Properties

Label 1050.3.p.f.451.2
Level $1050$
Weight $3$
Character 1050.451
Analytic conductor $28.610$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,3,Mod(451,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,18,-12,0,0,8,0,18,0,-4,-36,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 56 x^{10} + 300 x^{9} + 1007 x^{8} + 12456 x^{7} + 209990 x^{6} - 250384 x^{5} + \cdots + 6882692292 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.2
Root \(-5.81071 + 4.13641i\) of defining polynomial
Character \(\chi\) \(=\) 1050.451
Dual form 1050.3.p.f.901.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} -2.44949i q^{6} +(1.88399 - 6.74171i) q^{7} +2.82843 q^{8} +(1.50000 + 2.59808i) q^{9} +(1.65702 - 2.87005i) q^{11} +(-3.00000 + 1.73205i) q^{12} +19.5077i q^{13} +(-9.58905 + 2.45970i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(7.30003 + 4.21467i) q^{17} +(2.12132 - 3.67423i) q^{18} +(0.704670 - 0.406841i) q^{19} +(8.66447 - 8.48098i) q^{21} -4.68677 q^{22} +(5.98556 + 10.3673i) q^{23} +(4.24264 + 2.44949i) q^{24} +(23.8919 - 13.7940i) q^{26} +5.19615i q^{27} +(9.79299 + 10.0049i) q^{28} +4.68677 q^{29} +(27.9363 + 16.1291i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(4.97107 - 2.87005i) q^{33} -11.9209i q^{34} -6.00000 q^{36} +(-3.01293 - 5.21854i) q^{37} +(-0.996554 - 0.575361i) q^{38} +(-16.8942 + 29.2615i) q^{39} -19.6861i q^{41} +(-16.5137 - 4.61481i) q^{42} -2.53339 q^{43} +(3.31404 + 5.74009i) q^{44} +(8.46486 - 14.6616i) q^{46} +(-15.8328 + 9.14110i) q^{47} -6.92820i q^{48} +(-41.9012 - 25.4026i) q^{49} +(7.30003 + 12.6440i) q^{51} +(-33.7883 - 19.5077i) q^{52} +(15.9837 - 27.6846i) q^{53} +(6.36396 - 3.67423i) q^{54} +(5.32872 - 19.0684i) q^{56} +1.40934 q^{57} +(-3.31404 - 5.74009i) q^{58} +(64.3758 + 37.1674i) q^{59} +(95.1577 - 54.9393i) q^{61} -45.6199i q^{62} +(20.3414 - 5.21781i) q^{63} +8.00000 q^{64} +(-7.03015 - 4.05886i) q^{66} +(-47.3405 + 81.9962i) q^{67} +(-14.6001 + 8.42935i) q^{68} +20.7346i q^{69} +98.0047 q^{71} +(4.24264 + 7.34847i) q^{72} +(-9.62690 - 5.55809i) q^{73} +(-4.26092 + 7.38013i) q^{74} +1.62737i q^{76} +(-16.2272 - 16.5783i) q^{77} +47.7839 q^{78} +(-0.500763 - 0.867346i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-24.1105 + 13.9202i) q^{82} +66.8044i q^{83} +(6.02501 + 23.4883i) q^{84} +(1.79138 + 3.10276i) q^{86} +(7.03015 + 4.05886i) q^{87} +(4.68677 - 8.11772i) q^{88} +(133.528 - 77.0927i) q^{89} +(131.515 + 36.7523i) q^{91} -23.9422 q^{92} +(27.9363 + 48.3872i) q^{93} +(22.3910 + 12.9275i) q^{94} +(-8.48528 + 4.89898i) q^{96} +132.023i q^{97} +(-1.48309 + 69.2806i) q^{98} +9.94213 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 18 q^{3} - 12 q^{4} + 8 q^{7} + 18 q^{9} - 4 q^{11} - 36 q^{12} + 8 q^{14} - 24 q^{16} - 24 q^{17} + 12 q^{19} + 18 q^{21} + 24 q^{22} - 60 q^{23} - 24 q^{26} + 4 q^{28} - 24 q^{29} - 198 q^{31}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 1.50000 + 0.866025i 0.500000 + 0.288675i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) 1.88399 6.74171i 0.269141 0.963101i
\(8\) 2.82843 0.353553
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.65702 2.87005i 0.150638 0.260913i −0.780824 0.624751i \(-0.785200\pi\)
0.931462 + 0.363838i \(0.118534\pi\)
\(12\) −3.00000 + 1.73205i −0.250000 + 0.144338i
\(13\) 19.5077i 1.50059i 0.661103 + 0.750296i \(0.270089\pi\)
−0.661103 + 0.750296i \(0.729911\pi\)
\(14\) −9.58905 + 2.45970i −0.684932 + 0.175693i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 7.30003 + 4.21467i 0.429414 + 0.247922i 0.699097 0.715027i \(-0.253586\pi\)
−0.269683 + 0.962949i \(0.586919\pi\)
\(18\) 2.12132 3.67423i 0.117851 0.204124i
\(19\) 0.704670 0.406841i 0.0370879 0.0214127i −0.481341 0.876533i \(-0.659850\pi\)
0.518429 + 0.855120i \(0.326517\pi\)
\(20\) 0 0
\(21\) 8.66447 8.48098i 0.412594 0.403856i
\(22\) −4.68677 −0.213035
\(23\) 5.98556 + 10.3673i 0.260242 + 0.450752i 0.966306 0.257396i \(-0.0828644\pi\)
−0.706064 + 0.708148i \(0.749531\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) 0 0
\(26\) 23.8919 13.7940i 0.918921 0.530539i
\(27\) 5.19615i 0.192450i
\(28\) 9.79299 + 10.0049i 0.349750 + 0.357317i
\(29\) 4.68677 0.161613 0.0808063 0.996730i \(-0.474250\pi\)
0.0808063 + 0.996730i \(0.474250\pi\)
\(30\) 0 0
\(31\) 27.9363 + 16.1291i 0.901172 + 0.520292i 0.877580 0.479430i \(-0.159156\pi\)
0.0235920 + 0.999722i \(0.492490\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 4.97107 2.87005i 0.150638 0.0869711i
\(34\) 11.9209i 0.350615i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) −3.01293 5.21854i −0.0814304 0.141042i 0.822434 0.568860i \(-0.192616\pi\)
−0.903865 + 0.427819i \(0.859282\pi\)
\(38\) −0.996554 0.575361i −0.0262251 0.0151411i
\(39\) −16.8942 + 29.2615i −0.433183 + 0.750296i
\(40\) 0 0
\(41\) 19.6861i 0.480150i −0.970754 0.240075i \(-0.922828\pi\)
0.970754 0.240075i \(-0.0771720\pi\)
\(42\) −16.5137 4.61481i −0.393184 0.109876i
\(43\) −2.53339 −0.0589160 −0.0294580 0.999566i \(-0.509378\pi\)
−0.0294580 + 0.999566i \(0.509378\pi\)
\(44\) 3.31404 + 5.74009i 0.0753192 + 0.130457i
\(45\) 0 0
\(46\) 8.46486 14.6616i 0.184019 0.318730i
\(47\) −15.8328 + 9.14110i −0.336869 + 0.194491i −0.658887 0.752242i \(-0.728972\pi\)
0.322018 + 0.946734i \(0.395639\pi\)
\(48\) 6.92820i 0.144338i
\(49\) −41.9012 25.4026i −0.855126 0.518420i
\(50\) 0 0
\(51\) 7.30003 + 12.6440i 0.143138 + 0.247922i
\(52\) −33.7883 19.5077i −0.649775 0.375148i
\(53\) 15.9837 27.6846i 0.301580 0.522351i −0.674914 0.737896i \(-0.735819\pi\)
0.976494 + 0.215545i \(0.0691528\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) 0 0
\(56\) 5.32872 19.0684i 0.0951558 0.340508i
\(57\) 1.40934 0.0247253
\(58\) −3.31404 5.74009i −0.0571387 0.0989671i
\(59\) 64.3758 + 37.1674i 1.09111 + 0.629956i 0.933873 0.357605i \(-0.116406\pi\)
0.157242 + 0.987560i \(0.449740\pi\)
\(60\) 0 0
\(61\) 95.1577 54.9393i 1.55996 0.900645i 0.562704 0.826659i \(-0.309761\pi\)
0.997259 0.0739862i \(-0.0235721\pi\)
\(62\) 45.6199i 0.735804i
\(63\) 20.3414 5.21781i 0.322880 0.0828224i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) −7.03015 4.05886i −0.106517 0.0614979i
\(67\) −47.3405 + 81.9962i −0.706575 + 1.22382i 0.259545 + 0.965731i \(0.416428\pi\)
−0.966120 + 0.258093i \(0.916906\pi\)
\(68\) −14.6001 + 8.42935i −0.214707 + 0.123961i
\(69\) 20.7346i 0.300501i
\(70\) 0 0
\(71\) 98.0047 1.38035 0.690174 0.723643i \(-0.257534\pi\)
0.690174 + 0.723643i \(0.257534\pi\)
