Properties

Label 1050.3.h.b.349.6
Level $1050$
Weight $3$
Character 1050.349
Analytic conductor $28.610$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,3,Mod(349,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.349"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.11007531417600000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.6
Root \(0.596975 + 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 1050.349
Dual form 1050.3.h.b.349.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +1.73205 q^{3} -2.00000 q^{4} -2.44949i q^{6} +(-2.02265 - 6.70141i) q^{7} +2.82843i q^{8} +3.00000 q^{9} -5.00806 q^{11} -3.46410 q^{12} -9.06929 q^{13} +(-9.47723 + 2.86045i) q^{14} +4.00000 q^{16} -19.7410 q^{17} -4.24264i q^{18} +25.6863i q^{19} +(-3.50333 - 11.6072i) q^{21} +7.08246i q^{22} +40.9686i q^{23} +4.89898i q^{24} +12.8259i q^{26} +5.19615 q^{27} +(4.04529 + 13.4028i) q^{28} +22.3071 q^{29} -15.9015i q^{31} -5.65685i q^{32} -8.67421 q^{33} +27.9179i q^{34} -6.00000 q^{36} -44.7506i q^{37} +36.3259 q^{38} -15.7085 q^{39} +27.0829i q^{41} +(-16.4150 + 4.95445i) q^{42} +30.6690i q^{43} +10.0161 q^{44} +57.9383 q^{46} -58.1430 q^{47} +6.92820 q^{48} +(-40.8178 + 27.1092i) q^{49} -34.1924 q^{51} +18.1386 q^{52} -65.6199i q^{53} -7.34847i q^{54} +(18.9545 - 5.72091i) q^{56} +44.4900i q^{57} -31.5469i q^{58} +32.5746i q^{59} +83.5349i q^{61} -22.4881 q^{62} +(-6.06794 - 20.1042i) q^{63} -8.00000 q^{64} +12.2672i q^{66} +72.0585i q^{67} +39.4819 q^{68} +70.9597i q^{69} -24.8675 q^{71} +8.48528i q^{72} +67.8725 q^{73} -63.2870 q^{74} -51.3726i q^{76} +(10.1295 + 33.5610i) q^{77} +22.2151i q^{78} -30.4452 q^{79} +9.00000 q^{81} +38.3009 q^{82} +72.4623 q^{83} +(7.00665 + 23.2144i) q^{84} +43.3725 q^{86} +38.6370 q^{87} -14.1649i q^{88} +113.756i q^{89} +(18.3440 + 60.7770i) q^{91} -81.9372i q^{92} -27.5422i q^{93} +82.2267i q^{94} -9.79796i q^{96} -103.804 q^{97} +(38.3381 + 57.7251i) q^{98} -15.0242 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 48 q^{9} - 32 q^{11} - 64 q^{14} + 64 q^{16} + 288 q^{29} - 96 q^{36} + 96 q^{39} + 64 q^{44} + 256 q^{46} + 48 q^{49} + 128 q^{56} - 128 q^{64} + 352 q^{71} + 320 q^{74} + 576 q^{79}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 1.73205 0.577350
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) −2.02265 6.70141i −0.288949 0.957344i
\(8\) 2.82843i 0.353553i
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −5.00806 −0.455278 −0.227639 0.973746i \(-0.573101\pi\)
−0.227639 + 0.973746i \(0.573101\pi\)
\(12\) −3.46410 −0.288675
\(13\) −9.06929 −0.697638 −0.348819 0.937190i \(-0.613417\pi\)
−0.348819 + 0.937190i \(0.613417\pi\)
