Properties

Label 1050.3.p.d.451.1
Level $1050$
Weight $3$
Character 1050.451
Analytic conductor $28.610$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,3,Mod(451,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,12,-8,0,0,0,0,12,0,-4,-24,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.151613669376.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 95x^{4} - 588x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.1
Root \(-2.56149 + 0.662382i\) of defining polynomial
Character \(\chi\) \(=\) 1050.451
Dual form 1050.3.p.d.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} -2.44949i q^{6} +(-0.440173 - 6.98615i) q^{7} +2.82843 q^{8} +(1.50000 + 2.59808i) q^{9} +(2.76860 - 4.79536i) q^{11} +(-3.00000 + 1.73205i) q^{12} -3.50434i q^{13} +(-8.24500 + 5.47905i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-7.04933 - 4.06994i) q^{17} +(2.12132 - 3.67423i) q^{18} +(-15.3628 + 8.86974i) q^{19} +(5.38992 - 10.8604i) q^{21} -7.83078 q^{22} +(-5.96495 - 10.3316i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-4.29192 + 2.47794i) q^{26} +5.19615i q^{27} +(12.5405 + 6.22374i) q^{28} -8.52374 q^{29} +(-6.68072 - 3.85711i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(8.30580 - 4.79536i) q^{33} +11.5115i q^{34} -6.00000 q^{36} +(-14.0267 - 24.2950i) q^{37} +(21.7263 + 12.5437i) q^{38} +(3.03484 - 5.25650i) q^{39} -3.14207i q^{41} +(-17.1125 + 1.07820i) q^{42} +43.1943 q^{43} +(5.53720 + 9.59071i) q^{44} +(-8.43572 + 14.6111i) q^{46} +(-16.2037 + 9.35524i) q^{47} -6.92820i q^{48} +(-48.6125 + 6.15023i) q^{49} +(-7.04933 - 12.2098i) q^{51} +(6.06969 + 3.50434i) q^{52} +(1.40895 - 2.44037i) q^{53} +(6.36396 - 3.67423i) q^{54} +(-1.24500 - 19.7598i) q^{56} -30.7257 q^{57} +(6.02720 + 10.4394i) q^{58} +(-26.1612 - 15.1042i) q^{59} +(-41.0095 + 23.6769i) q^{61} +10.9096i q^{62} +(17.4903 - 11.6228i) q^{63} +8.00000 q^{64} +(-11.7462 - 6.78166i) q^{66} +(3.29108 - 5.70032i) q^{67} +(14.0987 - 8.13987i) q^{68} -20.6632i q^{69} -97.7751 q^{71} +(4.24264 + 7.34847i) q^{72} +(52.9672 + 30.5806i) q^{73} +(-19.8368 + 34.3583i) q^{74} -35.4790i q^{76} +(-34.7197 - 17.2311i) q^{77} -8.58383 q^{78} +(-61.5670 - 106.637i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-3.84823 + 2.22178i) q^{82} -89.5815i q^{83} +(13.4209 + 20.1960i) q^{84} +(-30.5430 - 52.9020i) q^{86} +(-12.7856 - 7.38178i) q^{87} +(7.83078 - 13.5633i) q^{88} +(-102.290 + 59.0573i) q^{89} +(-24.4818 + 1.54251i) q^{91} +23.8598 q^{92} +(-6.68072 - 11.5713i) q^{93} +(22.9156 + 13.2303i) q^{94} +(-8.48528 + 4.89898i) q^{96} -65.1965i q^{97} +(41.9067 + 55.1890i) q^{98} +16.6116 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 8 q^{4} + 12 q^{9} - 4 q^{11} - 24 q^{12} - 16 q^{14} - 16 q^{16} + 24 q^{17} + 72 q^{19} - 24 q^{22} - 60 q^{23} - 72 q^{26} - 24 q^{29} + 96 q^{31} - 12 q^{33} - 48 q^{36} + 24 q^{37}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 1.50000 + 0.866025i 0.500000 + 0.288675i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) −0.440173 6.98615i −0.0628819 0.998021i
\(8\) 2.82843 0.353553
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.76860 4.79536i 0.251691 0.435942i −0.712301 0.701875i \(-0.752347\pi\)
0.963991 + 0.265933i \(0.0856800\pi\)
\(12\) −3.00000 + 1.73205i −0.250000 + 0.144338i
\(13\) 3.50434i 0.269564i −0.990875 0.134782i \(-0.956967\pi\)
0.990875 0.134782i \(-0.0430335\pi\)
\(14\) −8.24500 + 5.47905i −0.588928 + 0.391361i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −7.04933 4.06994i −0.414667 0.239408i 0.278126 0.960545i \(-0.410287\pi\)
−0.692793 + 0.721137i \(0.743620\pi\)
\(18\) 2.12132 3.67423i 0.117851 0.204124i
\(19\) −15.3628 + 8.86974i −0.808571 + 0.466828i −0.846459 0.532454i \(-0.821270\pi\)
0.0378887 + 0.999282i \(0.487937\pi\)
\(20\) 0 0
\(21\) 5.38992 10.8604i 0.256663 0.517163i
\(22\) −7.83078 −0.355945
\(23\) −5.96495 10.3316i −0.259346 0.449200i 0.706721 0.707492i \(-0.250174\pi\)
−0.966067 + 0.258292i \(0.916840\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) 0 0
\(26\) −4.29192 + 2.47794i −0.165074 + 0.0953054i
\(27\) 5.19615i 0.192450i
\(28\) 12.5405 + 6.22374i 0.447876 + 0.222277i
\(29\) −8.52374 −0.293922 −0.146961 0.989142i \(-0.546949\pi\)
−0.146961 + 0.989142i \(0.546949\pi\)
\(30\) 0 0
\(31\) −6.68072 3.85711i −0.215507 0.124423i 0.388361 0.921507i \(-0.373041\pi\)
−0.603868 + 0.797084i \(0.706375\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 8.30580 4.79536i 0.251691 0.145314i
\(34\) 11.5115i 0.338574i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) −14.0267 24.2950i −0.379100 0.656621i 0.611831 0.790988i \(-0.290433\pi\)
−0.990932 + 0.134367i \(0.957100\pi\)
\(38\) 21.7263 + 12.5437i 0.571746 + 0.330098i
\(39\) 3.03484 5.25650i 0.0778165 0.134782i
\(40\) 0 0
\(41\) 3.14207i 0.0766358i −0.999266 0.0383179i \(-0.987800\pi\)
0.999266 0.0383179i \(-0.0121999\pi\)
\(42\) −17.1125 + 1.07820i −0.407440 + 0.0256714i
\(43\) 43.1943 1.00452 0.502260 0.864717i \(-0.332502\pi\)
0.502260 + 0.864717i \(0.332502\pi\)
\(44\) 5.53720 + 9.59071i 0.125845 + 0.217971i
\(45\) 0 0
\(46\) −8.43572 + 14.6111i −0.183385 + 0.317632i
\(47\) −16.2037 + 9.35524i −0.344761 + 0.199048i −0.662375 0.749172i \(-0.730452\pi\)
0.317615 + 0.948220i \(0.397118\pi\)
\(48\) 6.92820i 0.144338i
\(49\) −48.6125 + 6.15023i −0.992092 + 0.125515i
\(50\) 0 0
\(51\) −7.04933 12.2098i −0.138222 0.239408i
\(52\) 6.06969 + 3.50434i 0.116725 + 0.0673911i
\(53\) 1.40895 2.44037i 0.0265840 0.0460448i −0.852427 0.522846i \(-0.824870\pi\)
0.879011 + 0.476801i \(0.158204\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) 0 0
\(56\) −1.24500 19.7598i −0.0222321 0.352854i
\(57\) −30.7257 −0.539047
\(58\) 6.02720 + 10.4394i 0.103917 + 0.179990i
\(59\) −26.1612 15.1042i −0.443411 0.256003i 0.261633 0.965168i \(-0.415739\pi\)
−0.705043 + 0.709164i \(0.749072\pi\)
\(60\) 0 0
\(61\) −41.0095 + 23.6769i −0.672288 + 0.388145i −0.796943 0.604055i \(-0.793551\pi\)
0.124655 + 0.992200i \(0.460218\pi\)
\(62\) 10.9096i 0.175961i
\(63\) 17.4903 11.6228i 0.277624 0.184489i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) −11.7462 6.78166i −0.177972 0.102752i
\(67\) 3.29108 5.70032i 0.0491206 0.0850794i −0.840420 0.541936i \(-0.817691\pi\)
0.889540 + 0.456857i \(0.151025\pi\)
\(68\) 14.0987 8.13987i 0.207333 0.119704i
\(69\) 20.6632i 0.299467i
\(70\) 0 0
\(71\) −97.7751 −1.37711 −0.688557 0.725182i \(-0.741755\pi\)
−0.688557 + 0.725182i \(0.741755\pi\)