\(72\) 4.24264 + 7.34847i 0.0589256 + 0.102062i
\(73\) −9.62690 5.55809i −0.131875 0.0761383i 0.432611 0.901581i \(-0.357592\pi\)
−0.564486 + 0.825442i \(0.690926\pi\)
\(74\) −4.26092 + 7.38013i −0.0575800 + 0.0997315i
\(75\) 0 0
\(76\) 1.62737i 0.0214127i
\(77\) −16.2272 16.5783i −0.210743 0.215302i
\(78\) 47.7839 0.612614
\(79\) −0.500763 0.867346i −0.00633877 0.0109791i 0.862839 0.505479i \(-0.168684\pi\)
−0.869177 + 0.494500i \(0.835351\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −24.1105 + 13.9202i −0.294031 + 0.169759i
\(83\) 66.8044i 0.804872i 0.915448 + 0.402436i \(0.131836\pi\)
−0.915448 + 0.402436i \(0.868164\pi\)
\(84\) 6.02501 + 23.4883i 0.0717263 + 0.279622i
\(85\) 0 0
\(86\) 1.79138 + 3.10276i 0.0208300 + 0.0360786i
\(87\) 7.03015 + 4.05886i 0.0808063 + 0.0466536i
\(88\) 4.68677 8.11772i 0.0532587 0.0922468i
\(89\) 133.528 77.0927i 1.50032 0.866210i 0.500319 0.865841i \(-0.333216\pi\)
1.00000 0.000368641i \(-0.000117342\pi\)
\(90\) 0 0
\(91\) 131.515 + 36.7523i 1.44522 + 0.403871i
\(92\) −23.9422 −0.260242
\(93\) 27.9363 + 48.3872i 0.300391 + 0.520292i
\(94\) 22.3910 + 12.9275i 0.238202 + 0.137526i
\(95\) 0 0
\(96\) −8.48528 + 4.89898i −0.0883883 + 0.0510310i
\(97\) 132.023i 1.36107i 0.732717 + 0.680533i \(0.238252\pi\)
−0.732717 + 0.680533i \(0.761748\pi\)
\(98\) −1.48309 + 69.2806i −0.0151336 + 0.706945i
\(99\) 9.94213 0.100426
\(100\) 0 0
\(101\) −15.3107 8.83965i −0.151591 0.0875213i 0.422286 0.906463i \(-0.361228\pi\)
−0.573877 + 0.818942i \(0.694561\pi\)
\(102\) 10.3238 17.8813i 0.101214 0.175307i
\(103\) 33.9450 19.5981i 0.329563 0.190273i −0.326084 0.945341i \(-0.605729\pi\)
0.655647 + 0.755067i \(0.272396\pi\)
\(104\) 55.1761i 0.530539i
\(105\) 0 0
\(106\) −45.2088 −0.426498
\(107\) 66.5000 + 115.181i 0.621495 + 1.07646i 0.989207 + 0.146522i \(0.0468078\pi\)
−0.367712 + 0.929940i \(0.619859\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) 24.5640 42.5461i 0.225358 0.390332i −0.731069 0.682304i \(-0.760978\pi\)
0.956427 + 0.291972i \(0.0943115\pi\)
\(110\) 0 0
\(111\) 10.4371i 0.0940278i
\(112\) −27.1219 + 6.95708i −0.242160 + 0.0621168i
\(113\) 141.909 1.25583 0.627915 0.778282i \(-0.283908\pi\)
0.627915 + 0.778282i \(0.283908\pi\)
\(114\) −0.996554 1.72608i −0.00874170 0.0151411i
\(115\) 0 0
\(116\) −4.68677 + 8.11772i −0.0404032 + 0.0699803i
\(117\) −50.6825 + 29.2615i −0.433183 + 0.250099i
\(118\) 105.125i 0.890892i
\(119\) 42.1673 41.2742i 0.354347 0.346842i
\(120\) 0 0
\(121\) 55.0086 + 95.2776i 0.454616 + 0.787418i
\(122\) −134.573 77.6960i −1.10306 0.636852i
\(123\) 17.0487 29.5292i 0.138607 0.240075i
\(124\) −55.8727 + 32.2581i −0.450586 + 0.260146i
\(125\) 0 0
\(126\) −20.7741 21.2235i −0.164874 0.168441i
\(127\) −87.2663 −0.687137 −0.343568 0.939128i \(-0.611636\pi\)
−0.343568 + 0.939128i \(0.611636\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) −3.80008 2.19398i −0.0294580 0.0170076i
\(130\) 0 0
\(131\) 95.2814 55.0107i 0.727339 0.419929i −0.0901091 0.995932i \(-0.528722\pi\)
0.817448 + 0.576003i \(0.195388\pi\)
\(132\) 11.4802i 0.0869711i
\(133\) −1.41521 5.51716i −0.0106407 0.0414824i
\(134\) 133.899 0.999248
\(135\) 0 0
\(136\) 20.6476 + 11.9209i 0.151821 + 0.0876537i
\(137\) 68.8331 119.222i 0.502431 0.870237i −0.497565 0.867427i \(-0.665772\pi\)
0.999996 0.00280972i \(-0.000894362\pi\)
\(138\) 25.3946 14.6616i 0.184019 0.106243i
\(139\) 68.6829i 0.494122i 0.969000 + 0.247061i \(0.0794648\pi\)
−0.969000 + 0.247061i \(0.920535\pi\)
\(140\) 0 0
\(141\) −31.6657 −0.224579
\(142\) −69.2998 120.031i −0.488027 0.845287i
\(143\) 55.9880 + 32.3247i 0.391524 + 0.226047i
\(144\) 6.00000 10.3923i 0.0416667 0.0721688i
\(145\) 0 0
\(146\) 15.7207i 0.107676i
\(147\) −40.8525 74.3914i −0.277908 0.506064i
\(148\) 12.0517 0.0814304
\(149\) −91.7993 159.001i −0.616102 1.06712i −0.990190 0.139727i \(-0.955377\pi\)
0.374088 0.927393i \(-0.377956\pi\)
\(150\) 0 0
\(151\) −70.7469 + 122.537i −0.468523 + 0.811505i −0.999353 0.0359734i \(-0.988547\pi\)
0.530830 + 0.847478i \(0.321880\pi\)
\(152\) 1.99311 1.15072i 0.0131126 0.00757054i
\(153\) 25.2880i 0.165281i
\(154\) −8.82982 + 31.5968i −0.0573365 + 0.205174i
\(155\) 0 0
\(156\) −33.7883 58.5231i −0.216592 0.375148i
\(157\) −148.618 85.8044i −0.946609 0.546525i −0.0545830 0.998509i \(-0.517383\pi\)
−0.892026 + 0.451984i \(0.850716\pi\)
\(158\) −0.708185 + 1.22661i −0.00448219 + 0.00776337i
\(159\) 47.9511 27.6846i 0.301580 0.174117i
\(160\) 0 0
\(161\) 81.1699 20.8210i 0.504161 0.129323i
\(162\) 12.7279 0.0785674
\(163\) −147.728 255.872i −0.906306 1.56977i −0.819154 0.573573i \(-0.805557\pi\)
−0.0871517 0.996195i \(-0.527776\pi\)
\(164\) 34.0974 + 19.6861i 0.207911 + 0.120037i
\(165\) 0 0
\(166\) 81.8183 47.2378i 0.492882 0.284565i
\(167\) 168.538i 1.00921i 0.863351 + 0.504604i \(0.168361\pi\)
−0.863351 + 0.504604i \(0.831639\pi\)
\(168\) 24.5068 23.9878i 0.145874 0.142785i
\(169\) −211.550 −1.25177
\(170\) 0 0
\(171\) 2.11401 + 1.22052i 0.0123626 + 0.00713757i
\(172\) 2.53339 4.38796i 0.0147290 0.0255114i
\(173\) 129.098 74.5349i 0.746232 0.430838i −0.0780985 0.996946i \(-0.524885\pi\)
0.824331 + 0.566108i \(0.191552\pi\)
\(174\) 11.4802i 0.0659781i
\(175\) 0 0
\(176\) −13.2562 −0.0753192
\(177\) 64.3758 + 111.502i 0.363705 + 0.629956i
\(178\) −188.838 109.025i −1.06089 0.612503i
\(179\) 141.413 244.935i 0.790018 1.36835i −0.135937 0.990718i \(-0.543404\pi\)
0.925955 0.377634i \(-0.123262\pi\)
\(180\) 0 0
\(181\) 305.418i 1.68739i 0.536820 + 0.843697i \(0.319625\pi\)
−0.536820 + 0.843697i \(0.680375\pi\)
\(182\) −47.9831 187.060i −0.263643 1.02780i
\(183\) 190.315 1.03998
\(184\) 16.9297 + 29.3231i 0.0920093 + 0.159365i
\(185\) 0 0
\(186\) 39.5080 68.4298i 0.212408 0.367902i
\(187\) 24.1926 13.9676i 0.129372 0.0746931i
\(188\) 36.5644i 0.194491i
\(189\) 35.0309 + 9.78949i 0.185349 + 0.0517963i
\(190\) 0 0
\(191\) −24.3372 42.1533i −0.127420 0.220698i 0.795256 0.606273i \(-0.207336\pi\)
−0.922676 + 0.385576i \(0.874003\pi\)
\(192\) 12.0000 + 6.92820i 0.0625000 + 0.0360844i
\(193\) −74.7666 + 129.500i −0.387392 + 0.670982i −0.992098 0.125467i \(-0.959957\pi\)
0.604706 + 0.796449i \(0.293291\pi\)
\(194\) 161.695 93.3547i 0.833479 0.481210i
\(195\) 0 0
\(196\) 85.8998 47.1724i 0.438264 0.240675i
\(197\) 219.479 1.11411 0.557053 0.830477i \(-0.311932\pi\)
0.557053 + 0.830477i \(0.311932\pi\)
\(198\) −7.03015 12.1766i −0.0355058 0.0614979i
\(199\) −254.396 146.875i −1.27837 0.738067i −0.301821 0.953365i \(-0.597595\pi\)