\(14\) −9.47723 + 2.86045i −0.676945 + 0.204318i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −19.7410 −1.16123 −0.580617 0.814177i \(-0.697188\pi\)
−0.580617 + 0.814177i \(0.697188\pi\)
\(18\) 4.24264i 0.235702i
\(19\) 25.6863i 1.35191i 0.736942 + 0.675956i \(0.236269\pi\)
−0.736942 + 0.675956i \(0.763731\pi\)
\(20\) 0 0
\(21\) −3.50333 11.6072i −0.166825 0.552723i
\(22\) 7.08246i 0.321930i
\(23\) 40.9686i 1.78124i 0.454746 + 0.890621i \(0.349730\pi\)
−0.454746 + 0.890621i \(0.650270\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) 12.8259i 0.493304i
\(27\) 5.19615 0.192450
\(28\) 4.04529 + 13.4028i 0.144475 + 0.478672i
\(29\) 22.3071 0.769209 0.384604 0.923081i \(-0.374338\pi\)
0.384604 + 0.923081i \(0.374338\pi\)
\(30\) 0 0
\(31\) 15.9015i 0.512952i −0.966551 0.256476i \(-0.917439\pi\)
0.966551 0.256476i \(-0.0825614\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −8.67421 −0.262855
\(34\) 27.9179i 0.821116i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) 44.7506i 1.20948i −0.796424 0.604738i \(-0.793278\pi\)
0.796424 0.604738i \(-0.206722\pi\)
\(38\) 36.3259 0.955946
\(39\) −15.7085 −0.402781
\(40\) 0 0
\(41\) 27.0829i 0.660557i 0.943883 + 0.330279i \(0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(42\) −16.4150 + 4.95445i −0.390834 + 0.117963i
\(43\) 30.6690i 0.713233i 0.934251 + 0.356616i \(0.116070\pi\)
−0.934251 + 0.356616i \(0.883930\pi\)
\(44\) 10.0161 0.227639
\(45\) 0 0
\(46\) 57.9383 1.25953
\(47\) −58.1430 −1.23709 −0.618543 0.785751i \(-0.712277\pi\)
−0.618543 + 0.785751i \(0.712277\pi\)
\(48\) 6.92820 0.144338
\(49\) −40.8178 + 27.1092i −0.833016 + 0.553248i
\(50\) 0 0
\(51\) −34.1924 −0.670438
\(52\) 18.1386 0.348819
\(53\) 65.6199i 1.23811i −0.785347 0.619055i \(-0.787516\pi\)
0.785347 0.619055i \(-0.212484\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) 18.9545 5.72091i 0.338472 0.102159i
\(57\) 44.4900i 0.780526i
\(58\) 31.5469i 0.543913i
\(59\) 32.5746i 0.552112i 0.961142 + 0.276056i \(0.0890275\pi\)
−0.961142 + 0.276056i \(0.910973\pi\)
\(60\) 0 0
\(61\) 83.5349i 1.36943i 0.728813 + 0.684713i \(0.240072\pi\)
−0.728813 + 0.684713i \(0.759928\pi\)
\(62\) −22.4881 −0.362712
\(63\) −6.06794 20.1042i −0.0963165 0.319115i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) 12.2672i 0.185866i
\(67\) 72.0585i 1.07550i 0.843104 + 0.537750i \(0.180726\pi\)
−0.843104 + 0.537750i \(0.819274\pi\)
\(68\) 39.4819 0.580617
\(69\) 70.9597i 1.02840i
\(70\) 0 0
\(71\) −24.8675 −0.350246 −0.175123 0.984547i \(-0.556032\pi\)
−0.175123 + 0.984547i \(0.556032\pi\)
\(72\) 8.48528i 0.117851i
\(73\) 67.8725 0.929760 0.464880 0.885374i \(-0.346098\pi\)
0.464880 + 0.885374i \(0.346098\pi\)
\(74\) −63.2870 −0.855229