\(72\) 4.24264 + 7.34847i 0.0589256 + 0.102062i
\(73\) 52.9672 + 30.5806i 0.725578 + 0.418913i 0.816802 0.576918i \(-0.195745\pi\)
−0.0912244 + 0.995830i \(0.529078\pi\)
\(74\) −19.8368 + 34.3583i −0.268064 + 0.464301i
\(75\) 0 0
\(76\) 35.4790i 0.466828i
\(77\) −34.7197 17.2311i −0.450906 0.223780i
\(78\) −8.58383 −0.110049
\(79\) −61.5670 106.637i −0.779329 1.34984i −0.932329 0.361612i \(-0.882227\pi\)
0.152999 0.988226i \(-0.451107\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −3.84823 + 2.22178i −0.0469296 + 0.0270948i
\(83\) 89.5815i 1.07930i −0.841891 0.539648i \(-0.818557\pi\)
0.841891 0.539648i \(-0.181443\pi\)
\(84\) 13.4209 + 20.1960i 0.159772 + 0.240429i
\(85\) 0 0
\(86\) −30.5430 52.9020i −0.355151 0.615140i
\(87\) −12.7856 7.38178i −0.146961 0.0848480i
\(88\) 7.83078 13.5633i 0.0889862 0.154129i
\(89\) −102.290 + 59.0573i −1.14933 + 0.663566i −0.948724 0.316107i \(-0.897624\pi\)
−0.200606 + 0.979672i \(0.564291\pi\)
\(90\) 0 0
\(91\) −24.4818 + 1.54251i −0.269031 + 0.0169507i
\(92\) 23.8598 0.259346
\(93\) −6.68072 11.5713i −0.0718357 0.124423i
\(94\) 22.9156 + 13.2303i 0.243783 + 0.140748i
\(95\) 0 0
\(96\) −8.48528 + 4.89898i −0.0883883 + 0.0510310i
\(97\) 65.1965i 0.672128i −0.941839 0.336064i \(-0.890904\pi\)
0.941839 0.336064i \(-0.109096\pi\)
\(98\) 41.9067 + 55.1890i 0.427619 + 0.563153i
\(99\) 16.6116 0.167794
\(100\) 0 0
\(101\) −120.895 69.7987i −1.19698 0.691076i −0.237099 0.971486i \(-0.576196\pi\)
−0.959881 + 0.280409i \(0.909530\pi\)
\(102\) −9.96926 + 17.2673i −0.0977379 + 0.169287i
\(103\) 151.108 87.2421i 1.46707 0.847011i 0.467746 0.883863i \(-0.345066\pi\)
0.999321 + 0.0368520i \(0.0117330\pi\)
\(104\) 9.91176i 0.0953054i
\(105\) 0 0
\(106\) −3.98511 −0.0375954
\(107\) −30.2382 52.3741i −0.282600 0.489477i 0.689424 0.724358i \(-0.257864\pi\)
−0.972024 + 0.234880i \(0.924530\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) 50.4057 87.3052i 0.462437 0.800965i −0.536644 0.843808i \(-0.680308\pi\)
0.999082 + 0.0428435i \(0.0136417\pi\)
\(110\) 0 0
\(111\) 48.5899i 0.437747i
\(112\) −23.3204 + 15.4971i −0.208218 + 0.138367i
\(113\) −74.1876 −0.656527 −0.328264 0.944586i \(-0.606463\pi\)
−0.328264 + 0.944586i \(0.606463\pi\)
\(114\) 21.7263 + 37.6311i 0.190582 + 0.330098i
\(115\) 0 0
\(116\) 8.52374 14.7636i 0.0734805 0.127272i
\(117\) 9.10453 5.25650i 0.0778165 0.0449274i
\(118\) 42.7211i 0.362043i
\(119\) −25.3302 + 51.0392i −0.212859 + 0.428901i
\(120\) 0 0
\(121\) 45.1697 + 78.2362i 0.373303 + 0.646580i
\(122\) 57.9963 + 33.4842i 0.475379 + 0.274460i
\(123\) 2.72111 4.71310i 0.0221228 0.0383179i
\(124\) 13.3614 7.71423i 0.107754 0.0622115i
\(125\) 0 0
\(126\) −26.6025 13.2026i −0.211131 0.104782i
\(127\) −151.093 −1.18971 −0.594855 0.803833i \(-0.702791\pi\)
−0.594855 + 0.803833i \(0.702791\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 64.7915 + 37.4074i 0.502260 + 0.289980i
\(130\) 0 0
\(131\) −186.820 + 107.861i −1.42611 + 0.823363i −0.996811 0.0798009i \(-0.974572\pi\)
−0.429296 + 0.903164i \(0.641238\pi\)
\(132\) 19.1814i 0.145314i
\(133\) 68.7276 + 103.423i 0.516749 + 0.777615i
\(134\) −9.30859 −0.0694671
\(135\) 0 0
\(136\) −19.9385 11.5115i −0.146607 0.0846435i
\(137\) 66.8203 115.736i 0.487739 0.844789i −0.512161 0.858889i \(-0.671155\pi\)
0.999901 + 0.0141000i \(0.00448831\pi\)
\(138\) −25.3072 + 14.6111i −0.183385 + 0.105877i
\(139\) 193.762i 1.39397i −0.717085 0.696986i \(-0.754524\pi\)
0.717085 0.696986i \(-0.245476\pi\)
\(140\) 0 0
\(141\) −32.4075 −0.229840
\(142\) 69.1374 + 119.750i 0.486883 + 0.843306i
\(143\) −16.8045 9.70210i −0.117514 0.0678469i
\(144\) 6.00000 10.3923i 0.0416667 0.0721688i
\(145\) 0 0
\(146\) 86.4950i 0.592432i
\(147\) −78.2450 32.8743i −0.532279 0.223635i
\(148\) 56.1068 0.379100
\(149\) −33.0032 57.1632i −0.221498 0.383646i 0.733765 0.679403i \(-0.237761\pi\)
−0.955263 + 0.295758i \(0.904428\pi\)
\(150\) 0 0
\(151\) −17.4410 + 30.2087i −0.115503 + 0.200057i −0.917981 0.396625i \(-0.870181\pi\)
0.802478 + 0.596682i \(0.203515\pi\)
\(152\) −43.4527 + 25.0874i −0.285873 + 0.165049i
\(153\) 24.4196i 0.159605i
\(154\) 3.44690 + 54.7070i 0.0223825 + 0.355240i
\(155\) 0 0
\(156\) 6.06969 + 10.5130i 0.0389082 + 0.0673911i
\(157\) 46.3329 + 26.7503i 0.295114 + 0.170384i 0.640246 0.768170i \(-0.278832\pi\)
−0.345132 + 0.938554i \(0.612166\pi\)
\(158\) −87.0689 + 150.808i −0.551069 + 0.954480i
\(159\) 4.22685 2.44037i 0.0265840 0.0153483i
\(160\) 0 0
\(161\) −69.5525 + 46.2197i −0.432003 + 0.287079i
\(162\) 12.7279 0.0785674
\(163\) 102.992 + 178.387i 0.631852 + 1.09440i 0.987173 + 0.159655i \(0.0510383\pi\)
−0.355321 + 0.934744i \(0.615628\pi\)
\(164\) 5.44222 + 3.14207i 0.0331843 + 0.0191589i
\(165\) 0 0
\(166\) −109.714 + 63.3437i −0.660931 + 0.381589i
\(167\) 137.945i 0.826020i −0.910727 0.413010i \(-0.864477\pi\)
0.910727 0.413010i \(-0.135523\pi\)
\(168\) 15.2450 30.7179i 0.0907440 0.182845i
\(169\) 156.720 0.927335
\(170\) 0 0
\(171\) −46.0885 26.6092i −0.269524 0.155609i
\(172\) −43.1943 + 74.8148i −0.251130 + 0.434970i
\(173\) −191.016 + 110.283i −1.10414 + 0.637475i −0.937305 0.348510i \(-0.886688\pi\)
−0.166834 + 0.985985i \(0.553354\pi\)
\(174\) 20.8788i 0.119993i
\(175\) 0 0
\(176\) −22.1488 −0.125845
\(177\) −26.1612 45.3126i −0.147804 0.256003i
\(178\) 144.660 + 83.5197i 0.812699 + 0.469212i
\(179\) 36.6501 63.4798i 0.204749 0.354636i −0.745304 0.666725i \(-0.767695\pi\)
0.950053 + 0.312089i \(0.101029\pi\)
\(180\) 0 0
\(181\) 61.4619i 0.339568i 0.985481 + 0.169784i \(0.0543071\pi\)
−0.985481 + 0.169784i \(0.945693\pi\)
\(182\) 19.2004 + 28.8932i 0.105497 + 0.158754i
\(183\) −82.0191 −0.448192
\(184\) −16.8714 29.2222i −0.0916926 0.158816i
\(185\) 0 0
\(186\) −9.44796 + 16.3643i −0.0507955 + 0.0879804i
\(187\) −39.0336 + 22.5360i −0.208736 + 0.120514i
\(188\) 37.4210i 0.199048i
\(189\) 36.3011 2.28721i 0.192069 0.0121016i
\(190\) 0 0
\(191\) 179.931 + 311.650i 0.942048 + 1.63168i 0.761556 + 0.648099i \(0.224436\pi\)
0.180492 + 0.983577i \(0.442231\pi\)
\(192\) 12.0000 + 6.92820i 0.0625000 + 0.0360844i
\(193\) −69.8724 + 121.023i −0.362033 + 0.627060i −0.988295 0.152552i \(-0.951251\pi\)
0.626262 + 0.779613i \(0.284584\pi\)
\(194\) −79.8490 + 46.1009i −0.411593 + 0.237633i
\(195\) 0 0
\(196\) 37.9600 90.3495i 0.193673 0.460967i
\(197\) −248.343 −1.26062 −0.630311 0.776342i \(-0.717073\pi\)
−0.630311 + 0.776342i \(0.717073\pi\)
\(198\) −11.7462 20.3450i −0.0593241 0.102752i