−0.976548 + 0.215298i \(0.930928\pi\)
\(200\) 0 0
\(201\) −142.022 + 81.9962i −0.706575 + 0.407941i
\(202\) 25.0023i 0.123774i
\(203\) 8.82982 31.5968i 0.0434966 0.155649i
\(204\) −29.2001 −0.143138
\(205\) 0 0
\(206\) −48.0055 27.7160i −0.233036 0.134544i
\(207\) −17.9567 + 31.1019i −0.0867472 + 0.150251i
\(208\) 67.5766 39.0154i 0.324888 0.187574i
\(209\) 2.69658i 0.0129023i
\(210\) 0 0
\(211\) 122.768 0.581841 0.290920 0.956747i \(-0.406039\pi\)
0.290920 + 0.956747i \(0.406039\pi\)
\(212\) 31.9674 + 55.3692i 0.150790 + 0.261176i
\(213\) 147.007 + 84.8746i 0.690174 + 0.398472i
\(214\) 94.0452 162.891i 0.439463 0.761173i
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) 161.369 157.952i 0.743636 0.727888i
\(218\) −69.4776 −0.318704
\(219\) −9.62690 16.6743i −0.0439585 0.0761383i
\(220\) 0 0
\(221\) −82.2185 + 142.407i −0.372030 + 0.644374i
\(222\) −12.7828 + 7.38013i −0.0575800 + 0.0332438i
\(223\) 3.70845i 0.0166298i −0.999965 0.00831491i \(-0.997353\pi\)
0.999965 0.00831491i \(-0.00264675\pi\)
\(224\) 27.6988 + 28.2980i 0.123655 + 0.126331i
\(225\) 0 0
\(226\) −100.345 173.802i −0.444003 0.769036i
\(227\) 131.877 + 76.1393i 0.580957 + 0.335416i 0.761514 0.648149i \(-0.224457\pi\)
−0.180557 + 0.983565i \(0.557790\pi\)
\(228\) −1.40934 + 2.44105i −0.00618132 + 0.0107064i
\(229\) −123.917 + 71.5435i −0.541123 + 0.312417i −0.745534 0.666468i \(-0.767805\pi\)
0.204411 + 0.978885i \(0.434472\pi\)
\(230\) 0 0
\(231\) −9.98358 38.9206i −0.0432189 0.168487i
\(232\) 13.2562 0.0571387
\(233\) −35.9752 62.3109i −0.154400 0.267429i 0.778440 0.627719i \(-0.216011\pi\)
−0.932840 + 0.360290i \(0.882678\pi\)
\(234\) 71.6758 + 41.3820i 0.306307 + 0.176846i
\(235\) 0 0
\(236\) −128.752 + 74.3347i −0.545557 + 0.314978i
\(237\) 1.73469i 0.00731938i
\(238\) −80.3672 22.4588i −0.337677 0.0943649i
\(239\) −453.719 −1.89840 −0.949202 0.314667i \(-0.898107\pi\)
−0.949202 + 0.314667i \(0.898107\pi\)
\(240\) 0 0
\(241\) −163.281 94.2706i −0.677516 0.391164i 0.121402 0.992603i \(-0.461261\pi\)
−0.798919 + 0.601439i \(0.794594\pi\)
\(242\) 77.7938 134.743i 0.321462 0.556789i
\(243\) −13.5000 + 7.79423i −0.0555556 + 0.0320750i
\(244\) 219.757i 0.900645i
\(245\) 0 0
\(246\) −48.2210 −0.196020
\(247\) 7.93653 + 13.7465i 0.0321317 + 0.0556538i
\(248\) 79.0159 + 45.6199i 0.318613 + 0.183951i
\(249\) −57.8543 + 100.207i −0.232347 + 0.402436i
\(250\) 0 0
\(251\) 233.911i 0.931917i −0.884807 0.465958i \(-0.845710\pi\)
0.884807 0.465958i \(-0.154290\pi\)
\(252\) −11.3039 + 40.4502i −0.0448569 + 0.160517i
\(253\) 39.6728 0.156810
\(254\) 61.7066 + 106.879i 0.242939 + 0.420783i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 162.902 94.0516i 0.633861 0.365960i −0.148385 0.988930i \(-0.547408\pi\)
0.782246 + 0.622970i \(0.214074\pi\)
\(258\) 6.20551i 0.0240524i
\(259\) −40.8582 + 10.4806i −0.157754 + 0.0404656i
\(260\) 0 0
\(261\) 7.03015 + 12.1766i 0.0269354 + 0.0466536i
\(262\) −134.748 77.7969i −0.514306 0.296935i
\(263\) −169.290 + 293.219i −0.643688 + 1.11490i 0.340915 + 0.940094i \(0.389263\pi\)
−0.984603 + 0.174806i \(0.944070\pi\)
\(264\) 14.0603 8.11772i 0.0532587 0.0307489i
\(265\) 0 0
\(266\) −5.75641 + 5.63450i −0.0216406 + 0.0211823i
\(267\) 267.057 1.00021
\(268\) −94.6811 163.992i −0.353288 0.611912i
\(269\) 453.034 + 261.559i 1.68414 + 0.972340i 0.958856 + 0.283893i \(0.0916259\pi\)
0.725286 + 0.688448i \(0.241707\pi\)
\(270\) 0 0
\(271\) 385.799 222.741i 1.42361 0.821923i 0.427006 0.904249i \(-0.359568\pi\)
0.996605 + 0.0823259i \(0.0262348\pi\)
\(272\) 33.7174i 0.123961i
\(273\) 165.444 + 169.024i 0.606023 + 0.619135i
\(274\) −194.689 −0.710545
\(275\) 0 0
\(276\) −35.9133 20.7346i −0.130121 0.0751253i
\(277\) −7.26684 + 12.5865i −0.0262341 + 0.0454388i −0.878844 0.477109i \(-0.841685\pi\)
0.852610 + 0.522547i \(0.175018\pi\)
\(278\) 84.1191 48.5662i 0.302587 0.174698i
\(279\) 96.7743i 0.346861i
\(280\) 0 0
\(281\) −526.257 −1.87280 −0.936400 0.350933i \(-0.885864\pi\)
−0.936400 + 0.350933i \(0.885864\pi\)
\(282\) 22.3910 + 38.7824i 0.0794008 + 0.137526i
\(283\) −436.617 252.081i −1.54282 0.890746i −0.998659 0.0517626i \(-0.983516\pi\)
−0.544157 0.838983i \(-0.683151\pi\)
\(284\) −98.0047 + 169.749i −0.345087 + 0.597708i
\(285\) 0 0
\(286\) 91.4280i 0.319678i
\(287\) −132.718 37.0885i −0.462433 0.129228i
\(288\) −16.9706 −0.0589256
\(289\) −108.973 188.747i −0.377069 0.653103i
\(290\) 0 0
\(291\) −114.336 + 198.035i −0.392906 + 0.680533i
\(292\) 19.2538 11.1162i 0.0659377 0.0380691i
\(293\) 220.145i 0.751348i 0.926752 + 0.375674i \(0.122589\pi\)
−0.926752 + 0.375674i \(0.877411\pi\)
\(294\) −62.2234 + 102.636i −0.211644 + 0.349104i
\(295\) 0 0
\(296\) −8.52184 14.7603i −0.0287900 0.0498657i
\(297\) 14.9132 + 8.61014i 0.0502128 + 0.0289904i
\(298\) −129.824 + 224.861i −0.435650 + 0.754568i
\(299\) −202.242 + 116.764i −0.676394 + 0.390516i
\(300\) 0 0
\(301\) −4.77288 + 17.0794i −0.0158567 + 0.0567421i
\(302\) 200.102 0.662591
\(303\) −15.3107 26.5190i −0.0505305 0.0875213i
\(304\) −2.81868 1.62737i −0.00927197 0.00535318i
\(305\) 0 0
\(306\) 30.9714 17.8813i 0.101214 0.0584358i
\(307\) 183.623i 0.598120i −0.954234 0.299060i \(-0.903327\pi\)
0.954234 0.299060i \(-0.0966731\pi\)
\(308\) 44.9416 11.5280i 0.145914 0.0374287i
\(309\) 67.8900 0.219709
\(310\) 0 0
\(311\) −195.658 112.963i −0.629126 0.363226i 0.151288 0.988490i \(-0.451658\pi\)
−0.780414 + 0.625264i \(0.784991\pi\)
\(312\) −47.7839 + 82.7641i −0.153153 + 0.265270i
\(313\) −231.701 + 133.773i −0.740258 + 0.427388i −0.822163 0.569252i \(-0.807233\pi\)
0.0819050 + 0.996640i \(0.473900\pi\)
\(314\) 242.692i 0.772903i
\(315\) 0 0
\(316\) 2.00305 0.00633877
\(317\) 264.896 + 458.814i 0.835635 + 1.44736i 0.893513 + 0.449038i \(0.148233\pi\)
−0.0578777 + 0.998324i \(0.518433\pi\)
\(318\) −67.8132 39.1519i −0.213249 0.123119i
\(319\) 7.76608 13.4512i 0.0243451 0.0421669i
\(320\) 0 0
\(321\) 230.363i 0.717641i
\(322\) −82.8962 84.6898i −0.257442 0.263012i
\(323\) 6.85882 0.0212347
\(324\) −9.00000 15.5885i −0.0277778 0.0481125i
\(325\) 0 0
\(326\) −208.919 + 361.858i −0.640855 + 1.10999i
\(327\) 73.6921 42.5461i 0.225358 0.130111i
\(328\) 55.6808i 0.169759i
\(329\) 31.7977 + 123.962i 0.0966495 + 0.376784i
\(330\) 0 0
\(331\) 102.815 + 178.081i 0.310619 + 0.538008i 0.978497 0.206263i \(-0.0661302\pi\)
−0.667877 + 0.744271i \(0.732797\pi\)
\(332\) −115.709 66.8044i −0.348520 0.201218i
\(333\) 9.03878 15.6556i 0.0271435 0.0470139i