\(75\) 0 0
\(76\) 51.3726i 0.675956i
\(77\) 10.1295 + 33.5610i 0.131552 + 0.435858i
\(78\) 22.2151i 0.284809i
\(79\) −30.4452 −0.385383 −0.192691 0.981259i \(-0.561722\pi\)
−0.192691 + 0.981259i \(0.561722\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 38.3009 0.467085
\(83\) 72.4623 0.873040 0.436520 0.899695i \(-0.356211\pi\)
0.436520 + 0.899695i \(0.356211\pi\)
\(84\) 7.00665 + 23.2144i 0.0834125 + 0.276362i
\(85\) 0 0
\(86\) 43.3725 0.504332
\(87\) 38.6370 0.444103
\(88\) 14.1649i 0.160965i
\(89\) 113.756i 1.27815i 0.769143 + 0.639076i \(0.220683\pi\)
−0.769143 + 0.639076i \(0.779317\pi\)
\(90\) 0 0
\(91\) 18.3440 + 60.7770i 0.201582 + 0.667880i
\(92\) 81.9372i 0.890621i
\(93\) 27.5422i 0.296153i
\(94\) 82.2267i 0.874752i
\(95\) 0 0
\(96\) 9.79796i 0.102062i
\(97\) −103.804 −1.07014 −0.535072 0.844806i \(-0.679716\pi\)
−0.535072 + 0.844806i \(0.679716\pi\)
\(98\) 38.3381 + 57.7251i 0.391206 + 0.589032i
\(99\) −15.0242 −0.151759
\(100\) 0 0
\(101\) 155.379i 1.53841i 0.639003 + 0.769204i \(0.279347\pi\)
−0.639003 + 0.769204i \(0.720653\pi\)
\(102\) 48.3553i 0.474071i
\(103\) −65.9471 −0.640264 −0.320132 0.947373i \(-0.603727\pi\)
−0.320132 + 0.947373i \(0.603727\pi\)
\(104\) 25.6518i 0.246652i
\(105\) 0 0
\(106\) −92.8005 −0.875476
\(107\) 136.269i 1.27354i −0.771053 0.636771i \(-0.780270\pi\)
0.771053 0.636771i \(-0.219730\pi\)
\(108\) −10.3923 −0.0962250
\(109\) −166.003 −1.52296 −0.761482 0.648186i \(-0.775528\pi\)
−0.761482 + 0.648186i \(0.775528\pi\)
\(110\) 0 0
\(111\) 77.5104i 0.698292i
\(112\) −8.09058 26.8056i −0.0722374 0.239336i
\(113\) 25.5037i 0.225696i 0.993612 + 0.112848i \(0.0359974\pi\)
−0.993612 + 0.112848i \(0.964003\pi\)
\(114\) 62.9184 0.551915
\(115\) 0 0
\(116\) −44.6141 −0.384604
\(117\) −27.2079 −0.232546
\(118\) 46.0674 0.390402
\(119\) 39.9290 + 132.292i 0.335538 + 1.11170i
\(120\) 0 0
\(121\) −95.9194 −0.792722
\(122\) 118.136 0.968330
\(123\) 46.9089i 0.381373i
\(124\) 31.8030i 0.256476i
\(125\) 0 0
\(126\) −28.4317 + 8.58136i −0.225648 + 0.0681060i
\(127\) 230.306i 1.81344i −0.421738 0.906718i \(-0.638580\pi\)
0.421738 0.906718i \(-0.361420\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 53.1203i 0.411785i
\(130\) 0 0
\(131\) 40.9127i 0.312311i 0.987733 + 0.156155i \(0.0499101\pi\)
−0.987733 + 0.156155i \(0.950090\pi\)
\(132\) 17.3484 0.131427
\(133\) 172.135 51.9543i 1.29424 0.390634i
\(134\) 101.906 0.760493
\(135\) 0 0
\(136\) 55.8359i 0.410558i
\(137\) 158.300i 1.15547i 0.816223 + 0.577737i \(0.196064\pi\)
−0.816223 + 0.577737i \(0.803936\pi\)
\(138\) 100.352 0.727189
\(139\) 141.584i 1.01859i −0.860592 0.509296i \(-0.829906\pi\)
0.860592 0.509296i \(-0.170094\pi\)
\(140\) 0 0