\(199\) −106.170 61.2973i −0.533518 0.308026i 0.208930 0.977931i \(-0.433002\pi\)
−0.742448 + 0.669904i \(0.766335\pi\)
\(200\) 0 0
\(201\) 9.87325 5.70032i 0.0491206 0.0283598i
\(202\) 197.421i 0.977329i
\(203\) 3.75192 + 59.5481i 0.0184824 + 0.293341i
\(204\) 28.1973 0.138222
\(205\) 0 0
\(206\) −213.699 123.379i −1.03737 0.598927i
\(207\) 17.8949 30.9948i 0.0864486 0.149733i
\(208\) −12.1394 + 7.00867i −0.0583624 + 0.0336955i
\(209\) 98.2271i 0.469986i
\(210\) 0 0
\(211\) 352.829 1.67218 0.836088 0.548596i \(-0.184837\pi\)
0.836088 + 0.548596i \(0.184837\pi\)
\(212\) 2.81790 + 4.88074i 0.0132920 + 0.0230224i
\(213\) −146.663 84.6757i −0.688557 0.397538i
\(214\) −42.7632 + 74.0681i −0.199828 + 0.346113i
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) −24.0057 + 48.3703i −0.110625 + 0.222904i
\(218\) −142.569 −0.653985
\(219\) 52.9672 + 91.7418i 0.241859 + 0.418913i
\(220\) 0 0
\(221\) −14.2624 + 24.7032i −0.0645358 + 0.111779i
\(222\) −59.5103 + 34.3583i −0.268064 + 0.154767i
\(223\) 61.7420i 0.276870i 0.990372 + 0.138435i \(0.0442072\pi\)
−0.990372 + 0.138435i \(0.955793\pi\)
\(224\) 35.4700 + 17.6034i 0.158348 + 0.0785866i
\(225\) 0 0
\(226\) 52.4586 + 90.8609i 0.232118 + 0.402039i
\(227\) 181.452 + 104.762i 0.799350 + 0.461505i 0.843244 0.537531i \(-0.180643\pi\)
−0.0438940 + 0.999036i \(0.513976\pi\)
\(228\) 30.7257 53.2184i 0.134762 0.233414i
\(229\) −93.3568 + 53.8996i −0.407671 + 0.235369i −0.689789 0.724011i \(-0.742297\pi\)
0.282117 + 0.959380i \(0.408963\pi\)
\(230\) 0 0
\(231\) −37.1571 55.9148i −0.160853 0.242055i
\(232\) −24.1088 −0.103917
\(233\) −163.423 283.057i −0.701387 1.21484i −0.967980 0.251029i \(-0.919231\pi\)
0.266592 0.963809i \(-0.414102\pi\)
\(234\) −12.8758 7.43382i −0.0550246 0.0317685i
\(235\) 0 0
\(236\) 52.3224 30.2084i 0.221705 0.128002i
\(237\) 213.274i 0.899892i
\(238\) 80.4211 5.06706i 0.337904 0.0212902i
\(239\) −9.20117 −0.0384986 −0.0192493 0.999815i \(-0.506128\pi\)
−0.0192493 + 0.999815i \(0.506128\pi\)
\(240\) 0 0
\(241\) 278.156 + 160.593i 1.15417 + 0.666362i 0.949900 0.312553i \(-0.101184\pi\)
0.204272 + 0.978914i \(0.434517\pi\)
\(242\) 63.8796 110.643i 0.263965 0.457201i
\(243\) −13.5000 + 7.79423i −0.0555556 + 0.0320750i
\(244\) 94.7075i 0.388145i
\(245\) 0 0
\(246\) −7.69646 −0.0312864
\(247\) 31.0825 + 53.8365i 0.125840 + 0.217962i
\(248\) −18.8959 10.9096i −0.0761932 0.0439902i
\(249\) 77.5799 134.372i 0.311566 0.539648i
\(250\) 0 0
\(251\) 19.2394i 0.0766511i −0.999265 0.0383255i \(-0.987798\pi\)
0.999265 0.0383255i \(-0.0122024\pi\)
\(252\) 2.64104 + 41.9169i 0.0104803 + 0.166337i
\(253\) −66.0583 −0.261100
\(254\) 106.839 + 185.051i 0.420626 + 0.728546i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −112.083 + 64.7109i −0.436119 + 0.251793i −0.701950 0.712226i \(-0.747687\pi\)
0.265831 + 0.964020i \(0.414354\pi\)
\(258\) 105.804i 0.410093i
\(259\) −163.554 + 108.687i −0.631483 + 0.419640i
\(260\) 0 0
\(261\) −12.7856 22.1453i −0.0489870 0.0848480i
\(262\) 264.203 + 152.538i 1.00841 + 0.582206i
\(263\) 83.4625 144.561i 0.317348 0.549663i −0.662586 0.748986i \(-0.730541\pi\)
0.979934 + 0.199323i \(0.0638744\pi\)
\(264\) 23.4924 13.5633i 0.0889862 0.0513762i
\(265\) 0 0
\(266\) 78.0688 157.305i 0.293492 0.591371i
\(267\) −204.581 −0.766220
\(268\) 6.58217 + 11.4006i 0.0245603 + 0.0425397i
\(269\) 181.081 + 104.547i 0.673162 + 0.388650i 0.797274 0.603618i \(-0.206275\pi\)
−0.124112 + 0.992268i \(0.539608\pi\)
\(270\) 0 0
\(271\) 123.029 71.0308i 0.453981 0.262106i −0.255529 0.966801i \(-0.582250\pi\)
0.709510 + 0.704695i \(0.248916\pi\)
\(272\) 32.5595i 0.119704i
\(273\) −38.0586 18.8881i −0.139409 0.0691871i
\(274\) −188.996 −0.689768
\(275\) 0 0
\(276\) 35.7897 + 20.6632i 0.129673 + 0.0748667i
\(277\) 222.961 386.179i 0.804912 1.39415i −0.111438 0.993771i \(-0.535546\pi\)
0.916350 0.400377i \(-0.131121\pi\)
\(278\) −237.309 + 137.010i −0.853630 + 0.492843i
\(279\) 23.1427i 0.0829487i
\(280\) 0 0
\(281\) 482.012 1.71534 0.857672 0.514196i \(-0.171910\pi\)
0.857672 + 0.514196i \(0.171910\pi\)
\(282\) 22.9156 + 39.6909i 0.0812609 + 0.140748i
\(283\) 187.506 + 108.257i 0.662566 + 0.382533i 0.793254 0.608891i \(-0.208385\pi\)
−0.130688 + 0.991424i \(0.541719\pi\)
\(284\) 97.7751 169.351i 0.344278 0.596308i
\(285\) 0 0
\(286\) 27.4417i 0.0959500i
\(287\) −21.9509 + 1.38305i −0.0764841 + 0.00481900i
\(288\) −16.9706 −0.0589256
\(289\) −111.371 192.901i −0.385368 0.667476i
\(290\) 0 0
\(291\) 56.4618 97.7947i 0.194027 0.336064i
\(292\) −105.934 + 61.1612i −0.362789 + 0.209456i
\(293\) 383.704i 1.30957i −0.755815 0.654786i \(-0.772759\pi\)
0.755815 0.654786i \(-0.227241\pi\)
\(294\) 15.0649 + 119.076i 0.0512412 + 0.405020i
\(295\) 0 0
\(296\) −39.6735 68.7166i −0.134032 0.232151i
\(297\) 24.9174 + 14.3861i 0.0838970 + 0.0484379i
\(298\) −46.6736 + 80.8410i −0.156623 + 0.271278i
\(299\) −36.2054 + 20.9032i −0.121088 + 0.0699104i
\(300\) 0 0
\(301\) −19.0130 301.762i −0.0631661 1.00253i
\(302\) 49.3305 0.163346
\(303\) −120.895 209.396i −0.398993 0.691076i
\(304\) 61.4514 + 35.4790i 0.202143 + 0.116707i
\(305\) 0 0
\(306\) −29.9078 + 17.2673i −0.0977379 + 0.0564290i
\(307\) 21.1264i 0.0688155i −0.999408 0.0344078i \(-0.989046\pi\)
0.999408 0.0344078i \(-0.0109545\pi\)
\(308\) 64.5648 42.9053i 0.209626 0.139303i
\(309\) 302.216 0.978044
\(310\) 0 0
\(311\) 75.0288 + 43.3179i 0.241250 + 0.139286i 0.615751 0.787941i \(-0.288853\pi\)
−0.374501 + 0.927226i \(0.622186\pi\)
\(312\) 8.58383 14.8676i 0.0275123 0.0476527i
\(313\) 2.45782 1.41903i 0.00785247 0.00453363i −0.496069 0.868283i \(-0.665224\pi\)
0.503921 + 0.863750i \(0.331890\pi\)
\(314\) 75.6613i 0.240960i
\(315\) 0 0
\(316\) 246.268 0.779329
\(317\) 154.925 + 268.338i 0.488723 + 0.846493i 0.999916 0.0129730i \(-0.00412956\pi\)
−0.511193 + 0.859466i \(0.670796\pi\)
\(318\) −5.97767 3.45121i −0.0187977 0.0108529i
\(319\) −23.5988 + 40.8744i −0.0739776 + 0.128133i
\(320\) 0 0
\(321\) 104.748i 0.326318i
\(322\) 105.788 + 52.5018i 0.328535 + 0.163049i
\(323\) 144.397 0.447050
\(324\) −9.00000 15.5885i −0.0277778 0.0481125i
\(325\) 0 0
\(326\) 145.652 252.278i 0.446787 0.773857i
\(327\) 151.217 87.3052i 0.462437 0.266988i
\(328\) 8.88711i 0.0270948i
\(329\) 72.4895 + 109.084i 0.220333 + 0.331562i
\(330\) 0 0
\(331\) 208.295 + 360.777i 0.629289 + 1.08996i 0.987695 + 0.156394i \(0.0499871\pi\)
−0.358406 + 0.933566i \(0.616680\pi\)
\(332\) 155.160 + 89.5815i 0.467349 + 0.269824i