\(334\) 206.416 119.174i 0.618011 0.356809i
\(335\) 0 0
\(336\) −46.7079 13.0527i −0.139012 0.0388472i
\(337\) 333.809 0.990530 0.495265 0.868742i \(-0.335071\pi\)
0.495265 + 0.868742i \(0.335071\pi\)
\(338\) 149.588 + 259.094i 0.442569 + 0.766552i
\(339\) 212.863 + 122.897i 0.627915 + 0.362527i
\(340\) 0 0
\(341\) 92.5823 53.4524i 0.271502 0.156752i
\(342\) 3.45216i 0.0100940i
\(343\) −250.198 + 234.627i −0.729441 + 0.684044i
\(344\) −7.16551 −0.0208300
\(345\) 0 0
\(346\) −182.572 105.408i −0.527666 0.304648i
\(347\) −326.532 + 565.569i −0.941013 + 1.62988i −0.177470 + 0.984126i \(0.556791\pi\)
−0.763543 + 0.645757i \(0.776542\pi\)
\(348\) −14.0603 + 8.11772i −0.0404032 + 0.0233268i
\(349\) 244.056i 0.699301i −0.936880 0.349651i \(-0.886300\pi\)
0.936880 0.349651i \(-0.113700\pi\)
\(350\) 0 0
\(351\) −101.365 −0.288789
\(352\) 9.37353 + 16.2354i 0.0266294 + 0.0461234i
\(353\) −361.582 208.759i −1.02431 0.591387i −0.108962 0.994046i \(-0.534753\pi\)
−0.915350 + 0.402659i \(0.868086\pi\)
\(354\) 91.0411 157.688i 0.257178 0.445446i
\(355\) 0 0
\(356\) 308.371i 0.866210i
\(357\) 98.9954 25.3935i 0.277298 0.0711301i
\(358\) −399.977 −1.11725
\(359\) −147.477 255.438i −0.410800 0.711527i 0.584177 0.811626i \(-0.301417\pi\)
−0.994977 + 0.100099i \(0.968084\pi\)
\(360\) 0 0
\(361\) −180.169 + 312.062i −0.499083 + 0.864437i
\(362\) 374.059 215.963i 1.03331 0.596584i
\(363\) 190.555i 0.524946i
\(364\) −195.172 + 191.039i −0.536186 + 0.524831i
\(365\) 0 0
\(366\) −134.573 233.088i −0.367687 0.636852i
\(367\) −20.4635 11.8146i −0.0557589 0.0321924i 0.471861 0.881673i \(-0.343582\pi\)
−0.527620 + 0.849480i \(0.676916\pi\)
\(368\) 23.9422 41.4692i 0.0650604 0.112688i
\(369\) 51.1461 29.5292i 0.138607 0.0800250i
\(370\) 0 0
\(371\) −156.528 159.915i −0.421909 0.431038i
\(372\) −111.745 −0.300391
\(373\) −82.9807 143.727i −0.222468 0.385326i 0.733089 0.680133i \(-0.238078\pi\)
−0.955557 + 0.294807i \(0.904745\pi\)
\(374\) −34.2135 19.7532i −0.0914800 0.0528160i
\(375\) 0 0
\(376\) −44.7820 + 25.8549i −0.119101 + 0.0687631i
\(377\) 91.4280i 0.242515i
\(378\) −12.7810 49.8262i −0.0338121 0.131815i
\(379\) −456.876 −1.20548 −0.602739 0.797938i \(-0.705924\pi\)
−0.602739 + 0.797938i \(0.705924\pi\)
\(380\) 0 0
\(381\) −130.900 75.5749i −0.343568 0.198359i
\(382\) −34.4180 + 59.6137i −0.0900995 + 0.156057i
\(383\) 5.78050 3.33737i 0.0150927 0.00871377i −0.492435 0.870349i \(-0.663893\pi\)
0.507527 + 0.861636i \(0.330560\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 211.472 0.547855
\(387\) −3.80008 6.58194i −0.00981934 0.0170076i
\(388\) −228.671 132.023i −0.589359 0.340267i
\(389\) −106.375 + 184.246i −0.273456 + 0.473640i −0.969745 0.244122i \(-0.921500\pi\)
0.696288 + 0.717762i \(0.254834\pi\)
\(390\) 0 0
\(391\) 100.909i 0.258079i
\(392\) −118.514 71.8494i −0.302333 0.183289i
\(393\) 190.563 0.484892
\(394\) −155.195 268.806i −0.393896 0.682248i
\(395\) 0 0
\(396\) −9.94213 + 17.2203i −0.0251064 + 0.0434856i
\(397\) −219.812 + 126.909i −0.553684 + 0.319669i −0.750606 0.660750i \(-0.770238\pi\)
0.196923 + 0.980419i \(0.436905\pi\)
\(398\) 415.426i 1.04378i
\(399\) 2.65518 9.50135i 0.00665459 0.0238129i
\(400\) 0 0
\(401\) −275.993 478.033i −0.688261 1.19210i −0.972400 0.233319i \(-0.925041\pi\)
0.284140 0.958783i \(-0.408292\pi\)
\(402\) 200.849 + 115.960i 0.499624 + 0.288458i
\(403\) −314.641 + 544.973i −0.780746 + 1.35229i
\(404\) 30.6215 17.6793i 0.0757957 0.0437607i
\(405\) 0 0
\(406\) −44.9416 + 11.5280i −0.110694 + 0.0283942i
\(407\) −19.9699 −0.0490662
\(408\) 20.6476 + 35.7627i 0.0506069 + 0.0876537i
\(409\) 135.412 + 78.1800i 0.331080 + 0.191149i 0.656320 0.754482i \(-0.272112\pi\)
−0.325241 + 0.945631i \(0.605445\pi\)
\(410\) 0 0
\(411\) 206.499 119.222i 0.502431 0.290079i
\(412\) 78.3926i 0.190273i
\(413\) 371.855 363.980i 0.900375 0.881307i
\(414\) 50.7891 0.122679
\(415\) 0 0
\(416\) −95.5677 55.1761i −0.229730 0.132635i
\(417\) −59.4812 + 103.024i −0.142641 + 0.247061i
\(418\) −3.30262 + 1.90677i −0.00790101 + 0.00456165i
\(419\) 57.3609i 0.136899i −0.997655 0.0684497i \(-0.978195\pi\)
0.997655 0.0684497i \(-0.0218053\pi\)
\(420\) 0 0
\(421\) −334.545 −0.794644 −0.397322 0.917679i \(-0.630060\pi\)
−0.397322 + 0.917679i \(0.630060\pi\)
\(422\) −86.8104 150.360i −0.205712 0.356303i
\(423\) −47.4985 27.4233i −0.112290 0.0648305i
\(424\) 45.2088 78.3039i 0.106624 0.184679i
\(425\) 0 0
\(426\) 240.062i 0.563525i
\(427\) −191.109 745.030i −0.447562 1.74480i
\(428\) −266.000 −0.621495
\(429\) 55.9880 + 96.9740i 0.130508 + 0.226047i
\(430\) 0 0
\(431\) −223.891 + 387.791i −0.519469 + 0.899746i 0.480275 + 0.877118i \(0.340537\pi\)
−0.999744 + 0.0226285i \(0.992797\pi\)
\(432\) 18.0000 10.3923i 0.0416667 0.0240563i
\(433\) 236.914i 0.547146i −0.961851 0.273573i \(-0.911795\pi\)
0.961851 0.273573i \(-0.0882055\pi\)
\(434\) −307.556 85.9473i −0.708654 0.198035i
\(435\) 0 0
\(436\) 49.1281 + 85.0923i 0.112679 + 0.195166i
\(437\) 8.43569 + 4.87035i 0.0193036 + 0.0111450i
\(438\) −13.6145 + 23.5810i −0.0310833 + 0.0538379i
\(439\) −176.852 + 102.105i −0.402852 + 0.232586i −0.687714 0.725982i \(-0.741386\pi\)
0.284862 + 0.958569i \(0.408052\pi\)
\(440\) 0 0
\(441\) 3.14611 146.966i 0.00713403 0.333257i
\(442\) 232.549 0.526129
\(443\) −76.8057 133.031i −0.173376 0.300297i 0.766222 0.642576i \(-0.222134\pi\)
−0.939598 + 0.342279i \(0.888801\pi\)
\(444\) 18.0776 + 10.4371i 0.0407152 + 0.0235069i
\(445\) 0 0
\(446\) −4.54191 + 2.62227i −0.0101836 + 0.00587953i
\(447\) 318.002i 0.711414i
\(448\) 15.0719 53.9336i 0.0336427 0.120388i
\(449\) −200.642 −0.446864 −0.223432 0.974720i \(-0.571726\pi\)
−0.223432 + 0.974720i \(0.571726\pi\)
\(450\) 0 0
\(451\) −56.5002 32.6204i −0.125278 0.0723290i
\(452\) −141.909 + 245.793i −0.313958 + 0.543791i
\(453\) −212.241 + 122.537i −0.468523 + 0.270502i
\(454\) 215.355i 0.474349i
\(455\) 0 0
\(456\) 3.98622 0.00874170
\(457\) 198.447 + 343.720i 0.434238 + 0.752122i 0.997233 0.0743379i \(-0.0236843\pi\)
−0.562995 + 0.826460i \(0.690351\pi\)
\(458\) 175.245 + 101.178i 0.382631 + 0.220912i
\(459\) −21.9001 + 37.9321i −0.0477126 + 0.0826407i
\(460\) 0 0
\(461\) 337.389i 0.731864i −0.930642 0.365932i \(-0.880750\pi\)
0.930642 0.365932i \(-0.119250\pi\)
\(462\) −40.6084 + 39.7484i −0.0878969 + 0.0860354i
\(463\) −270.743 −0.584759 −0.292379 0.956302i \(-0.594447\pi\)
−0.292379 + 0.956302i \(0.594447\pi\)
\(464\) −9.37353 16.2354i −0.0202016 0.0349902i