\(141\) −100.707 −0.714232
\(142\) 35.1679i 0.247661i
\(143\) 45.4195 0.317619
\(144\) 12.0000 0.0833333
\(145\) 0 0
\(146\) 95.9861i 0.657439i
\(147\) −70.6985 + 46.9545i −0.480942 + 0.319418i
\(148\) 89.5013i 0.604738i
\(149\) 121.456 0.815139 0.407569 0.913174i \(-0.366376\pi\)
0.407569 + 0.913174i \(0.366376\pi\)
\(150\) 0 0
\(151\) −219.093 −1.45094 −0.725472 0.688251i \(-0.758379\pi\)
−0.725472 + 0.688251i \(0.758379\pi\)
\(152\) −72.6519 −0.477973
\(153\) −59.2229 −0.387078
\(154\) 47.4625 14.3253i 0.308198 0.0930215i
\(155\) 0 0
\(156\) 31.4169 0.201391
\(157\) 57.2815 0.364850 0.182425 0.983220i \(-0.441605\pi\)
0.182425 + 0.983220i \(0.441605\pi\)
\(158\) 43.0560i 0.272507i
\(159\) 113.657i 0.714824i
\(160\) 0 0
\(161\) 274.547 82.8649i 1.70526 0.514689i
\(162\) 12.7279i 0.0785674i
\(163\) 8.52297i 0.0522882i 0.999658 + 0.0261441i \(0.00832287\pi\)
−0.999658 + 0.0261441i \(0.991677\pi\)
\(164\) 54.1657i 0.330279i
\(165\) 0 0
\(166\) 102.477i 0.617333i
\(167\) 258.148 1.54580 0.772899 0.634529i \(-0.218806\pi\)
0.772899 + 0.634529i \(0.218806\pi\)
\(168\) 32.8301 9.90890i 0.195417 0.0589816i
\(169\) −86.7480 −0.513301
\(170\) 0 0
\(171\) 77.0589i 0.450637i
\(172\) 61.3380i 0.356616i
\(173\) −327.250 −1.89162 −0.945808 0.324725i \(-0.894728\pi\)
−0.945808 + 0.324725i \(0.894728\pi\)
\(174\) 54.6409i 0.314028i
\(175\) 0 0
\(176\) −20.0322 −0.113819
\(177\) 56.4208i 0.318762i
\(178\) 160.875 0.903791
\(179\) 167.569 0.936141 0.468071 0.883691i \(-0.344949\pi\)
0.468071 + 0.883691i \(0.344949\pi\)
\(180\) 0 0
\(181\) 147.957i 0.817442i 0.912659 + 0.408721i \(0.134025\pi\)
−0.912659 + 0.408721i \(0.865975\pi\)
\(182\) 85.9517 25.9423i 0.472262 0.142540i
\(183\) 144.687i 0.790638i
\(184\) −115.877 −0.629764
\(185\) 0 0
\(186\) −38.9506 −0.209412
\(187\) 98.8638 0.528684
\(188\) 116.286 0.618543
\(189\) −10.5100 34.8216i −0.0556083 0.184241i
\(190\) 0 0
\(191\) 49.4939 0.259130 0.129565 0.991571i \(-0.458642\pi\)
0.129565 + 0.991571i \(0.458642\pi\)
\(192\) −13.8564 −0.0721688
\(193\) 172.674i 0.894686i −0.894362 0.447343i \(-0.852370\pi\)
0.894362 0.447343i \(-0.147630\pi\)
\(194\) 146.801i 0.756707i
\(195\) 0 0
\(196\) 81.6356 54.2183i 0.416508 0.276624i
\(197\) 75.6444i 0.383982i 0.981397 + 0.191991i \(0.0614944\pi\)
−0.981397 + 0.191991i \(0.938506\pi\)
\(198\) 21.2474i 0.107310i
\(199\) 147.620i 0.741808i −0.928671 0.370904i \(-0.879048\pi\)
0.928671 0.370904i \(-0.120952\pi\)
\(200\) 0 0
\(201\) 124.809i 0.620940i
\(202\) 219.739 1.08782
\(203\) −45.1193 149.489i −0.222262 0.736398i
\(204\) 68.3847 0.335219
\(205\) 0 0
\(206\) 93.2634i 0.452735i
\(207\) 122.906i 0.593747i
\(208\) −36.2772 −0.174409
\(209\) 128.638i 0.615495i