\(333\) 42.0801 72.8849i 0.126367 0.218874i
\(334\) −168.948 + 97.5421i −0.505832 + 0.292042i
\(335\) 0 0
\(336\) −48.4014 + 3.04961i −0.144052 + 0.00907622i
\(337\) 155.491 0.461399 0.230699 0.973025i \(-0.425899\pi\)
0.230699 + 0.973025i \(0.425899\pi\)
\(338\) −110.818 191.942i −0.327862 0.567874i
\(339\) −111.281 64.2483i −0.328264 0.189523i
\(340\) 0 0
\(341\) −36.9925 + 21.3576i −0.108482 + 0.0626323i
\(342\) 75.2622i 0.220065i
\(343\) 64.3643 + 336.907i 0.187651 + 0.982236i
\(344\) 122.172 0.355151
\(345\) 0 0
\(346\) 270.138 + 155.964i 0.780744 + 0.450763i
\(347\) 256.253 443.844i 0.738482 1.27909i −0.214697 0.976681i \(-0.568876\pi\)
0.953179 0.302408i \(-0.0977904\pi\)
\(348\) 25.5712 14.7636i 0.0734805 0.0424240i
\(349\) 269.185i 0.771305i −0.922644 0.385652i \(-0.873976\pi\)
0.922644 0.385652i \(-0.126024\pi\)
\(350\) 0 0
\(351\) 18.2091 0.0518777
\(352\) 15.6616 + 27.1266i 0.0444931 + 0.0770643i
\(353\) −507.890 293.231i −1.43878 0.830682i −0.441018 0.897498i \(-0.645382\pi\)
−0.997765 + 0.0668166i \(0.978716\pi\)
\(354\) −36.9976 + 64.0816i −0.104513 + 0.181022i
\(355\) 0 0
\(356\) 236.229i 0.663566i
\(357\) −82.1966 + 54.6221i −0.230242 + 0.153003i
\(358\) −103.662 −0.289559
\(359\) −44.4221 76.9413i −0.123738 0.214321i 0.797501 0.603318i \(-0.206155\pi\)
−0.921239 + 0.388997i \(0.872822\pi\)
\(360\) 0 0
\(361\) −23.1554 + 40.1064i −0.0641424 + 0.111098i
\(362\) 75.2751 43.4601i 0.207942 0.120056i
\(363\) 156.472i 0.431054i
\(364\) 21.8101 43.9462i 0.0599178 0.120731i
\(365\) 0 0
\(366\) 57.9963 + 100.452i 0.158460 + 0.274460i
\(367\) 611.446 + 353.019i 1.66607 + 0.961904i 0.969727 + 0.244191i \(0.0785222\pi\)
0.696339 + 0.717713i \(0.254811\pi\)
\(368\) −23.8598 + 41.3264i −0.0648365 + 0.112300i
\(369\) 8.16333 4.71310i 0.0221228 0.0127726i
\(370\) 0 0
\(371\) −17.6690 8.76894i −0.0476253 0.0236360i
\(372\) 26.7229 0.0718357
\(373\) 25.6211 + 44.3770i 0.0686892 + 0.118973i 0.898325 0.439332i \(-0.144785\pi\)
−0.829635 + 0.558306i \(0.811452\pi\)
\(374\) 55.2018 + 31.8708i 0.147598 + 0.0852160i
\(375\) 0 0
\(376\) −45.8311 + 26.4606i −0.121891 + 0.0703740i
\(377\) 29.8701i 0.0792309i
\(378\) −28.4700 42.8423i −0.0753174 0.113339i
\(379\) −194.724 −0.513784 −0.256892 0.966440i \(-0.582698\pi\)
−0.256892 + 0.966440i \(0.582698\pi\)
\(380\) 0 0
\(381\) −226.640 130.851i −0.594855 0.343440i
\(382\) 254.461 440.740i 0.666129 1.15377i
\(383\) 454.732 262.540i 1.18729 0.685482i 0.229600 0.973285i \(-0.426258\pi\)
0.957690 + 0.287803i \(0.0929249\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 197.629 0.511993
\(387\) 64.7915 + 112.222i 0.167420 + 0.289980i
\(388\) 112.924 + 65.1965i 0.291040 + 0.168032i
\(389\) 201.765 349.467i 0.518675 0.898372i −0.481089 0.876672i \(-0.659759\pi\)
0.999765 0.0217005i \(-0.00690803\pi\)
\(390\) 0 0
\(391\) 97.1079i 0.248358i
\(392\) −137.497 + 17.3955i −0.350757 + 0.0443762i
\(393\) −373.640 −0.950738
\(394\) 175.605 + 304.156i 0.445697 + 0.771971i
\(395\) 0 0
\(396\) −16.6116 + 28.7721i −0.0419485 + 0.0726569i
\(397\) −139.596 + 80.5960i −0.351628 + 0.203013i −0.665402 0.746485i \(-0.731740\pi\)
0.313774 + 0.949498i \(0.398407\pi\)
\(398\) 173.375i 0.435615i
\(399\) 13.5246 + 214.654i 0.0338963 + 0.537980i
\(400\) 0 0
\(401\) 212.506 + 368.071i 0.529940 + 0.917883i 0.999390 + 0.0349237i \(0.0111188\pi\)
−0.469450 + 0.882959i \(0.655548\pi\)
\(402\) −13.9629 8.06147i −0.0347335 0.0200534i
\(403\) −13.5166 + 23.4115i −0.0335400 + 0.0580930i
\(404\) 241.790 139.597i 0.598490 0.345538i
\(405\) 0 0
\(406\) 70.2782 46.7020i 0.173099 0.115030i
\(407\) −155.337 −0.381664
\(408\) −19.9385 34.5345i −0.0488689 0.0846435i
\(409\) 373.605 + 215.701i 0.913460 + 0.527386i 0.881543 0.472104i \(-0.156505\pi\)
0.0319171 + 0.999491i \(0.489839\pi\)
\(410\) 0 0
\(411\) 200.461 115.736i 0.487739 0.281596i
\(412\) 348.969i 0.847011i
\(413\) −94.0046 + 189.415i −0.227614 + 0.458631i
\(414\) −50.6143 −0.122257
\(415\) 0 0
\(416\) 17.1677 + 9.91176i 0.0412684 + 0.0238263i
\(417\) 167.803 290.643i 0.402405 0.696986i
\(418\) 120.303 69.4570i 0.287806 0.166165i
\(419\) 585.412i 1.39716i 0.715530 + 0.698582i \(0.246185\pi\)
−0.715530 + 0.698582i \(0.753815\pi\)
\(420\) 0 0
\(421\) 400.267 0.950754 0.475377 0.879782i \(-0.342312\pi\)
0.475377 + 0.879782i \(0.342312\pi\)
\(422\) −249.488 432.126i −0.591203 1.02399i
\(423\) −48.6112 28.0657i −0.114920 0.0663492i
\(424\) 3.98511 6.90241i 0.00939885 0.0162793i
\(425\) 0 0
\(426\) 239.499i 0.562204i
\(427\) 183.461 + 276.077i 0.429652 + 0.646550i
\(428\) 120.953 0.282600
\(429\) −16.8045 29.1063i −0.0391714 0.0678469i
\(430\) 0 0
\(431\) −197.631 + 342.307i −0.458541 + 0.794216i −0.998884 0.0472289i \(-0.984961\pi\)
0.540344 + 0.841445i \(0.318294\pi\)
\(432\) 18.0000 10.3923i 0.0416667 0.0240563i
\(433\) 2.39222i 0.00552477i −0.999996 0.00276238i \(-0.999121\pi\)
0.999996 0.00276238i \(-0.000879295\pi\)
\(434\) 76.2158 4.80210i 0.175613 0.0110647i
\(435\) 0 0
\(436\) 100.811 + 174.610i 0.231219 + 0.400482i
\(437\) 183.277 + 105.815i 0.419399 + 0.242140i
\(438\) 74.9069 129.743i 0.171020 0.296216i
\(439\) −350.264 + 202.225i −0.797867 + 0.460649i −0.842725 0.538345i \(-0.819050\pi\)
0.0448578 + 0.998993i \(0.485717\pi\)
\(440\) 0 0
\(441\) −88.8975 117.074i −0.201582 0.265473i
\(442\) 40.3402 0.0912674
\(443\) −146.005 252.889i −0.329583 0.570855i 0.652846 0.757491i \(-0.273575\pi\)
−0.982429 + 0.186636i \(0.940242\pi\)
\(444\) 84.1603 + 48.5899i 0.189550 + 0.109437i
\(445\) 0 0
\(446\) 75.6182 43.6582i 0.169547 0.0978883i
\(447\) 114.326i 0.255764i
\(448\) −3.52139 55.8892i −0.00786024 0.124753i
\(449\) 125.680 0.279911 0.139956 0.990158i \(-0.455304\pi\)
0.139956 + 0.990158i \(0.455304\pi\)
\(450\) 0 0
\(451\) −15.0673 8.69913i −0.0334087 0.0192885i
\(452\) 74.1876 128.497i 0.164132 0.284285i
\(453\) −52.3229 + 30.2087i −0.115503 + 0.0666858i
\(454\) 296.310i 0.652666i
\(455\) 0 0
\(456\) −86.9054 −0.190582
\(457\) −43.0015 74.4808i −0.0940952 0.162978i 0.815135 0.579270i \(-0.196662\pi\)
−0.909231 + 0.416293i \(0.863329\pi\)
\(458\) 132.026 + 76.2255i 0.288267 + 0.166431i
\(459\) 21.1480 36.6294i 0.0460741 0.0798027i
\(460\) 0 0
\(461\) 131.449i 0.285138i −0.989785 0.142569i \(-0.954464\pi\)
0.989785 0.142569i \(-0.0455362\pi\)
\(462\) −42.2073 + 85.0456i −0.0913578 + 0.184081i
\(463\) 73.9873 0.159800 0.0798999 0.996803i \(-0.474540\pi\)
0.0798999 + 0.996803i \(0.474540\pi\)
\(464\) 17.0475 + 29.5271i 0.0367403 + 0.0636360i