\(465\) 0 0
\(466\) −50.8766 + 88.1209i −0.109177 + 0.189101i
\(467\) −22.2896 + 12.8689i −0.0477292 + 0.0275565i −0.523675 0.851918i \(-0.675439\pi\)
0.475946 + 0.879475i \(0.342106\pi\)
\(468\) 117.046i 0.250099i
\(469\) 463.605 + 473.636i 0.988498 + 1.00988i
\(470\) 0 0
\(471\) −148.618 257.413i −0.315536 0.546525i
\(472\) 182.082 + 105.125i 0.385767 + 0.222723i
\(473\) −4.19788 + 7.27095i −0.00887502 + 0.0153720i
\(474\) −2.12456 + 1.22661i −0.00448219 + 0.00258779i
\(475\) 0 0
\(476\) 29.3218 + 114.310i 0.0616005 + 0.240147i
\(477\) 95.9023 0.201053
\(478\) 320.828 + 555.690i 0.671187 + 1.16253i
\(479\) 162.828 + 94.0089i 0.339934 + 0.196261i 0.660243 0.751052i \(-0.270453\pi\)
−0.320309 + 0.947313i \(0.603787\pi\)
\(480\) 0 0
\(481\) 101.802 58.7752i 0.211646 0.122194i
\(482\) 266.637i 0.553190i
\(483\) 139.786 + 39.0637i 0.289413 + 0.0808773i
\(484\) −220.034 −0.454616
\(485\) 0 0
\(486\) 19.0919 + 11.0227i 0.0392837 + 0.0226805i
\(487\) −149.889 + 259.615i −0.307780 + 0.533091i −0.977876 0.209183i \(-0.932919\pi\)
0.670096 + 0.742274i \(0.266253\pi\)
\(488\) 269.147 155.392i 0.551530 0.318426i
\(489\) 511.744i 1.04651i
\(490\) 0 0
\(491\) 461.533 0.939985 0.469993 0.882670i \(-0.344257\pi\)
0.469993 + 0.882670i \(0.344257\pi\)
\(492\) 34.0974 + 59.0584i 0.0693037 + 0.120037i
\(493\) 34.2135 + 19.7532i 0.0693987 + 0.0400673i
\(494\) 11.2240 19.4405i 0.0227206 0.0393532i
\(495\) 0 0
\(496\) 129.032i 0.260146i
\(497\) 184.640 660.719i 0.371509 1.32941i
\(498\) 163.637 0.328588
\(499\) 86.9948 + 150.679i 0.174338 + 0.301963i 0.939932 0.341362i \(-0.110888\pi\)
−0.765594 + 0.643324i \(0.777555\pi\)
\(500\) 0 0
\(501\) −145.958 + 252.807i −0.291333 + 0.504604i
\(502\) −286.481 + 165.400i −0.570680 + 0.329482i
\(503\) 26.5806i 0.0528442i 0.999651 + 0.0264221i \(0.00841139\pi\)
−0.999651 + 0.0264221i \(0.991589\pi\)
\(504\) 57.5343 14.7582i 0.114155 0.0292821i
\(505\) 0 0
\(506\) −28.0529 48.5891i −0.0554405 0.0960258i
\(507\) −317.325 183.207i −0.625887 0.361356i
\(508\) 87.2663 151.150i 0.171784 0.297539i
\(509\) 74.1139 42.7897i 0.145607 0.0840662i −0.425427 0.904993i \(-0.639876\pi\)
0.571034 + 0.820927i \(0.306543\pi\)
\(510\) 0 0
\(511\) −55.6080 + 54.4304i −0.108822 + 0.106517i
\(512\) 22.6274 0.0441942
\(513\) 2.11401 + 3.66157i 0.00412088 + 0.00713757i
\(514\) −230.378 133.009i −0.448207 0.258772i
\(515\) 0 0
\(516\) 7.60017 4.38796i 0.0147290 0.00850380i
\(517\) 60.5880i 0.117192i
\(518\) 41.7271 + 42.6300i 0.0805543 + 0.0822972i
\(519\) 258.196 0.497488
\(520\) 0 0
\(521\) −698.846 403.479i −1.34136 0.774432i −0.354349 0.935113i \(-0.615297\pi\)
−0.987006 + 0.160682i \(0.948631\pi\)
\(522\) 9.94213 17.2203i 0.0190462 0.0329890i
\(523\) −216.841 + 125.193i −0.414610 + 0.239375i −0.692768 0.721160i \(-0.743609\pi\)
0.278159 + 0.960535i \(0.410276\pi\)
\(524\) 220.043i 0.419929i
\(525\) 0 0
\(526\) 478.824 0.910312
\(527\) 135.957 + 235.485i 0.257984 + 0.446841i
\(528\) −19.8843 11.4802i −0.0376596 0.0217428i
\(529\) 192.846 334.019i 0.364549 0.631417i
\(530\) 0 0
\(531\) 223.004i 0.419970i
\(532\) 10.9712 + 3.06594i 0.0206226 + 0.00576304i
\(533\) 384.031 0.720509
\(534\) −188.838 327.076i −0.353629 0.612503i
\(535\) 0 0
\(536\) −133.899 + 231.920i −0.249812 + 0.432687i
\(537\) 424.240 244.935i 0.790018 0.456117i
\(538\) 739.802i 1.37510i
\(539\) −142.338 + 78.1657i −0.264078 + 0.145020i
\(540\) 0 0
\(541\) 421.926 + 730.798i 0.779901 + 1.35083i 0.931998 + 0.362462i \(0.118064\pi\)
−0.152098 + 0.988365i \(0.548603\pi\)
\(542\) −545.602 315.003i −1.00665 0.581187i
\(543\) −264.500 + 458.127i −0.487109 + 0.843697i
\(544\) −41.2952 + 23.8418i −0.0759103 + 0.0438268i
\(545\) 0 0
\(546\) 90.0243 322.145i 0.164880 0.590009i
\(547\) 674.572 1.23322 0.616611 0.787268i \(-0.288505\pi\)
0.616611 + 0.787268i \(0.288505\pi\)
\(548\) 137.666 + 238.445i 0.251216 + 0.435118i
\(549\) 285.473 + 164.818i 0.519988 + 0.300215i
\(550\) 0 0
\(551\) 3.30262 1.90677i 0.00599387 0.00346056i
\(552\) 58.6463i 0.106243i
\(553\) −6.79083 + 1.74192i −0.0122800 + 0.00314995i
\(554\) 20.5537 0.0371006
\(555\) 0 0
\(556\) −118.962 68.6829i −0.213961 0.123530i
\(557\) −292.958 + 507.418i −0.525957 + 0.910984i 0.473586 + 0.880748i \(0.342959\pi\)
−0.999543 + 0.0302363i \(0.990374\pi\)
\(558\) 118.524 68.4298i 0.212408 0.122634i
\(559\) 49.4206i 0.0884089i
\(560\) 0 0
\(561\) 48.3852 0.0862482
\(562\) 372.120 + 644.531i 0.662135 + 1.14685i
\(563\) 118.176 + 68.2288i 0.209904 + 0.121188i 0.601267 0.799048i \(-0.294663\pi\)
−0.391363 + 0.920236i \(0.627996\pi\)
\(564\) 31.6657 54.8466i 0.0561448 0.0972457i
\(565\) 0 0
\(566\) 712.993i 1.25970i
\(567\) 44.0684 + 45.0219i 0.0777221 + 0.0794037i
\(568\) 277.199 0.488027
\(569\) 284.763 + 493.225i 0.500463 + 0.866827i 1.00000 0.000534692i \(0.000170198\pi\)
−0.499537 + 0.866293i \(0.666496\pi\)
\(570\) 0 0
\(571\) 38.9272 67.4238i 0.0681737 0.118080i −0.829924 0.557877i \(-0.811616\pi\)
0.898097 + 0.439797i \(0.144949\pi\)
\(572\) −111.976 + 64.6493i −0.195762 + 0.113023i
\(573\) 84.3065i 0.147132i
\(574\) 48.4220 + 188.771i 0.0843589 + 0.328870i
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −849.557 490.492i −1.47237 0.850073i −0.472853 0.881142i \(-0.656776\pi\)
−0.999517 + 0.0310685i \(0.990109\pi\)
\(578\) −154.111 + 266.928i −0.266628 + 0.461814i
\(579\) −224.300 + 129.500i −0.387392 + 0.223661i
\(580\) 0 0
\(581\) 450.376 + 125.859i 0.775173 + 0.216624i
\(582\) 323.390 0.555653
\(583\) −52.9707 91.7480i −0.0908589 0.157372i
\(584\) −27.2290 15.7207i −0.0466250 0.0269189i
\(585\) 0 0
\(586\) 269.621 155.666i 0.460105 0.265642i
\(587\) 894.491i 1.52384i −0.647674 0.761918i \(-0.724258\pi\)
0.647674 0.761918i \(-0.275742\pi\)
\(588\) 169.702 + 3.63281i 0.288609 + 0.00617825i
\(589\) 26.2479 0.0445635
\(590\) 0 0
\(591\) 329.218 + 190.074i 0.557053 + 0.321615i
\(592\) −12.0517 + 20.8742i −0.0203576 + 0.0352604i
\(593\) 877.978 506.901i 1.48057 0.854808i 0.480813 0.876823i \(-0.340342\pi\)
0.999758 + 0.0220156i \(0.00700833\pi\)
\(594\) 24.3532i 0.0409986i
\(595\) 0 0
\(596\) 367.197 0.616102
\(597\) −254.396 440.626i −0.426123 0.738067i
\(598\) 286.013 + 165.130i 0.478283 + 0.276137i
\(599\) 339.723 588.418i 0.567151 0.982334i −0.429695 0.902974i \(-0.641379\pi\)
0.996846 0.0793601i \(-0.0252877\pi\)
\(600\) 0 0
\(601\) 13.9775i 0.0232571i −0.999932 0.0116285i \(-0.996298\pi\)
0.999932 0.0116285i \(-0.00370156\pi\)
\(602\) 24.2928 6.23138i 0.0403535 0.0103511i