\(210\) 0 0
\(211\) 156.882 0.743518 0.371759 0.928329i \(-0.378755\pi\)
0.371759 + 0.928329i \(0.378755\pi\)
\(212\) 131.240i 0.619055i
\(213\) −43.0717 −0.202215
\(214\) −192.713 −0.900530
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) −106.563 + 32.1631i −0.491072 + 0.148217i
\(218\) 234.764i 1.07690i
\(219\) 117.559 0.536797
\(220\) 0 0
\(221\) 179.037 0.810120
\(222\) −109.616 −0.493767
\(223\) −60.4029 −0.270865 −0.135433 0.990787i \(-0.543242\pi\)
−0.135433 + 0.990787i \(0.543242\pi\)
\(224\) −37.9089 + 11.4418i −0.169236 + 0.0510795i
\(225\) 0 0
\(226\) 36.0677 0.159592
\(227\) −313.611 −1.38155 −0.690773 0.723071i \(-0.742730\pi\)
−0.690773 + 0.723071i \(0.742730\pi\)
\(228\) 88.9800i 0.390263i
\(229\) 110.368i 0.481957i −0.970530 0.240979i \(-0.922532\pi\)
0.970530 0.240979i \(-0.0774684\pi\)
\(230\) 0 0
\(231\) 17.5449 + 58.1294i 0.0759517 + 0.251643i
\(232\) 63.0939i 0.271956i
\(233\) 38.4067i 0.164835i −0.996598 0.0824177i \(-0.973736\pi\)
0.996598 0.0824177i \(-0.0262642\pi\)
\(234\) 38.4777i 0.164435i
\(235\) 0 0
\(236\) 65.1492i 0.276056i
\(237\) −52.7327 −0.222501
\(238\) 187.090 56.4681i 0.786091 0.237261i
\(239\) 125.129 0.523552 0.261776 0.965129i \(-0.415692\pi\)
0.261776 + 0.965129i \(0.415692\pi\)
\(240\) 0 0
\(241\) 154.625i 0.641598i −0.947147 0.320799i \(-0.896049\pi\)
0.947147 0.320799i \(-0.103951\pi\)
\(242\) 135.650i 0.560539i
\(243\) 15.5885 0.0641500
\(244\) 167.070i 0.684713i
\(245\) 0 0
\(246\) 66.3392 0.269671
\(247\) 232.957i 0.943144i
\(248\) 44.9763 0.181356
\(249\) 125.508 0.504050
\(250\) 0 0
\(251\) 152.655i 0.608185i −0.952642 0.304093i \(-0.901647\pi\)
0.952642 0.304093i \(-0.0983532\pi\)
\(252\) 12.1359 + 40.2085i 0.0481582 + 0.159557i
\(253\) 205.173i 0.810960i
\(254\) −325.702 −1.28229
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 20.1517 0.0784113 0.0392057 0.999231i \(-0.487517\pi\)
0.0392057 + 0.999231i \(0.487517\pi\)
\(258\) 75.1234 0.291176
\(259\) −299.892 + 90.5147i −1.15789 + 0.349478i
\(260\) 0 0
\(261\) 66.9212 0.256403
\(262\) 57.8593 0.220837
\(263\) 320.699i 1.21939i 0.792637 + 0.609693i \(0.208707\pi\)
−0.792637 + 0.609693i \(0.791293\pi\)
\(264\) 24.5344i 0.0929332i
\(265\) 0 0
\(266\) −73.4745 243.435i −0.276220 0.915169i
\(267\) 197.030i 0.737942i
\(268\) 144.117i 0.537750i
\(269\) 39.2134i 0.145775i −0.997340 0.0728874i \(-0.976779\pi\)
0.997340 0.0728874i \(-0.0232214\pi\)
\(270\) 0 0
\(271\) 299.071i 1.10358i 0.833982 + 0.551792i \(0.186056\pi\)
−0.833982 + 0.551792i \(0.813944\pi\)
\(272\) −78.9639 −0.290308
\(273\) 31.7727 + 105.269i 0.116383 + 0.385600i
\(274\) 223.870 0.817044
\(275\) 0 0
\(276\) 141.919i 0.514200i