\(465\) 0 0
\(466\) −231.115 + 400.303i −0.495956 + 0.859020i
\(467\) −387.032 + 223.453i −0.828762 + 0.478486i −0.853429 0.521210i \(-0.825481\pi\)
0.0246667 + 0.999696i \(0.492148\pi\)
\(468\) 21.0260i 0.0449274i
\(469\) −41.2719 20.4829i −0.0879999 0.0436735i
\(470\) 0 0
\(471\) 46.3329 + 80.2509i 0.0983713 + 0.170384i
\(472\) −73.9951 42.7211i −0.156769 0.0905108i
\(473\) 119.588 207.132i 0.252828 0.437912i
\(474\) −261.207 + 150.808i −0.551069 + 0.318160i
\(475\) 0 0
\(476\) −63.0722 94.9124i −0.132505 0.199396i
\(477\) 8.45370 0.0177226
\(478\) 6.50621 + 11.2691i 0.0136113 + 0.0235755i
\(479\) 513.818 + 296.653i 1.07269 + 0.619318i 0.928915 0.370293i \(-0.120743\pi\)
0.143775 + 0.989610i \(0.454076\pi\)
\(480\) 0 0
\(481\) −85.1377 + 49.1543i −0.177002 + 0.102192i
\(482\) 454.226i 0.942378i
\(483\) −144.356 + 9.09539i −0.298874 + 0.0188310i
\(484\) −180.679 −0.373303
\(485\) 0 0
\(486\) 19.0919 + 11.0227i 0.0392837 + 0.0226805i
\(487\) 409.771 709.744i 0.841418 1.45738i −0.0472773 0.998882i \(-0.515054\pi\)
0.888696 0.458498i \(-0.151612\pi\)
\(488\) −115.993 + 66.9683i −0.237690 + 0.137230i
\(489\) 356.774i 0.729600i
\(490\) 0 0
\(491\) 554.724 1.12978 0.564892 0.825165i \(-0.308918\pi\)
0.564892 + 0.825165i \(0.308918\pi\)
\(492\) 5.44222 + 9.42620i 0.0110614 + 0.0191589i
\(493\) 60.0867 + 34.6911i 0.121880 + 0.0703673i
\(494\) 43.9574 76.1364i 0.0889825 0.154122i
\(495\) 0 0
\(496\) 30.8569i 0.0622115i
\(497\) 43.0380 + 683.071i 0.0865955 + 1.37439i
\(498\) −219.429 −0.440620
\(499\) −317.394 549.742i −0.636060 1.10169i −0.986290 0.165024i \(-0.947230\pi\)
0.350230 0.936664i \(-0.386103\pi\)
\(500\) 0 0
\(501\) 119.464 206.918i 0.238451 0.413010i
\(502\) −23.5634 + 13.6043i −0.0469390 + 0.0271003i
\(503\) 120.116i 0.238800i 0.992846 + 0.119400i \(0.0380970\pi\)
−0.992846 + 0.119400i \(0.961903\pi\)
\(504\) 49.4700 32.8743i 0.0981547 0.0652268i
\(505\) 0 0
\(506\) 46.7103 + 80.9046i 0.0923128 + 0.159890i
\(507\) 235.079 + 135.723i 0.463668 + 0.267699i
\(508\) 151.093 261.701i 0.297428 0.515160i
\(509\) 51.1082 29.5073i 0.100409 0.0579712i −0.448955 0.893555i \(-0.648204\pi\)
0.549364 + 0.835583i \(0.314870\pi\)
\(510\) 0 0
\(511\) 190.326 383.497i 0.372458 0.750484i
\(512\) 22.6274 0.0441942
\(513\) −46.0885 79.8277i −0.0898412 0.155609i
\(514\) 158.509 + 91.5150i 0.308383 + 0.178045i
\(515\) 0 0
\(516\) −129.583 + 74.8148i −0.251130 + 0.144990i
\(517\) 103.604i 0.200394i
\(518\) 248.764 + 123.459i 0.480239 + 0.238338i
\(519\) −382.032 −0.736093
\(520\) 0 0
\(521\) −841.241 485.691i −1.61467 0.932228i −0.988269 0.152725i \(-0.951195\pi\)
−0.626398 0.779504i \(-0.715471\pi\)
\(522\) −18.0816 + 31.3182i −0.0346391 + 0.0599966i
\(523\) 598.739 345.682i 1.14482 0.660960i 0.197197 0.980364i \(-0.436816\pi\)
0.947619 + 0.319404i \(0.103483\pi\)
\(524\) 431.442i 0.823363i
\(525\) 0 0
\(526\) −236.068 −0.448798
\(527\) 31.3964 + 54.3802i 0.0595757 + 0.103188i
\(528\) −33.2232 19.1814i −0.0629227 0.0363285i
\(529\) 193.339 334.872i 0.365479 0.633029i
\(530\) 0 0
\(531\) 90.6251i 0.170669i
\(532\) −247.861 + 15.6169i −0.465905 + 0.0293551i
\(533\) −11.0109 −0.0206583
\(534\) 144.660 + 250.559i 0.270900 + 0.469212i
\(535\) 0 0
\(536\) 9.30859 16.1229i 0.0173668 0.0300801i
\(537\) 109.950 63.4798i 0.204749 0.118212i
\(538\) 295.703i 0.549635i
\(539\) −105.096 + 250.142i −0.194983 + 0.464085i
\(540\) 0 0
\(541\) −270.888 469.192i −0.500717 0.867267i −1.00000 0.000828025i \(-0.999736\pi\)
0.499283 0.866439i \(-0.333597\pi\)
\(542\) −173.989 100.453i −0.321013 0.185337i
\(543\) −53.2275 + 92.1928i −0.0980249 + 0.169784i
\(544\) 39.8771 23.0230i 0.0733034 0.0423217i
\(545\) 0 0
\(546\) 3.77837 + 59.9679i 0.00692010 + 0.109831i
\(547\) −318.491 −0.582251 −0.291126 0.956685i \(-0.594030\pi\)
−0.291126 + 0.956685i \(0.594030\pi\)
\(548\) 133.641 + 231.472i 0.243870 + 0.422395i
\(549\) −123.029 71.0306i −0.224096 0.129382i
\(550\) 0 0
\(551\) 130.949 75.6034i 0.237657 0.137211i
\(552\) 58.4444i 0.105877i
\(553\) −717.883 + 477.055i −1.29816 + 0.862667i
\(554\) −630.628 −1.13832
\(555\) 0 0
\(556\) 335.606 + 193.762i 0.603607 + 0.348493i
\(557\) −288.479 + 499.660i −0.517915 + 0.897055i 0.481869 + 0.876244i \(0.339958\pi\)
−0.999783 + 0.0208114i \(0.993375\pi\)
\(558\) −28.3439 + 16.3643i −0.0507955 + 0.0293268i
\(559\) 151.367i 0.270783i
\(560\) 0 0
\(561\) −78.0672 −0.139157
\(562\) −340.834 590.342i −0.606466 1.05043i
\(563\) 308.279 + 177.985i 0.547565 + 0.316137i 0.748139 0.663542i \(-0.230947\pi\)
−0.200574 + 0.979678i \(0.564281\pi\)
\(564\) 32.4075 56.1314i 0.0574601 0.0995238i
\(565\) 0 0
\(566\) 306.196i 0.540983i
\(567\) 56.4324 + 28.0068i 0.0995281 + 0.0493948i
\(568\) −276.550 −0.486883
\(569\) 186.085 + 322.308i 0.327038 + 0.566447i 0.981923 0.189282i \(-0.0606161\pi\)
−0.654885 + 0.755729i \(0.727283\pi\)
\(570\) 0 0
\(571\) 82.9355 143.649i 0.145246 0.251574i −0.784219 0.620485i \(-0.786936\pi\)
0.929465 + 0.368911i \(0.120269\pi\)
\(572\) 33.6091 19.4042i 0.0587571 0.0339234i
\(573\) 623.300i 1.08778i
\(574\) 17.2155 + 25.9063i 0.0299922 + 0.0451330i
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 13.9714 + 8.06639i 0.0242139 + 0.0139799i 0.512058 0.858951i \(-0.328883\pi\)
−0.487844 + 0.872931i \(0.662217\pi\)
\(578\) −157.503 + 272.803i −0.272496 + 0.471977i
\(579\) −209.617 + 121.023i −0.362033 + 0.209020i
\(580\) 0 0
\(581\) −625.830 + 39.4314i −1.07716 + 0.0678681i
\(582\) −159.698 −0.274395
\(583\) −7.80164 13.5128i −0.0133819 0.0231781i
\(584\) 149.814 + 86.4950i 0.256530 + 0.148108i
\(585\) 0 0
\(586\) −469.940 + 271.320i −0.801945 + 0.463003i
\(587\) 204.516i 0.348409i 0.984709 + 0.174205i \(0.0557354\pi\)
−0.984709 + 0.174205i \(0.944265\pi\)
\(588\) 135.185 102.650i 0.229906 0.174575i
\(589\) 136.846 0.232337
\(590\) 0 0
\(591\) −372.514 215.071i −0.630311 0.363910i
\(592\) −56.1068 + 97.1799i −0.0947751 + 0.164155i
\(593\) −597.577 + 345.011i −1.00772 + 0.581806i −0.910523 0.413459i \(-0.864320\pi\)
−0.0971952 + 0.995265i \(0.530987\pi\)
\(594\) 40.6899i 0.0685016i
\(595\) 0 0
\(596\) 132.013 0.221498
\(597\) −106.170 183.892i −0.177839 0.308026i
\(598\) 51.2022 + 29.5616i 0.0856224 + 0.0494341i
\(599\) 477.775 827.531i 0.797622 1.38152i −0.123539 0.992340i \(-0.539425\pi\)
0.921161 0.389182i \(-0.127242\pi\)
\(600\) 0 0
\(601\) 587.954i 0.978293i 0.872202 + 0.489146i \(0.162692\pi\)
−0.872202 + 0.489146i \(0.837308\pi\)
\(602\) −356.137 + 236.664i −0.591590 + 0.393130i