\(603\) −284.043 −0.471050
\(604\) −141.494 245.074i −0.234261 0.405752i
\(605\) 0 0
\(606\) −21.6526 + 37.5035i −0.0357304 + 0.0618869i
\(607\) −795.111 + 459.058i −1.30990 + 0.756273i −0.982080 0.188466i \(-0.939648\pi\)
−0.327823 + 0.944739i \(0.606315\pi\)
\(608\) 4.60289i 0.00757054i
\(609\) 40.6084 39.7484i 0.0666804 0.0652682i
\(610\) 0 0
\(611\) −178.322 308.862i −0.291852 0.505503i
\(612\) −43.8002 25.2880i −0.0715689 0.0413203i
\(613\) 312.457 541.192i 0.509718 0.882858i −0.490219 0.871600i \(-0.663083\pi\)
0.999937 0.0112580i \(-0.00358362\pi\)
\(614\) −224.891 + 129.841i −0.366272 + 0.211467i
\(615\) 0 0
\(616\) −45.8974 46.8905i −0.0745088 0.0761209i
\(617\) −11.2800 −0.0182821 −0.00914103 0.999958i \(-0.502910\pi\)
−0.00914103 + 0.999958i \(0.502910\pi\)
\(618\) −48.0055 83.1479i −0.0776787 0.134544i
\(619\) 130.107 + 75.1176i 0.210190 + 0.121353i 0.601400 0.798948i \(-0.294610\pi\)
−0.391210 + 0.920302i \(0.627943\pi\)
\(620\) 0 0
\(621\) −53.8700 + 31.1019i −0.0867472 + 0.0500835i
\(622\) 319.508i 0.513679i
\(623\) −268.170 1045.45i −0.430449 1.67809i
\(624\) 135.153 0.216592
\(625\) 0 0
\(626\) 327.674 + 189.183i 0.523442 + 0.302209i
\(627\) 2.33531 4.04487i 0.00372457 0.00645115i
\(628\) 297.235 171.609i 0.473304 0.273262i
\(629\) 50.7940i 0.0807536i
\(630\) 0 0
\(631\) 768.570 1.21802 0.609009 0.793163i \(-0.291567\pi\)
0.609009 + 0.793163i \(0.291567\pi\)
\(632\) −1.41637 2.45323i −0.00224109 0.00388169i
\(633\) 184.153 + 106.321i 0.290920 + 0.167963i
\(634\) 374.620 648.861i 0.590883 1.02344i
\(635\) 0 0
\(636\) 110.738i 0.174117i
\(637\) 495.546 817.395i 0.777937 1.28319i
\(638\) −21.9658 −0.0344291
\(639\) 147.007 + 254.624i 0.230058 + 0.398472i
\(640\) 0 0
\(641\) 23.1711 40.1335i 0.0361484 0.0626108i −0.847385 0.530979i \(-0.821824\pi\)
0.883534 + 0.468368i \(0.155158\pi\)
\(642\) 282.136 162.891i 0.439463 0.253724i
\(643\) 122.504i 0.190519i −0.995452 0.0952597i \(-0.969632\pi\)
0.995452 0.0952597i \(-0.0303682\pi\)
\(644\) −45.1069 + 161.411i −0.0700418 + 0.250639i
\(645\) 0 0
\(646\) −4.84992 8.40030i −0.00750761 0.0130036i
\(647\) −746.689 431.101i −1.15408 0.666308i −0.204201 0.978929i \(-0.565460\pi\)
−0.949878 + 0.312621i \(0.898793\pi\)
\(648\) −12.7279 + 22.0454i −0.0196419 + 0.0340207i
\(649\) 213.344 123.174i 0.328728 0.189791i
\(650\) 0 0
\(651\) 378.844 97.1777i 0.581941 0.149275i
\(652\) 590.912 0.906306
\(653\) −331.517 574.205i −0.507683 0.879333i −0.999960 0.00889466i \(-0.997169\pi\)
0.492277 0.870438i \(-0.336165\pi\)
\(654\) −104.216 60.1693i −0.159352 0.0920021i
\(655\) 0 0
\(656\) −68.1948 + 39.3723i −0.103956 + 0.0600187i
\(657\) 33.3486i 0.0507589i
\(658\) 129.338 126.598i 0.196562 0.192399i
\(659\) −999.565 −1.51679 −0.758395 0.651795i \(-0.774016\pi\)
−0.758395 + 0.651795i \(0.774016\pi\)
\(660\) 0 0
\(661\) −653.320 377.195i −0.988382 0.570642i −0.0835916 0.996500i \(-0.526639\pi\)
−0.904790 + 0.425858i \(0.859972\pi\)
\(662\) 145.402 251.844i 0.219641 0.380429i
\(663\) −246.656 + 142.407i −0.372030 + 0.214791i
\(664\) 188.951i 0.284565i
\(665\) 0 0
\(666\) −25.5655 −0.0383867
\(667\) 28.0529 + 48.5891i 0.0420583 + 0.0728472i
\(668\) −291.916 168.538i −0.437000 0.252302i
\(669\) 3.21161 5.56268i 0.00480062 0.00831491i
\(670\) 0 0
\(671\) 364.143i 0.542687i
\(672\) 17.0413 + 66.4349i 0.0253591 + 0.0988614i
\(673\) 838.745 1.24628 0.623139 0.782111i \(-0.285857\pi\)
0.623139 + 0.782111i \(0.285857\pi\)
\(674\) −236.038 408.830i −0.350205 0.606573i
\(675\) 0 0
\(676\) 211.550 366.415i 0.312943 0.542034i
\(677\) 120.385 69.5041i 0.177821 0.102665i −0.408448 0.912782i \(-0.633930\pi\)
0.586268 + 0.810117i \(0.300596\pi\)
\(678\) 347.604i 0.512691i
\(679\) 890.063 + 248.731i 1.31084 + 0.366319i
\(680\) 0 0
\(681\) 131.877 + 228.418i 0.193652 + 0.335416i
\(682\) −130.931 75.5931i −0.191981 0.110840i
\(683\) 517.117 895.672i 0.757125 1.31138i −0.187186 0.982325i \(-0.559937\pi\)
0.944311 0.329055i \(-0.106730\pi\)
\(684\) −4.22802 + 2.44105i −0.00618132 + 0.00356878i
\(685\) 0 0
\(686\) 464.275 + 140.522i 0.676786 + 0.204843i
\(687\) −247.834 −0.360748
\(688\) 5.06678 + 8.77592i 0.00736450 + 0.0127557i
\(689\) 540.063 + 311.805i 0.783835 + 0.452548i
\(690\) 0 0
\(691\) 602.952 348.115i 0.872579 0.503784i 0.00437465 0.999990i \(-0.498608\pi\)
0.868204 + 0.496207i \(0.165274\pi\)
\(692\) 298.140i 0.430838i
\(693\) 18.7309 67.0269i 0.0270287 0.0967200i
\(694\) 923.571 1.33079
\(695\) 0 0
\(696\) 19.8843 + 11.4802i 0.0285694 + 0.0164945i
\(697\) 82.9707 143.709i 0.119040 0.206183i
\(698\) −298.907 + 172.574i −0.428233 + 0.247240i
\(699\) 124.622i 0.178286i
\(700\) 0 0
\(701\) 1001.00 1.42796 0.713979 0.700167i \(-0.246891\pi\)
0.713979 + 0.700167i \(0.246891\pi\)
\(702\) 71.6758 + 124.146i 0.102102 + 0.176846i
\(703\) −4.24624 2.45157i −0.00604017 0.00348729i
\(704\) 13.2562 22.9604i 0.0188298 0.0326142i
\(705\) 0 0
\(706\) 590.461i 0.836347i
\(707\) −88.4396 + 86.5666i −0.125091 + 0.122442i
\(708\) −257.503 −0.363705
\(709\) 131.927 + 228.505i 0.186075 + 0.322291i 0.943938 0.330122i \(-0.107090\pi\)
−0.757863 + 0.652414i \(0.773757\pi\)
\(710\) 0 0
\(711\) 1.50229 2.60204i 0.00211292 0.00365969i
\(712\) 377.675 218.051i 0.530443 0.306251i
\(713\) 386.166i 0.541607i
\(714\) −101.101 103.288i −0.141598 0.144661i
\(715\) 0 0
\(716\) 282.827 + 489.870i 0.395009 + 0.684176i
\(717\) −680.578 392.932i −0.949202 0.548022i
\(718\) −208.564 + 361.244i −0.290479 + 0.503125i
\(719\) −574.059 + 331.433i −0.798413 + 0.460964i −0.842916 0.538045i \(-0.819163\pi\)
0.0445027 + 0.999009i \(0.485830\pi\)
\(720\) 0 0
\(721\) −68.1730 265.770i −0.0945533 0.368613i
\(722\) 509.595 0.705810
\(723\) −163.281 282.812i −0.225839 0.391164i
\(724\) −529.000 305.418i −0.730663 0.421848i
\(725\) 0 0
\(726\) 233.382 134.743i 0.321462 0.185596i
\(727\) 73.2857i 0.100806i −0.998729 0.0504028i \(-0.983949\pi\)
0.998729 0.0504028i \(-0.0160505\pi\)
\(728\) 371.981 + 103.951i 0.510963 + 0.142790i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −18.4938 10.6774i −0.0252993 0.0146066i
\(732\) −190.315 + 329.636i −0.259994 + 0.450322i
\(733\) 1153.04 665.709i 1.57304 0.908198i 0.577251 0.816567i \(-0.304125\pi\)
0.995793 0.0916311i \(-0.0292080\pi\)
\(734\) 33.4168i 0.0455269i
\(735\) 0 0
\(736\) −67.7189 −0.0920093
\(737\) 156.889 + 271.739i 0.212875 + 0.368710i
\(738\) −72.3315 41.7606i −0.0980102 0.0565862i
\(739\) −148.610 + 257.400i −0.201096 + 0.348309i −0.948882 0.315631i \(-0.897784\pi\)
