896\) −54.5795 57.3854i −0.0609146 0.0640462i
\(897\) 137.111 0.152855
\(898\) −208.257 360.711i −0.231912 0.401683i
\(899\) −119.720 69.1203i −0.133170 0.0768858i
\(900\) 0 0
\(901\) −1808.38 + 1044.07i −2.00708 + 1.15879i
\(902\) 423.872i 0.469925i
\(903\) 322.673 + 95.1855i 0.357335 + 0.105410i
\(904\) 257.498 0.284843
\(905\) 0 0
\(906\) 29.5625 + 17.0679i 0.0326297 + 0.0188388i
\(907\) 192.833 333.996i 0.212605 0.368243i −0.739924 0.672690i \(-0.765139\pi\)
0.952529 + 0.304448i \(0.0984719\pi\)
\(908\) −496.109 + 286.429i −0.546376 + 0.315450i
\(909\) 592.200i 0.651485i
\(910\) 0 0
\(911\) 544.040 0.597190 0.298595 0.954380i \(-0.403482\pi\)
0.298595 + 0.954380i \(0.403482\pi\)
\(912\) 22.8079 + 39.5045i 0.0250087 + 0.0433163i
\(913\) −770.718 444.974i −0.844159 0.487376i
\(914\) −57.8704 + 100.235i −0.0633156 + 0.109666i
\(915\) 0 0
\(916\) 412.523i 0.450353i
\(917\) 84.7018 80.5603i 0.0923684 0.0878520i
\(918\) 155.858 0.169780
\(919\) −305.574 529.269i −0.332507 0.575919i 0.650496 0.759510i \(-0.274561\pi\)
−0.983003 + 0.183591i \(0.941228\pi\)
\(920\) 0 0
\(921\) 481.038 833.182i 0.522299 0.904649i
\(922\) 929.764 536.799i 1.00842 0.582212i
\(923\) 144.278i 0.156315i
\(924\) −100.977 418.523i −0.109282 0.452947i
\(925\) 0 0
\(926\) 279.298 + 483.759i 0.301618 + 0.522418i
\(927\) −183.742 106.084i −0.198212 0.114438i
\(928\) −71.0193 + 123.009i −0.0765294 + 0.132553i
\(929\) −744.000 + 429.549i −0.800862 + 0.462378i −0.843772 0.536701i \(-0.819670\pi\)
0.0429108 + 0.999079i \(0.486337\pi\)
\(930\) 0 0
\(931\) −175.102 + 270.966i −0.188080 + 0.291049i
\(932\) −13.7860 −0.0147918
\(933\) 146.444 + 253.648i 0.156960 + 0.271863i
\(934\) −328.613 189.725i −0.351834 0.203131i
\(935\) 0 0
\(936\) 14.7617 8.52270i 0.0157711 0.00910545i
\(937\) 1665.22i 1.77718i −0.458700 0.888591i \(-0.651685\pi\)
0.458700 0.888591i \(-0.348315\pi\)
\(938\) −80.3750 + 19.3920i −0.0856876 + 0.0206738i
\(939\) −1014.38 −1.08028
\(940\) 0 0
\(941\) 946.705 + 546.581i 1.00606 + 0.580851i 0.910037 0.414528i \(-0.136053\pi\)
0.0960266 + 0.995379i \(0.469387\pi\)
\(942\) −30.9451 + 53.5985i −0.0328505 + 0.0568987i
\(943\) 576.107 332.616i 0.610930 0.352721i
\(944\) 50.7478i 0.0537583i
\(945\) 0 0
\(946\) −696.714 −0.736484
\(947\) −702.226 1216.29i −0.741527 1.28436i −0.951800 0.306720i \(-0.900769\pi\)
0.210273 0.977643i \(-0.432565\pi\)
\(948\) 349.108 + 201.557i 0.368257 + 0.212613i
\(949\) −0.809498 + 1.40209i −0.000853001 + 0.00147744i
\(950\) 0 0
\(951\) 452.461i 0.475773i
\(952\) −402.771 118.813i −0.423079 0.124804i
\(953\) −1284.11 −1.34744 −0.673722 0.738985i \(-0.735305\pi\)
−0.673722 + 0.738985i \(0.735305\pi\)
\(954\) 208.849 + 361.736i 0.218919 + 0.379179i
\(955\) 0 0