\(603\) 19.7465 0.0327471
\(604\) −34.8820 60.4173i −0.0577516 0.100029i
\(605\) 0 0
\(606\) −170.971 + 296.131i −0.282131 + 0.488665i
\(607\) −449.438 + 259.483i −0.740425 + 0.427485i −0.822224 0.569164i \(-0.807267\pi\)
0.0817986 + 0.996649i \(0.473934\pi\)
\(608\) 100.350i 0.165049i
\(609\) −45.9423 + 92.5714i −0.0754389 + 0.152006i
\(610\) 0 0
\(611\) 32.7839 + 56.7834i 0.0536561 + 0.0929351i
\(612\) 42.2960 + 24.4196i 0.0691111 + 0.0399013i
\(613\) 63.7771 110.465i 0.104041 0.180204i −0.809305 0.587389i \(-0.800156\pi\)
0.913346 + 0.407184i \(0.133489\pi\)
\(614\) −25.8744 + 14.9386i −0.0421407 + 0.0243300i
\(615\) 0 0
\(616\) −98.2022 48.7368i −0.159419 0.0791182i
\(617\) −486.581 −0.788624 −0.394312 0.918977i \(-0.629017\pi\)
−0.394312 + 0.918977i \(0.629017\pi\)
\(618\) −213.699 370.137i −0.345791 0.598927i
\(619\) 370.662 + 214.002i 0.598808 + 0.345722i 0.768572 0.639763i \(-0.220967\pi\)
−0.169765 + 0.985485i \(0.554301\pi\)
\(620\) 0 0
\(621\) 53.6846 30.9948i 0.0864486 0.0499111i
\(622\) 122.522i 0.196980i
\(623\) 457.609 + 688.620i 0.734524 + 1.10533i
\(624\) −24.2787 −0.0389082
\(625\) 0 0
\(626\) −3.47589 2.00680i −0.00555254 0.00320576i
\(627\) −85.0671 + 147.341i −0.135673 + 0.234993i
\(628\) −92.6658 + 53.5006i −0.147557 + 0.0851921i
\(629\) 228.351i 0.363038i
\(630\) 0 0
\(631\) −64.4987 −0.102217 −0.0511083 0.998693i \(-0.516275\pi\)
−0.0511083 + 0.998693i \(0.516275\pi\)
\(632\) −174.138 301.616i −0.275535 0.477240i
\(633\) 529.244 + 305.559i 0.836088 + 0.482716i
\(634\) 219.097 379.488i 0.345579 0.598561i
\(635\) 0 0
\(636\) 9.76149i 0.0153483i
\(637\) 21.5525 + 170.354i 0.0338343 + 0.267432i
\(638\) 66.7476 0.104620
\(639\) −146.663 254.027i −0.229519 0.397538i
\(640\) 0 0
\(641\) −352.662 + 610.829i −0.550175 + 0.952932i 0.448086 + 0.893990i \(0.352106\pi\)
−0.998261 + 0.0589413i \(0.981228\pi\)
\(642\) −128.290 + 74.0681i −0.199828 + 0.115371i
\(643\) 1092.83i 1.69958i 0.527124 + 0.849788i \(0.323270\pi\)
−0.527124 + 0.849788i \(0.676730\pi\)
\(644\) −10.5025 166.688i −0.0163082 0.258833i
\(645\) 0 0
\(646\) −102.104 176.850i −0.158056 0.273761i
\(647\) 446.083 + 257.546i 0.689463 + 0.398062i 0.803411 0.595425i \(-0.203016\pi\)
−0.113948 + 0.993487i \(0.536350\pi\)
\(648\) −12.7279 + 22.0454i −0.0196419 + 0.0340207i
\(649\) −144.860 + 83.6349i −0.223205 + 0.128867i
\(650\) 0 0
\(651\) −77.8984 + 51.7659i −0.119660 + 0.0795175i
\(652\) −411.967 −0.631852
\(653\) −393.317 681.245i −0.602323 1.04325i −0.992468 0.122501i \(-0.960909\pi\)
0.390145 0.920753i \(-0.372425\pi\)
\(654\) −213.853 123.468i −0.326993 0.188789i
\(655\) 0 0
\(656\) −10.8844 + 6.28413i −0.0165921 + 0.00957947i
\(657\) 183.484i 0.279275i
\(658\) 82.3420 165.915i 0.125140 0.252151i
\(659\) −819.425 −1.24344 −0.621719 0.783241i \(-0.713565\pi\)
−0.621719 + 0.783241i \(0.713565\pi\)
\(660\) 0 0
\(661\) −889.453 513.526i −1.34562 0.776892i −0.357991 0.933725i \(-0.616538\pi\)
−0.987625 + 0.156833i \(0.949872\pi\)
\(662\) 294.573 510.216i 0.444974 0.770718i
\(663\) −42.7873 + 24.7032i −0.0645358 + 0.0372598i
\(664\) 253.375i 0.381589i
\(665\) 0 0
\(666\) −119.021 −0.178710
\(667\) 50.8437 + 88.0639i 0.0762275 + 0.132030i
\(668\) 238.928 + 137.945i 0.357677 + 0.206505i
\(669\) −53.4701 + 92.6130i −0.0799254 + 0.138435i
\(670\) 0 0
\(671\) 262.207i 0.390771i
\(672\) 37.9600 + 57.1230i 0.0564881 + 0.0850045i
\(673\) −669.779 −0.995213 −0.497607 0.867403i \(-0.665788\pi\)
−0.497607 + 0.867403i \(0.665788\pi\)
\(674\) −109.949 190.437i −0.163129 0.282548i
\(675\) 0 0
\(676\) −156.720 + 271.446i −0.231834 + 0.401548i
\(677\) −786.522 + 454.099i −1.16178 + 0.670751i −0.951729 0.306940i \(-0.900695\pi\)
−0.210047 + 0.977691i \(0.567362\pi\)
\(678\) 181.722i 0.268026i
\(679\) −455.472 + 28.6977i −0.670798 + 0.0422647i
\(680\) 0 0
\(681\) 181.452 + 314.285i 0.266450 + 0.461505i
\(682\) 52.3153 + 30.2042i 0.0767086 + 0.0442877i
\(683\) 330.668 572.733i 0.484140 0.838555i −0.515694 0.856773i \(-0.672466\pi\)
0.999834 + 0.0182177i \(0.00579920\pi\)
\(684\) 92.1770 53.2184i 0.134762 0.0778047i
\(685\) 0 0
\(686\) 367.112 317.059i 0.535149 0.462185i
\(687\) −186.714 −0.271781
\(688\) −86.3887 149.630i −0.125565 0.217485i
\(689\) −8.55188 4.93743i −0.0124120 0.00716608i
\(690\) 0 0
\(691\) −239.610 + 138.339i −0.346759 + 0.200201i −0.663257 0.748392i \(-0.730826\pi\)
0.316498 + 0.948593i \(0.397493\pi\)
\(692\) 441.133i 0.637475i
\(693\) −7.31198 116.051i −0.0105512 0.167462i
\(694\) −724.794 −1.04437
\(695\) 0 0
\(696\) −36.1632 20.8788i −0.0519586 0.0299983i
\(697\) −12.7880 + 22.1495i −0.0183472 + 0.0317783i
\(698\) −329.683 + 190.343i −0.472326 + 0.272697i
\(699\) 566.115i 0.809892i
\(700\) 0 0
\(701\) −415.967 −0.593391 −0.296696 0.954972i \(-0.595885\pi\)
−0.296696 + 0.954972i \(0.595885\pi\)
\(702\) −12.8758 22.3015i −0.0183415 0.0317685i
\(703\) 430.980 + 248.827i 0.613059 + 0.353950i
\(704\) 22.1488 38.3629i 0.0314614 0.0544927i
\(705\) 0 0
\(706\) 829.382i 1.17476i
\(707\) −434.409 + 875.313i −0.614440 + 1.23807i
\(708\) 104.645 0.147804
\(709\) −136.620 236.632i −0.192693 0.333755i 0.753449 0.657507i \(-0.228389\pi\)
−0.946142 + 0.323752i \(0.895056\pi\)
\(710\) 0 0
\(711\) 184.701 319.912i 0.259776 0.449946i
\(712\) −289.321 + 167.039i −0.406349 + 0.234606i
\(713\) 92.0300i 0.129074i
\(714\) 125.020 + 62.0462i 0.175098 + 0.0868994i
\(715\) 0 0
\(716\) 73.3002 + 126.960i 0.102375 + 0.177318i
\(717\) −13.8018 7.96845i −0.0192493 0.0111136i
\(718\) −62.8223 + 108.811i −0.0874962 + 0.151548i
\(719\) 361.463 208.691i 0.502731 0.290252i −0.227110 0.973869i \(-0.572928\pi\)
0.729840 + 0.683617i \(0.239594\pi\)
\(720\) 0 0
\(721\) −676.000 1017.26i −0.937587 1.41090i
\(722\) 65.4934 0.0907111
\(723\) 278.156 + 481.779i 0.384724 + 0.666362i
\(724\) −106.455 61.4619i −0.147037 0.0848921i
\(725\) 0 0
\(726\) 191.639 110.643i 0.263965 0.152400i
\(727\) 357.267i 0.491426i −0.969343 0.245713i \(-0.920978\pi\)
0.969343 0.245713i \(-0.0790221\pi\)
\(728\) −69.2450 + 4.36289i −0.0951167 + 0.00599298i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −304.491 175.798i −0.416541 0.240490i
\(732\) 82.0191 142.061i 0.112048 0.194073i
\(733\) 373.293 215.521i 0.509267 0.294026i −0.223265 0.974758i \(-0.571672\pi\)
0.732532 + 0.680732i \(0.238338\pi\)
\(734\) 998.488i 1.36034i
\(735\) 0 0
\(736\) 67.4858 0.0916926
\(737\) −18.2234 31.5638i −0.0247264 0.0428274i
\(738\) −11.5447 6.66533i −0.0156432 0.00903161i