\(277\) 438.966i 1.58472i −0.610056 0.792358i \(-0.708853\pi\)
0.610056 0.792358i \(-0.291147\pi\)
\(278\) −200.230 −0.720253
\(279\) 47.7045i 0.170984i
\(280\) 0 0
\(281\) −199.479 −0.709889 −0.354944 0.934887i \(-0.615500\pi\)
−0.354944 + 0.934887i \(0.615500\pi\)
\(282\) 142.421i 0.505038i
\(283\) −541.179 −1.91229 −0.956147 0.292889i \(-0.905384\pi\)
−0.956147 + 0.292889i \(0.905384\pi\)
\(284\) 49.7349 0.175123
\(285\) 0 0
\(286\) 64.2329i 0.224591i
\(287\) 181.493 54.7790i 0.632381 0.190868i
\(288\) 16.9706i 0.0589256i
\(289\) 100.706 0.348462
\(290\) 0 0
\(291\) −179.794 −0.617848
\(292\) −135.745 −0.464880
\(293\) −378.757 −1.29269 −0.646343 0.763047i \(-0.723702\pi\)
−0.646343 + 0.763047i \(0.723702\pi\)
\(294\) 66.4036 + 99.9828i 0.225863 + 0.340078i
\(295\) 0 0
\(296\) 126.574 0.427615
\(297\) −26.0226 −0.0876183
\(298\) 171.764i 0.576390i
\(299\) 371.556i 1.24266i
\(300\) 0 0
\(301\) 205.526 62.0326i 0.682810 0.206088i
\(302\) 309.844i 1.02597i
\(303\) 269.125i 0.888200i
\(304\) 102.745i 0.337978i
\(305\) 0 0
\(306\) 83.7538i 0.273705i
\(307\) 140.210 0.456710 0.228355 0.973578i \(-0.426665\pi\)
0.228355 + 0.973578i \(0.426665\pi\)
\(308\) −20.2591 67.1221i −0.0657761 0.217929i
\(309\) −114.224 −0.369656
\(310\) 0 0
\(311\) 249.886i 0.803491i 0.915751 + 0.401745i \(0.131596\pi\)
−0.915751 + 0.401745i \(0.868404\pi\)
\(312\) 44.4303i 0.142405i
\(313\) −517.894 −1.65461 −0.827307 0.561750i \(-0.810128\pi\)
−0.827307 + 0.561750i \(0.810128\pi\)
\(314\) 81.0082i 0.257988i
\(315\) 0 0
\(316\) 60.8904 0.192691
\(317\) 180.043i 0.567959i −0.958830 0.283980i \(-0.908345\pi\)
0.958830 0.283980i \(-0.0916548\pi\)
\(318\) −160.735 −0.505457
\(319\) −111.715 −0.350204
\(320\) 0 0
\(321\) 236.025i 0.735280i
\(322\) −117.189 388.268i −0.363940 1.20580i
\(323\) 507.073i 1.56988i
\(324\) −18.0000 −0.0555556
\(325\) 0 0
\(326\) 12.0533 0.0369733
\(327\) −287.526 −0.879283
\(328\) −76.6019 −0.233542
\(329\) 117.603 + 389.640i 0.357455 + 1.18432i
\(330\) 0 0
\(331\) 81.0283 0.244799 0.122399 0.992481i \(-0.460941\pi\)
0.122399 + 0.992481i \(0.460941\pi\)
\(332\) −144.925 −0.436520
\(333\) 134.252i 0.403159i
\(334\) 365.077i 1.09304i
\(335\) 0 0
\(336\) −14.0133 46.4287i −0.0417063 0.138181i
\(337\) 372.937i 1.10664i −0.832970 0.553318i \(-0.813361\pi\)
0.832970 0.553318i \(-0.186639\pi\)
\(338\) 122.680i 0.362959i
\(339\) 44.1737i 0.130306i
\(340\) 0 0
\(341\) 79.6356i 0.233536i
\(342\) 108.978 0.318649
\(343\) 264.230 + 218.705i 0.770349 + 0.637623i
\(344\) −86.7451 −0.252166
\(345\) 0 0
\(346\) 462.801i 1.33758i
\(347\) 415.231i 1.19663i 0.801260 + 0.598316i \(0.204163\pi\)
−0.801260 + 0.598316i \(0.795837\pi\)
\(348\) −77.2739 −0.222051