0.747786 + 0.663940i \(0.231117\pi\)
\(740\) 0 0
\(741\) 27.4930i 0.0371025i
\(742\) −85.1728 + 304.784i −0.114788 + 0.410760i
\(743\) −774.964 −1.04302 −0.521510 0.853245i \(-0.674631\pi\)
−0.521510 + 0.853245i \(0.674631\pi\)
\(744\) 79.0159 + 136.860i 0.106204 + 0.183951i
\(745\) 0 0
\(746\) −117.352 + 203.260i −0.157309 + 0.272467i
\(747\) −173.563 + 100.207i −0.232347 + 0.134145i
\(748\) 55.8705i 0.0746931i
\(749\) 901.804 231.323i 1.20401 0.308842i
\(750\) 0 0
\(751\) 516.034 + 893.796i 0.687129 + 1.19014i 0.972763 + 0.231803i \(0.0744624\pi\)
−0.285634 + 0.958339i \(0.592204\pi\)
\(752\) 63.3314 + 36.5644i 0.0842173 + 0.0486229i
\(753\) 202.573 350.867i 0.269021 0.465958i
\(754\) 111.976 64.6493i 0.148509 0.0857418i
\(755\) 0 0
\(756\) −51.9868 + 50.8859i −0.0687656 + 0.0673093i
\(757\) −450.128 −0.594621 −0.297310 0.954781i \(-0.596090\pi\)
−0.297310 + 0.954781i \(0.596090\pi\)
\(758\) 323.060 + 559.557i 0.426201 + 0.738202i
\(759\) 59.5092 + 34.3577i 0.0784048 + 0.0452670i
\(760\) 0 0
\(761\) −74.2627 + 42.8756i −0.0975856 + 0.0563411i −0.547999 0.836479i \(-0.684610\pi\)
0.450413 + 0.892820i \(0.351277\pi\)
\(762\) 213.758i 0.280522i
\(763\) −240.555 245.760i −0.315276 0.322097i
\(764\) 97.3488 0.127420
\(765\) 0 0
\(766\) −8.17487 4.71976i −0.0106721 0.00616157i
\(767\) −725.049 + 1255.82i −0.945306 + 1.63732i
\(768\) −24.0000 + 13.8564i −0.0312500 + 0.0180422i
\(769\) 959.716i 1.24800i −0.781422 0.624002i \(-0.785506\pi\)
0.781422 0.624002i \(-0.214494\pi\)
\(770\) 0 0
\(771\) 325.804 0.422574
\(772\) −149.533 258.999i −0.193696 0.335491i
\(773\) 879.534 + 507.799i 1.13782 + 0.656920i 0.945890 0.324488i \(-0.105192\pi\)
0.191930 + 0.981409i \(0.438525\pi\)
\(774\) −5.37413 + 9.30827i −0.00694332 + 0.0120262i
\(775\) 0 0
\(776\) 373.419i 0.481210i
\(777\) −70.3637 19.6633i −0.0905582 0.0253067i
\(778\) 300.873 0.386726
\(779\) −8.00914 13.8722i −0.0102813 0.0178077i
\(780\) 0 0
\(781\) 162.396 281.278i 0.207933 0.360151i
\(782\) 123.587 71.3532i 0.158040 0.0912445i
\(783\) 24.3532i 0.0311024i
\(784\) −4.19481 + 195.955i −0.00535052 + 0.249943i
\(785\) 0 0
\(786\) −134.748 233.391i −0.171435 0.296935i
\(787\) −968.434 559.126i −1.23054 0.710452i −0.263396 0.964688i \(-0.584843\pi\)
−0.967142 + 0.254236i \(0.918176\pi\)
\(788\) −219.479 + 380.148i −0.278526 + 0.482422i
\(789\) −507.870 + 293.219i −0.643688 + 0.371633i
\(790\) 0 0
\(791\) 267.355 956.707i 0.337996 1.20949i
\(792\) 28.1206 0.0355058
\(793\) 1071.74 + 1856.31i 1.35150 + 2.34087i
\(794\) 310.862 + 179.476i 0.391513 + 0.226040i
\(795\) 0 0
\(796\) 508.791 293.751i 0.639185 0.369034i
\(797\) 803.162i 1.00773i 0.863782 + 0.503866i \(0.168089\pi\)
−0.863782 + 0.503866i \(0.831911\pi\)
\(798\) −13.5142 + 3.46655i −0.0169351 + 0.00434405i
\(799\) −154.107 −0.192875
\(800\) 0 0
\(801\) 400.585 + 231.278i 0.500106 + 0.288737i
\(802\) −390.312 + 676.041i −0.486674 + 0.842944i
\(803\) −31.9040 + 18.4198i −0.0397310 + 0.0229387i
\(804\) 327.985i 0.407941i
\(805\) 0 0
\(806\) 889.938 1.10414
\(807\) 453.034 + 784.678i 0.561381 + 0.972340i
\(808\) −43.3053 25.0023i −0.0535956 0.0309435i
\(809\) 255.382 442.334i 0.315676 0.546767i −0.663905 0.747817i \(-0.731102\pi\)
0.979581 + 0.201050i \(0.0644354\pi\)
\(810\) 0 0
\(811\) 572.874i 0.706380i −0.935552 0.353190i \(-0.885097\pi\)
0.935552 0.353190i \(-0.114903\pi\)
\(812\) 45.8974 + 46.8905i 0.0565240 + 0.0577469i
\(813\) 771.598 0.949075
\(814\) 14.1209 + 24.4581i 0.0173475 + 0.0300468i
\(815\) 0 0
\(816\) 29.2001 50.5761i 0.0357845 0.0619805i
\(817\) −1.78520 + 1.03069i −0.00218507 + 0.00126155i
\(818\) 221.126i 0.270326i
\(819\) 101.787 + 396.815i 0.124283 + 0.484511i
\(820\) 0 0
\(821\) −443.437 768.056i −0.540119 0.935513i −0.998897 0.0469621i \(-0.985046\pi\)
0.458778 0.888551i \(-0.348287\pi\)
\(822\) −292.034 168.606i −0.355273 0.205117i
\(823\) −548.198 + 949.506i −0.666097 + 1.15371i 0.312890 + 0.949789i \(0.398703\pi\)
−0.978987 + 0.203924i \(0.934630\pi\)
\(824\) 96.0109 55.4319i 0.116518 0.0672718i
\(825\) 0 0
\(826\) −708.723 198.055i −0.858018 0.239776i
\(827\) −556.105 −0.672437 −0.336218 0.941784i \(-0.609148\pi\)
−0.336218 + 0.941784i \(0.609148\pi\)
\(828\) −35.9133 62.2037i −0.0433736 0.0751253i
\(829\) 1002.59 + 578.843i 1.20939 + 0.698243i 0.962626 0.270833i \(-0.0872990\pi\)
0.246765 + 0.969075i \(0.420632\pi\)
\(830\) 0 0
\(831\) −21.8005 + 12.5865i −0.0262341 + 0.0151463i
\(832\) 156.061i 0.187574i
\(833\) −198.816 362.039i −0.238675 0.434621i
\(834\) 168.238 0.201724
\(835\) 0 0
\(836\) 4.67062 + 2.69658i 0.00558686 + 0.00322558i
\(837\) −83.8090 + 145.162i −0.100130 + 0.173431i
\(838\) −70.2524 + 40.5603i −0.0838334 + 0.0484013i
\(839\) 313.727i 0.373930i −0.982367 0.186965i \(-0.940135\pi\)
0.982367 0.186965i \(-0.0598651\pi\)
\(840\) 0 0
\(841\) −819.034 −0.973881
\(842\) 236.559 + 409.733i 0.280949 + 0.486618i
\(843\) −789.386 455.752i −0.936400 0.540631i
\(844\) −122.768 + 212.641i −0.145460 + 0.251944i
\(845\) 0 0
\(846\) 77.5648i 0.0916841i
\(847\) 745.969 191.350i 0.880719 0.225914i
\(848\) −127.870 −0.150790
\(849\) −436.617 756.243i −0.514272 0.890746i
\(850\) 0 0
\(851\) 36.0681 62.4718i 0.0423832 0.0734098i
\(852\) −294.014 + 169.749i −0.345087 + 0.199236i
\(853\) 638.107i 0.748074i 0.927414 + 0.374037i \(0.122027\pi\)
−0.927414 + 0.374037i \(0.877973\pi\)
\(854\) −777.338 + 760.876i −0.910232 + 0.890955i
\(855\) 0 0
\(856\) 188.090 + 325.782i 0.219732 + 0.380586i
\(857\) −878.130 506.989i −1.02466 0.591585i −0.109207 0.994019i \(-0.534831\pi\)
−0.915449 + 0.402434i \(0.868164\pi\)
\(858\) 79.1789 137.142i 0.0922832 0.159839i
\(859\) −211.106 + 121.882i −0.245758 + 0.141888i −0.617820 0.786319i \(-0.711984\pi\)
0.372062 + 0.928208i \(0.378651\pi\)
\(860\) 0 0
\(861\) −166.958 170.570i −0.193911 0.198107i
\(862\) 633.260 0.734640
\(863\) −274.165 474.868i −0.317688 0.550253i 0.662317 0.749224i \(-0.269573\pi\)
−0.980005 + 0.198971i \(0.936240\pi\)
\(864\) −25.4558 14.6969i −0.0294628 0.0170103i
\(865\) 0 0
\(866\) −290.159 + 167.524i −0.335057 + 0.193445i
\(867\) 377.494i 0.435402i
\(868\) 112.211 + 437.451i 0.129276 + 0.503976i
\(869\) −3.31910 −0.00381945
\(870\) 0 0
\(871\) −1599.56 923.504i −1.83646 1.06028i
\(872\) 69.4776 120.339i 0.0796761 0.138003i
\(873\) −343.007 + 198.035i −0.392906 + 0.226844i
\(874\) 13.7754i 0.0157613i
\(875\) 0 0
\(876\) 38.5076 0.0439585
\(877\) −536.806 929.775i −0.612094 1.06018i −0.990887 0.134696i \(-0.956994\pi\)