\(739\) −159.512 + 276.282i −0.215848 + 0.373860i −0.953535 0.301284i \(-0.902585\pi\)
0.737687 + 0.675143i \(0.235918\pi\)
\(740\) 0 0
\(741\) 107.673i 0.145308i
\(742\) 1.75414 + 27.8406i 0.00236407 + 0.0375210i
\(743\) 1303.33 1.75414 0.877072 0.480360i \(-0.159494\pi\)
0.877072 + 0.480360i \(0.159494\pi\)
\(744\) −18.8959 32.7287i −0.0253977 0.0439902i
\(745\) 0 0
\(746\) 36.2337 62.7585i 0.0485706 0.0841267i
\(747\) 232.740 134.372i 0.311566 0.179883i
\(748\) 90.1442i 0.120514i
\(749\) −352.583 + 234.302i −0.470738 + 0.312820i
\(750\) 0 0
\(751\) −614.473 1064.30i −0.818206 1.41717i −0.907003 0.421124i \(-0.861636\pi\)
0.0887971 0.996050i \(-0.471698\pi\)
\(752\) 64.8150 + 37.4210i 0.0861901 + 0.0497619i
\(753\) 16.6618 28.8591i 0.0221273 0.0383255i
\(754\) 36.5832 21.1213i 0.0485188 0.0280124i
\(755\) 0 0
\(756\) −32.3395 + 65.1625i −0.0427771 + 0.0861938i
\(757\) −1206.22 −1.59342 −0.796712 0.604359i \(-0.793429\pi\)
−0.796712 + 0.604359i \(0.793429\pi\)
\(758\) 137.691 + 238.487i 0.181650 + 0.314627i
\(759\) −99.0874 57.2082i −0.130550 0.0753731i
\(760\) 0 0
\(761\) −204.456 + 118.043i −0.268667 + 0.155115i −0.628282 0.777986i \(-0.716242\pi\)
0.359614 + 0.933101i \(0.382908\pi\)
\(762\) 370.101i 0.485697i
\(763\) −632.114 313.712i −0.828459 0.411156i
\(764\) −719.725 −0.942048
\(765\) 0 0
\(766\) −643.088 371.287i −0.839540 0.484709i
\(767\) −52.9301 + 91.6777i −0.0690093 + 0.119528i
\(768\) −24.0000 + 13.8564i −0.0312500 + 0.0180422i
\(769\) 1341.44i 1.74440i 0.489149 + 0.872200i \(0.337307\pi\)
−0.489149 + 0.872200i \(0.662693\pi\)
\(770\) 0 0
\(771\) −224.165 −0.290746
\(772\) −139.745 242.045i −0.181017 0.313530i
\(773\) 155.933 + 90.0279i 0.201724 + 0.116466i 0.597460 0.801899i \(-0.296177\pi\)
−0.395735 + 0.918365i \(0.629510\pi\)
\(774\) 91.6290 158.706i 0.118384 0.205047i
\(775\) 0 0
\(776\) 184.403i 0.237633i
\(777\) −339.456 + 21.3880i −0.436881 + 0.0275264i
\(778\) −570.677 −0.733518
\(779\) 27.8693 + 48.2711i 0.0357758 + 0.0619654i
\(780\) 0 0
\(781\) −270.700 + 468.866i −0.346607 + 0.600341i
\(782\) 118.932 68.6657i 0.152087 0.0878078i
\(783\) 44.2907i 0.0565654i
\(784\) 118.530 + 156.098i 0.151186 + 0.199105i
\(785\) 0 0
\(786\) 264.203 + 457.614i 0.336137 + 0.582206i
\(787\) 1012.19 + 584.386i 1.28613 + 0.742549i 0.977962 0.208783i \(-0.0669501\pi\)
0.308170 + 0.951331i \(0.400283\pi\)
\(788\) 248.343 430.142i 0.315156 0.545866i
\(789\) 250.387 144.561i 0.317348 0.183221i
\(790\) 0 0
\(791\) 32.6554 + 518.285i 0.0412837 + 0.655228i
\(792\) 46.9847 0.0593241
\(793\) 82.9717 + 143.711i 0.104630 + 0.181225i
\(794\) 197.419 + 113.980i 0.248639 + 0.143552i
\(795\) 0 0
\(796\) 212.340 122.595i 0.266759 0.154013i
\(797\) 1242.38i 1.55883i −0.626510 0.779413i \(-0.715517\pi\)
0.626510 0.779413i \(-0.284483\pi\)
\(798\) 253.333 168.348i 0.317460 0.210962i
\(799\) 152.301 0.190614
\(800\) 0 0
\(801\) −306.871 177.172i −0.383110 0.221189i
\(802\) 300.529 520.531i 0.374724 0.649041i
\(803\) 293.290 169.331i 0.365243 0.210873i
\(804\) 22.8013i 0.0283598i
\(805\) 0 0
\(806\) 38.2308 0.0474327
\(807\) 181.081 + 313.641i 0.224387 + 0.388650i
\(808\) −341.942 197.421i −0.423196 0.244332i
\(809\) 44.8275 77.6435i 0.0554110 0.0959747i −0.836989 0.547219i \(-0.815686\pi\)
0.892400 + 0.451244i \(0.149020\pi\)
\(810\) 0 0
\(811\) 234.127i 0.288689i −0.989527 0.144345i \(-0.953893\pi\)
0.989527 0.144345i \(-0.0461074\pi\)
\(812\) −106.892 53.0496i −0.131641 0.0653320i
\(813\) 246.058 0.302654
\(814\) 109.840 + 190.249i 0.134939 + 0.233721i
\(815\) 0 0
\(816\) −28.1973 + 48.8392i −0.0345556 + 0.0598520i
\(817\) −663.588 + 383.123i −0.812225 + 0.468938i
\(818\) 610.095i 0.745837i
\(819\) −40.7303 61.2918i −0.0497317 0.0748374i
\(820\) 0 0
\(821\) −331.873 574.821i −0.404231 0.700148i 0.590001 0.807403i \(-0.299127\pi\)
−0.994232 + 0.107255i \(0.965794\pi\)
\(822\) −283.494 163.676i −0.344884 0.199119i
\(823\) 430.147 745.037i 0.522657 0.905269i −0.476995 0.878906i \(-0.658274\pi\)
0.999652 0.0263632i \(-0.00839264\pi\)
\(824\) 427.398 246.758i 0.518686 0.299464i
\(825\) 0 0
\(826\) 298.456 18.8047i 0.361327 0.0227660i
\(827\) −703.661 −0.850860 −0.425430 0.904991i \(-0.639877\pi\)
−0.425430 + 0.904991i \(0.639877\pi\)
\(828\) 35.7897 + 61.9896i 0.0432243 + 0.0748667i
\(829\) 1282.06 + 740.196i 1.54651 + 0.892878i 0.998404 + 0.0564693i \(0.0179843\pi\)
0.548106 + 0.836409i \(0.315349\pi\)
\(830\) 0 0
\(831\) 668.882 386.179i 0.804912 0.464716i
\(832\) 28.0347i 0.0336955i
\(833\) 367.717 + 154.495i 0.441437 + 0.185468i
\(834\) −474.618 −0.569086
\(835\) 0 0
\(836\) −170.134 98.2271i −0.203510 0.117496i
\(837\) 20.0422 34.7140i 0.0239452 0.0414743i
\(838\) 716.980 413.949i 0.855585 0.493972i
\(839\) 1377.82i 1.64222i 0.570769 + 0.821111i \(0.306645\pi\)
−0.570769 + 0.821111i \(0.693355\pi\)
\(840\) 0 0
\(841\) −768.346 −0.913610
\(842\) −283.032 490.225i −0.336142 0.582215i
\(843\) 723.018 + 417.435i 0.857672 + 0.495177i
\(844\) −352.829 + 611.118i −0.418044 + 0.724073i
\(845\) 0 0
\(846\) 79.3818i 0.0938319i
\(847\) 526.687 350.000i 0.621827 0.413223i
\(848\) −11.2716 −0.0132920
\(849\) 187.506 + 324.770i 0.220855 + 0.382533i
\(850\) 0 0
\(851\) −167.337 + 289.837i −0.196636 + 0.340584i
\(852\) 293.325 169.351i 0.344278 0.198769i
\(853\) 383.511i 0.449602i −0.974405 0.224801i \(-0.927827\pi\)
0.974405 0.224801i \(-0.0721733\pi\)
\(854\) 208.397 419.909i 0.244024 0.491697i
\(855\) 0 0
\(856\) −85.5265 148.136i −0.0999141 0.173056i
\(857\) 284.273 + 164.125i 0.331708 + 0.191512i 0.656599 0.754240i \(-0.271994\pi\)
−0.324891 + 0.945751i \(0.605328\pi\)
\(858\) −23.7652 + 41.1625i −0.0276984 + 0.0479750i
\(859\) −168.842 + 97.4811i −0.196557 + 0.113482i −0.595048 0.803690i \(-0.702867\pi\)
0.398492 + 0.917172i \(0.369534\pi\)
\(860\) 0 0
\(861\) −34.1242 16.9355i −0.0396332 0.0196696i
\(862\) 558.985 0.648474
\(863\) 267.881 + 463.984i 0.310407 + 0.537641i 0.978451 0.206481i \(-0.0662013\pi\)
−0.668043 + 0.744122i \(0.732868\pi\)
\(864\) −25.4558 14.6969i −0.0294628 0.0170103i
\(865\) 0 0
\(866\) −2.92986 + 1.69156i −0.00338321 + 0.00195330i
\(867\) 385.801i 0.444984i
\(868\) −59.7741 89.9493i −0.0688641 0.103628i
\(869\) −681.818 −0.784601
\(870\) 0 0
\(871\) −19.9758 11.5331i −0.0229344 0.0132412i
\(872\) 142.569 246.936i 0.163496 0.283184i
\(873\) 169.385 97.7947i 0.194027 0.112021i
\(874\) 299.291i 0.342438i
\(875\) 0 0
\(876\) −211.869 −0.241859