\(349\) 536.207i 1.53641i −0.640203 0.768206i \(-0.721150\pi\)
0.640203 0.768206i \(-0.278850\pi\)
\(350\) 0 0
\(351\) −47.1254 −0.134260
\(352\) 28.3298i 0.0804825i
\(353\) 416.230 1.17912 0.589560 0.807724i \(-0.299301\pi\)
0.589560 + 0.807724i \(0.299301\pi\)
\(354\) 79.7911 0.225399
\(355\) 0 0
\(356\) 227.511i 0.639076i
\(357\) 69.1590 + 229.137i 0.193723 + 0.641840i
\(358\) 236.979i 0.661952i
\(359\) 270.563 0.753659 0.376829 0.926283i \(-0.377014\pi\)
0.376829 + 0.926283i \(0.377014\pi\)
\(360\) 0 0
\(361\) −298.787 −0.827664
\(362\) 209.243 0.578019
\(363\) −166.137 −0.457678
\(364\) −36.6879 121.554i −0.100791 0.333940i
\(365\) 0 0
\(366\) 204.618 0.559066
\(367\) 605.024 1.64857 0.824283 0.566178i \(-0.191578\pi\)
0.824283 + 0.566178i \(0.191578\pi\)
\(368\) 163.874i 0.445311i
\(369\) 81.2486i 0.220186i
\(370\) 0 0
\(371\) −439.746 + 132.726i −1.18530 + 0.357751i
\(372\) 55.0844i 0.148076i
\(373\) 21.5124i 0.0576739i 0.999584 + 0.0288370i \(0.00918037\pi\)
−0.999584 + 0.0288370i \(0.990820\pi\)
\(374\) 139.815i 0.373836i
\(375\) 0 0
\(376\) 164.453i 0.437376i
\(377\) −202.309 −0.536629
\(378\) −49.2451 + 14.8634i −0.130278 + 0.0393210i
\(379\) −449.862 −1.18697 −0.593486 0.804844i \(-0.702249\pi\)
−0.593486 + 0.804844i \(0.702249\pi\)
\(380\) 0 0
\(381\) 398.902i 1.04699i
\(382\) 69.9949i 0.183233i
\(383\) −560.756 −1.46412 −0.732058 0.681242i \(-0.761440\pi\)
−0.732058 + 0.681242i \(0.761440\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) −244.199 −0.632639
\(387\) 92.0071i 0.237744i
\(388\) 207.608 0.535072
\(389\) 582.222 1.49671 0.748357 0.663296i \(-0.230843\pi\)
0.748357 + 0.663296i \(0.230843\pi\)
\(390\) 0 0
\(391\) 808.759i 2.06844i
\(392\) −76.6763 115.450i −0.195603 0.294516i
\(393\) 70.8629i 0.180313i
\(394\) 106.977 0.271516
\(395\) 0 0
\(396\) 30.0483 0.0758796
\(397\) −726.563 −1.83013 −0.915066 0.403304i \(-0.867862\pi\)
−0.915066 + 0.403304i \(0.867862\pi\)
\(398\) −208.766 −0.524538
\(399\) 298.146 89.9875i 0.747232 0.225533i
\(400\) 0 0
\(401\) −32.7962 −0.0817860 −0.0408930 0.999164i \(-0.513020\pi\)
−0.0408930 + 0.999164i \(0.513020\pi\)
\(402\) 176.507 0.439071
\(403\) 144.215i 0.357855i
\(404\) 310.758i 0.769204i
\(405\) 0 0
\(406\) −211.409 + 63.8083i −0.520712 + 0.157163i
\(407\) 224.114i 0.550648i
\(408\) 96.7106i 0.237036i
\(409\) 637.739i 1.55926i 0.626238 + 0.779632i \(0.284594\pi\)
−0.626238 + 0.779632i \(0.715406\pi\)
\(410\) 0 0
\(411\) 274.184i 0.667114i
\(412\) 131.894 0.320132
\(413\) 218.296 65.8869i 0.528561 0.159532i
\(414\) 173.815 0.419843
\(415\) 0 0
\(416\) 51.3037i 0.123326i
\(417\) 245.231i 0.588084i
\(418\) −181.922 −0.435221
\(419\) 344.535i 0.822280i −0.911572 0.411140i \(-0.865131\pi\)