\(956\) −289.962 + 502.229i −0.303308 + 0.525344i
\(957\) −668.712 + 386.081i −0.698759 + 0.403429i
\(958\) 768.582i 0.802278i
\(959\) 250.654 849.704i 0.261371 0.886031i
\(960\) 0 0
\(961\) −465.344 806.000i −0.484229 0.838709i
\(962\) 28.9123 + 16.6926i 0.0300544 + 0.0173519i
\(963\) −47.9411 + 83.0364i −0.0497831 + 0.0862268i
\(964\) −565.582 + 326.539i −0.586704 + 0.338733i
\(965\) 0 0
\(966\) −489.600 + 465.661i −0.506832 + 0.482050i
\(967\) −437.417 −0.452344 −0.226172 0.974087i \(-0.572621\pi\)
−0.226172 + 0.974087i \(0.572621\pi\)
\(968\) 274.688 + 475.774i 0.283769 + 0.491502i
\(969\) 209.469 + 120.937i 0.216170 + 0.124806i
\(970\) 0 0
\(971\) −277.241 + 160.065i −0.285521 + 0.164846i −0.635920 0.771755i \(-0.719379\pi\)
0.350399 + 0.936601i \(0.386046\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 222.232 + 921.097i 0.228399 + 0.946657i
\(974\) 560.767 0.575736
\(975\) 0 0
\(976\) −328.172 189.470i −0.336242 0.194129i
\(977\) −109.535 + 189.720i −0.112114 + 0.194187i −0.916622 0.399754i \(-0.869095\pi\)
0.804509 + 0.593941i \(0.202429\pi\)
\(978\) −118.227 + 68.2581i −0.120886 + 0.0697936i
\(979\) 1536.22i 1.56918i
\(980\) 0 0
\(981\) −636.157 −0.648478
\(982\) 530.795 + 919.364i 0.540525 + 0.936216i
\(983\) −188.528 108.847i −0.191789 0.110729i 0.401031 0.916064i \(-0.368652\pi\)
−0.592820 + 0.805335i \(0.701985\pi\)
\(984\) 41.3503 71.6209i 0.0420227 0.0727854i
\(985\) 0 0
\(986\) 753.147i 0.763841i
\(987\) 538.363 129.890i 0.545454 0.131601i
\(988\) 26.4524 0.0267737
\(989\) 546.717 + 946.941i 0.552798 + 0.957473i
\(990\) 0 0
\(991\) −566.322 + 980.899i −0.571466 + 0.989808i 0.424950 + 0.905217i \(0.360292\pi\)
−0.996416 + 0.0845907i \(0.973042\pi\)
\(992\) 26.9718 15.5722i 0.0271893 0.0156978i
\(993\) 330.816i 0.333148i
\(994\) −490.005 515.195i −0.492962 0.518305i
\(995\) 0 0
\(996\) 86.8178 + 150.373i 0.0871665 + 0.150977i
\(997\) −1350.51 779.718i −1.35458 0.782065i −0.365689 0.930737i \(-0.619167\pi\)
−0.988887 + 0.148672i \(0.952500\pi\)
\(998\) −94.2980 + 163.329i −0.0944869 + 0.163656i
\(999\) 52.8822 30.5315i 0.0529351 0.0305621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.p.f.451.4 yes 12
5.2 odd 4 1050.3.q.d.199.2 24
5.3 odd 4 1050.3.q.d.199.8 24
5.4 even 2 1050.3.p.e.451.3 12
7.5 odd 6 inner 1050.3.p.f.901.4 yes 12
35.12 even 12 1050.3.q.d.649.8 24
35.19 odd 6 1050.3.p.e.901.3 yes 12
35.33 even 12 1050.3.q.d.649.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1050.3.p.e.451.3 12 5.4 even 2
1050.3.p.e.901.3 yes 12 35.19 odd 6
1050.3.p.f.451.4 yes 12 1.1 even 1 trivial
1050.3.p.f.901.4 yes 12 7.5 odd 6 inner
1050.3.q.d.199.2 24 5.2 odd 4
1050.3.q.d.199.8 24 5.3 odd 4
1050.3.q.d.649.2 24 35.33 even 12
1050.3.q.d.649.8 24 35.12 even 12