\(877\) −603.606 1045.48i −0.688262 1.19210i −0.972400 0.233321i \(-0.925041\pi\)
0.284138 0.958784i \(-0.408293\pi\)
\(878\) 495.348 + 285.989i 0.564177 + 0.325728i
\(879\) 332.298 575.557i 0.378041 0.654786i
\(880\) 0 0
\(881\) 629.491i 0.714519i 0.934005 + 0.357259i \(0.116289\pi\)
−0.934005 + 0.357259i \(0.883711\pi\)
\(882\) −80.5253 + 191.660i −0.0912985 + 0.217302i
\(883\) 177.196 0.200675 0.100337 0.994953i \(-0.468008\pi\)
0.100337 + 0.994953i \(0.468008\pi\)
\(884\) −28.5248 49.4065i −0.0322679 0.0558897i
\(885\) 0 0
\(886\) −206.483 + 357.639i −0.233051 + 0.403655i
\(887\) 1101.94 636.205i 1.24232 0.717255i 0.272755 0.962083i \(-0.412065\pi\)
0.969566 + 0.244829i \(0.0787317\pi\)
\(888\) 137.433i 0.154767i
\(889\) 66.5072 + 1055.56i 0.0748112 + 1.18736i
\(890\) 0 0
\(891\) 24.9174 + 43.1582i 0.0279657 + 0.0484379i
\(892\) −106.940 61.7420i −0.119888 0.0692175i
\(893\) 165.957 287.446i 0.185842 0.321888i
\(894\) −140.021 + 80.8410i −0.156623 + 0.0904261i
\(895\) 0 0
\(896\) −65.9600 + 43.8324i −0.0736161 + 0.0489201i
\(897\) −72.4108 −0.0807255
\(898\) −88.8693 153.926i −0.0989636 0.171410i
\(899\) 56.9447 + 32.8770i 0.0633423 + 0.0365707i
\(900\) 0 0
\(901\) −19.8643 + 11.4687i −0.0220470 + 0.0127288i
\(902\) 24.6048i 0.0272781i
\(903\) 232.814 469.109i 0.257823 0.519500i
\(904\) −209.834 −0.232118
\(905\) 0 0
\(906\) 73.9958 + 42.7215i 0.0816731 + 0.0471540i
\(907\) −89.6364 + 155.255i −0.0988273 + 0.171174i −0.911200 0.411965i \(-0.864842\pi\)
0.812372 + 0.583139i \(0.198176\pi\)
\(908\) −362.905 + 209.523i −0.399675 + 0.230752i
\(909\) 418.792i 0.460718i
\(910\) 0 0
\(911\) 684.893 0.751803 0.375902 0.926660i \(-0.377333\pi\)
0.375902 + 0.926660i \(0.377333\pi\)
\(912\) 61.4514 + 106.437i 0.0673809 + 0.116707i
\(913\) −429.575 248.015i −0.470510 0.271649i
\(914\) −60.8133 + 105.332i −0.0665353 + 0.115243i
\(915\) 0 0
\(916\) 215.598i 0.235369i
\(917\) 835.763 + 1257.67i 0.911410 + 1.37151i
\(918\) −59.8156 −0.0651586
\(919\) −470.376 814.715i −0.511835 0.886523i −0.999906 0.0137197i \(-0.995633\pi\)
0.488071 0.872804i \(-0.337701\pi\)
\(920\) 0 0
\(921\) 18.2960 31.6896i 0.0198653 0.0344078i
\(922\) −160.991 + 92.9481i −0.174611 + 0.100811i
\(923\) 342.637i 0.371221i
\(924\) 134.004 8.44315i 0.145026 0.00913761i
\(925\) 0 0
\(926\) −52.3169 90.6156i −0.0564978 0.0978570i
\(927\) 453.324 + 261.726i 0.489022 + 0.282337i
\(928\) 24.1088 41.7576i 0.0259793 0.0449975i
\(929\) 5.55322 3.20616i 0.00597764 0.00345119i −0.497008 0.867746i \(-0.665568\pi\)
0.502986 + 0.864295i \(0.332235\pi\)
\(930\) 0 0
\(931\) 692.275 525.665i 0.743582 0.564624i
\(932\) 653.693 0.701387
\(933\) 75.0288 + 129.954i 0.0804167 + 0.139286i
\(934\) 547.346 + 316.010i 0.586023 + 0.338341i
\(935\) 0 0
\(936\) 25.7515 14.8676i 0.0275123 0.0158842i
\(937\) 867.253i 0.925564i −0.886472 0.462782i \(-0.846851\pi\)
0.886472 0.462782i \(-0.153149\pi\)
\(938\) 4.09739 + 65.0312i 0.00436822 + 0.0693296i
\(939\) 4.91565 0.00523498
\(940\) 0 0
\(941\) −500.609 289.026i −0.531996 0.307148i 0.209833 0.977737i \(-0.432708\pi\)
−0.741829 + 0.670589i \(0.766041\pi\)
\(942\) 65.5246 113.492i 0.0695590 0.120480i
\(943\) −32.4626 + 18.7423i −0.0344248 + 0.0198752i
\(944\) 120.833i 0.128002i
\(945\) 0 0
\(946\) −338.246 −0.357553
\(947\) 374.280 + 648.272i 0.395227 + 0.684553i 0.993130 0.117015i \(-0.0373326\pi\)
−0.597903 + 0.801568i \(0.703999\pi\)
\(948\) 369.402 + 213.274i 0.389665 + 0.224973i
\(949\) 107.165 185.615i 0.112924 0.195590i
\(950\) 0 0
\(951\) 536.677i 0.564329i
\(952\) −71.6447 + 144.361i −0.0752571 + 0.151639i
\(953\) −21.6304 −0.0226972 −0.0113486 0.999936i \(-0.503612\pi\)
−0.0113486 + 0.999936i \(0.503612\pi\)
\(954\) −5.97767 10.3536i −0.00626590 0.0108529i
\(955\) 0 0
\(956\) 9.20117 15.9369i 0.00962466 0.0166704i
\(957\) −70.7965 + 40.8744i −0.0739776 + 0.0427110i
\(958\) 839.062i 0.875847i
\(959\) −837.962 415.872i −0.873787 0.433652i
\(960\) 0 0
\(961\) −450.745 780.714i −0.469038 0.812397i
\(962\) 120.403 + 69.5147i 0.125159 + 0.0722606i
\(963\) 90.7146 157.122i 0.0941999 0.163159i
\(964\) −556.311 + 321.186i −0.577086 + 0.333181i
\(965\) 0 0
\(966\) 113.215 + 170.368i 0.117200 + 0.176365i
\(967\) −452.988 −0.468447 −0.234224 0.972183i \(-0.575255\pi\)
−0.234224 + 0.972183i \(0.575255\pi\)
\(968\) 127.759 + 221.285i 0.131983 + 0.228601i
\(969\) 216.596 + 125.052i 0.223525 + 0.129052i
\(970\) 0 0
\(971\) 1137.95 656.994i 1.17193 0.676616i 0.217798 0.975994i \(-0.430112\pi\)
0.954135 + 0.299378i \(0.0967791\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) −1353.65 + 85.2889i −1.39121 + 0.0876556i
\(974\) −1159.01 −1.18995
\(975\) 0 0
\(976\) 164.038 + 94.7075i 0.168072 + 0.0970364i
\(977\) 588.653 1019.58i 0.602511 1.04358i −0.389929 0.920845i \(-0.627500\pi\)
0.992440 0.122734i \(-0.0391663\pi\)
\(978\) 436.957 252.278i 0.446787 0.257952i
\(979\) 654.025i 0.668054i
\(980\) 0 0
\(981\) 302.434 0.308292
\(982\) −392.249 679.395i −0.399439 0.691848i
\(983\) 695.029 + 401.275i 0.707049 + 0.408215i 0.809967 0.586475i \(-0.199485\pi\)
−0.102918 + 0.994690i \(0.532818\pi\)
\(984\) 7.69646 13.3307i 0.00782161 0.0135474i
\(985\) 0 0
\(986\) 98.1212i 0.0995144i
\(987\) 14.2649 + 226.404i 0.0144528 + 0.229386i
\(988\) −124.330 −0.125840
\(989\) −257.652 446.267i −0.260518 0.451230i
\(990\) 0 0
\(991\) 91.7946 158.993i 0.0926283 0.160437i −0.815988 0.578069i \(-0.803807\pi\)
0.908616 + 0.417632i \(0.137140\pi\)
\(992\) 37.7918 21.8191i 0.0380966 0.0219951i
\(993\) 721.554i 0.726640i
\(994\) 806.155 535.715i 0.811021 0.538948i
\(995\) 0 0
\(996\) 155.160 + 268.745i 0.155783 + 0.269824i
\(997\) 808.088 + 466.550i 0.810519 + 0.467953i 0.847136 0.531376i \(-0.178325\pi\)
−0.0366170 + 0.999329i \(0.511658\pi\)
\(998\) −448.862 + 777.453i −0.449762 + 0.779011i
\(999\) 126.240 72.8849i 0.126367 0.0729579i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.p.d.451.1 yes 8
5.2 odd 4 1050.3.q.b.199.8 16
5.3 odd 4 1050.3.q.b.199.1 16
5.4 even 2 1050.3.p.c.451.4 8
7.5 odd 6 inner 1050.3.p.d.901.1 yes 8
35.12 even 12 1050.3.q.b.649.1 16
35.19 odd 6 1050.3.p.c.901.4 yes 8
35.33 even 12 1050.3.q.b.649.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1050.3.p.c.451.4 8 5.4 even 2
1050.3.p.c.901.4 yes 8 35.19 odd 6
1050.3.p.d.451.1 yes 8 1.1 even 1 trivial
1050.3.p.d.901.1 yes 8 7.5 odd 6 inner
1050.3.q.b.199.1 16 5.3 odd 4
1050.3.q.b.199.8 16 5.2 odd 4
1050.3.q.b.649.1 16 35.12 even 12
1050.3.q.b.649.8 16 35.33 even 12