0.378793 0.925481i \(-0.376339\pi\)
\(878\) 250.106 + 144.399i 0.284859 + 0.164463i
\(879\) −190.651 + 330.217i −0.216896 + 0.375674i
\(880\) 0 0
\(881\) 341.661i 0.387811i −0.981020 0.193905i \(-0.937884\pi\)
0.981020 0.193905i \(-0.0621155\pi\)
\(882\) −182.221 + 100.068i −0.206600 + 0.113455i
\(883\) 884.344 1.00152 0.500761 0.865585i \(-0.333053\pi\)
0.500761 + 0.865585i \(0.333053\pi\)
\(884\) −164.437 284.813i −0.186015 0.322187i
\(885\) 0 0
\(886\) −108.620 + 188.135i −0.122596 + 0.212342i
\(887\) 145.147 83.8009i 0.163639 0.0944768i −0.415944 0.909390i \(-0.636549\pi\)
0.579583 + 0.814913i \(0.303216\pi\)
\(888\) 29.5205i 0.0332438i
\(889\) −164.409 + 588.324i −0.184937 + 0.661782i
\(890\) 0 0
\(891\) 14.9132 + 25.8304i 0.0167376 + 0.0289904i
\(892\) 6.42323 + 3.70845i 0.00720093 + 0.00415746i
\(893\) −7.43795 + 12.8829i −0.00832918 + 0.0144266i
\(894\) −389.471 + 224.861i −0.435650 + 0.251523i
\(895\) 0 0
\(896\) −76.7124 + 19.6776i −0.0856165 + 0.0219616i
\(897\) −404.484 −0.450929
\(898\) 141.875 + 245.735i 0.157990 + 0.273647i
\(899\) 130.931 + 75.5931i 0.145641 + 0.0840858i
\(900\) 0 0
\(901\) 233.363 134.732i 0.259005 0.149536i
\(902\) 92.2644i 0.102289i
\(903\) −21.9505 + 21.4856i −0.0243084 + 0.0237936i
\(904\) 401.379 0.444003
\(905\) 0 0
\(906\) 300.154 + 173.294i 0.331295 + 0.191274i
\(907\) −298.562 + 517.124i −0.329175 + 0.570148i −0.982348 0.187060i \(-0.940104\pi\)
0.653173 + 0.757209i \(0.273437\pi\)
\(908\) −263.754 + 152.279i −0.290478 + 0.167708i
\(909\) 53.0379i 0.0583475i
\(910\) 0 0
\(911\) 1340.36 1.47131 0.735655 0.677357i \(-0.236875\pi\)
0.735655 + 0.677357i \(0.236875\pi\)
\(912\) −2.81868 4.88210i −0.00309066 0.00535318i
\(913\) 191.732 + 110.696i 0.210002 + 0.121245i
\(914\) 280.646 486.093i 0.307053 0.531831i
\(915\) 0 0
\(916\) 286.174i 0.312417i
\(917\) −191.357 745.998i −0.208677 0.813521i
\(918\) 61.9428 0.0674758
\(919\) 480.400 + 832.078i 0.522743 + 0.905417i 0.999650 + 0.0264631i \(0.00842447\pi\)
−0.476907 + 0.878954i \(0.658242\pi\)
\(920\) 0 0
\(921\) 159.022 275.434i 0.172662 0.299060i
\(922\) −413.216 + 238.570i −0.448173 + 0.258753i
\(923\) 1911.85i 2.07134i
\(924\) 77.3960 + 21.6285i 0.0837619 + 0.0234075i
\(925\) 0 0
\(926\) 191.444 + 331.592i 0.206744 + 0.358090i
\(927\) 101.835 + 58.7944i 0.109854 + 0.0634244i
\(928\) −13.2562 + 22.9604i −0.0142847 + 0.0247418i
\(929\) 823.312 475.340i 0.886235 0.511668i 0.0135260 0.999909i \(-0.495694\pi\)
0.872709 + 0.488240i \(0.162361\pi\)
\(930\) 0 0
\(931\) −39.8613 0.853311i −0.0428156 0.000916553i
\(932\) 143.901 0.154400
\(933\) −195.658 338.890i −0.209709 0.363226i
\(934\) 31.5222 + 18.1993i 0.0337497 + 0.0194854i
\(935\) 0 0
\(936\) −143.352 + 82.7641i −0.153153 + 0.0884232i
\(937\) 236.656i 0.252568i −0.991994 0.126284i \(-0.959695\pi\)
0.991994 0.126284i \(-0.0403050\pi\)
\(938\) 252.265 902.709i 0.268939 0.962377i
\(939\) −463.402 −0.493505
\(940\) 0 0
\(941\) 454.869 + 262.619i 0.483389 + 0.279085i 0.721828 0.692073i \(-0.243302\pi\)
−0.238439 + 0.971158i \(0.576636\pi\)
\(942\) −210.177 + 364.037i −0.223118 + 0.386451i
\(943\) 204.092 117.833i 0.216428 0.124955i
\(944\) 297.339i 0.314978i
\(945\) 0 0
\(946\) 11.8734 0.0125512
\(947\) −666.313 1154.09i −0.703604 1.21868i −0.967193 0.254042i \(-0.918240\pi\)
0.263589 0.964635i \(-0.415094\pi\)
\(948\) 3.00458 + 1.73469i 0.00316938 + 0.00182984i
\(949\) 108.426 187.799i 0.114252 0.197891i
\(950\) 0 0
\(951\) 917.627i 0.964908i
\(952\) 119.267 116.741i 0.125280 0.122627i
\(953\) −1748.81 −1.83506 −0.917531 0.397665i \(-0.869821\pi\)
−0.917531 + 0.397665i \(0.869821\pi\)
\(954\) −67.8132 117.456i −0.0710830 0.123119i
\(955\) 0 0
\(956\) 453.719 785.864i 0.474601 0.822033i
\(957\) 23.2982 13.4512i 0.0243451 0.0140556i
\(958\) 265.897i 0.277555i
\(959\) −674.082 688.666i −0.702900 0.718108i
\(960\) 0 0
\(961\) 39.7929 + 68.9233i 0.0414078 + 0.0717204i
\(962\) −143.969 83.1207i −0.149656 0.0864040i
\(963\) −199.500 + 345.544i −0.207165 + 0.358820i
\(964\) 326.563 188.541i 0.338758 0.195582i
\(965\) 0 0
\(966\) −51.0008 198.825i −0.0527959 0.205823i
\(967\) 638.367 0.660152 0.330076 0.943954i \(-0.392926\pi\)
0.330076 + 0.943954i \(0.392926\pi\)
\(968\) 155.588 + 269.486i 0.160731 + 0.278394i
\(969\) 10.2882 + 5.93991i 0.0106174 + 0.00612994i
\(970\) 0 0
\(971\) −1222.24 + 705.662i −1.25875 + 0.726737i −0.972831 0.231518i \(-0.925631\pi\)
−0.285915 + 0.958255i \(0.592298\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 463.040 + 129.398i 0.475889 + 0.132989i
\(974\) 423.950 0.435267
\(975\) 0 0
\(976\) −380.631 219.757i −0.389991 0.225161i
\(977\) −550.326 + 953.192i −0.563281 + 0.975632i 0.433926 + 0.900949i \(0.357128\pi\)
−0.997207 + 0.0746833i \(0.976205\pi\)
\(978\) −626.756 + 361.858i −0.640855 + 0.369998i
\(979\) 510.977i 0.521938i
\(980\) 0 0
\(981\) 147.384 0.150239
\(982\) −326.353 565.260i −0.332335 0.575621i
\(983\) −1209.68 698.409i −1.23060 0.710488i −0.263446 0.964674i \(-0.584859\pi\)
−0.967155 + 0.254187i \(0.918192\pi\)
\(984\) 48.2210 83.5212i 0.0490051 0.0848793i
\(985\) 0 0
\(986\) 55.8705i 0.0566638i
\(987\) −59.6578 + 213.481i −0.0604436 + 0.216293i
\(988\) −31.7461 −0.0321317
\(989\) −15.1638 26.2644i −0.0153324 0.0265565i
\(990\) 0 0
\(991\) −464.607 + 804.723i −0.468826 + 0.812031i −0.999365 0.0356298i \(-0.988656\pi\)
0.530539 + 0.847661i \(0.321990\pi\)
\(992\) −158.032 + 91.2397i −0.159306 + 0.0919755i
\(993\) 356.162i 0.358672i
\(994\) −939.772 + 241.062i −0.945445 + 0.242517i
\(995\) 0 0
\(996\) −115.709 200.413i −0.116173 0.201218i
\(997\) 996.474 + 575.315i 0.999473 + 0.577046i 0.908092 0.418770i \(-0.137539\pi\)
0.0913804 + 0.995816i \(0.470872\pi\)
\(998\) 123.029 213.093i 0.123276 0.213520i
\(999\) 27.1163 15.6556i 0.0271435 0.0156713i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.p.f.451.2 yes 12
5.2 odd 4 1050.3.q.d.199.11 24
5.3 odd 4 1050.3.q.d.199.3 24
5.4 even 2 1050.3.p.e.451.5 12
7.5 odd 6 inner 1050.3.p.f.901.2 yes 12
35.12 even 12 1050.3.q.d.649.3 24
35.19 odd 6 1050.3.p.e.901.5 yes 12
35.33 even 12 1050.3.q.d.649.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1050.3.p.e.451.5 12 5.4 even 2
1050.3.p.e.901.5 yes 12 35.19 odd 6
1050.3.p.f.451.2 yes 12 1.1 even 1 trivial
1050.3.p.f.901.2 yes 12 7.5 odd 6 inner
1050.3.q.d.199.3 24 5.3 odd 4
1050.3.q.d.199.11 24 5.2 odd 4
1050.3.q.d.649.3 24 35.12 even 12
1050.3.q.d.649.11 24 35.33 even 12