0.911572 0.411140i \(-0.134869\pi\)
\(420\) 0 0
\(421\) 290.412 0.689814 0.344907 0.938637i \(-0.387910\pi\)
0.344907 + 0.938637i \(0.387910\pi\)
\(422\) 221.865i 0.525746i
\(423\) −174.429 −0.412362
\(424\) 185.601 0.437738
\(425\) 0 0
\(426\) 60.9126i 0.142987i
\(427\) 559.802 168.962i 1.31101 0.395695i
\(428\) 272.538i 0.636771i
\(429\) 78.6689 0.183377
\(430\) 0 0
\(431\) −214.780 −0.498329 −0.249164 0.968461i \(-0.580156\pi\)
−0.249164 + 0.968461i \(0.580156\pi\)
\(432\) 20.7846 0.0481125
\(433\) 425.041 0.981619 0.490809 0.871267i \(-0.336701\pi\)
0.490809 + 0.871267i \(0.336701\pi\)
\(434\) 45.4855 + 150.702i 0.104805 + 0.347240i
\(435\) 0 0
\(436\) 332.006 0.761482
\(437\) −1052.33 −2.40808
\(438\) 166.253i 0.379573i
\(439\) 204.200i 0.465149i −0.972579 0.232574i \(-0.925285\pi\)
0.972579 0.232574i \(-0.0747149\pi\)
\(440\) 0 0
\(441\) −122.453 + 81.3275i −0.277672 + 0.184416i
\(442\) 253.196i 0.572841i
\(443\) 276.367i 0.623854i −0.950106 0.311927i \(-0.899026\pi\)
0.950106 0.311927i \(-0.100974\pi\)
\(444\) 155.021i 0.349146i
\(445\) 0 0
\(446\) 85.4227i 0.191531i
\(447\) 210.367 0.470620
\(448\) 16.1812 + 53.6113i 0.0361187 + 0.119668i
\(449\) −195.290 −0.434945 −0.217472 0.976066i \(-0.569781\pi\)
−0.217472 + 0.976066i \(0.569781\pi\)
\(450\) 0 0
\(451\) 135.632i 0.300737i
\(452\) 51.0074i 0.112848i
\(453\) −379.480 −0.837703
\(454\) 443.513i 0.976901i
\(455\) 0 0
\(456\) −125.837 −0.275958
\(457\) 10.3428i 0.0226319i 0.999936 + 0.0113159i \(0.00360206\pi\)
−0.999936 + 0.0113159i \(0.996398\pi\)
\(458\) −156.084 −0.340795
\(459\) −102.577 −0.223479
\(460\) 0 0
\(461\) 527.572i 1.14441i −0.820111 0.572204i \(-0.806088\pi\)
0.820111 0.572204i \(-0.193912\pi\)
\(462\) 82.2074 24.8122i 0.177938 0.0537060i
\(463\) 797.897i 1.72332i −0.507486 0.861660i \(-0.669425\pi\)
0.507486 0.861660i \(-0.330575\pi\)
\(464\) 89.2282 0.192302
\(465\) 0 0
\(466\) −54.3152 −0.116556
\(467\) 169.651 0.363278 0.181639 0.983365i \(-0.441860\pi\)
0.181639 + 0.983365i \(0.441860\pi\)
\(468\) 54.4157 0.116273
\(469\) 482.894 145.749i 1.02962 0.310765i
\(470\) 0 0
\(471\) 99.2144 0.210646
\(472\) −92.1348 −0.195201
\(473\) 153.592i 0.324719i
\(474\) 74.5753i 0.157332i
\(475\) 0 0
\(476\) −79.8580 264.585i −0.167769 0.555850i
\(477\) 196.860i 0.412704i
\(478\) 176.959i 0.370207i
\(479\) 704.272i 1.47030i −0.677906 0.735148i \(-0.737113\pi\)
0.677906 0.735148i \(-0.262887\pi\)
\(480\) 0 0
\(481\) 405.857i 0.843777i
\(482\) −218.673 −0.453678
\(483\) 475.530 143.526i 0.984534 0.297156i
\(484\) 191.839 0.396361
\(485\) 0 0
\(486\) 22.0454i 0.0453609i
\(487\) 66.7966i 0.137159i −0.997646 0.0685797i \(-0.978153\pi\)
0.997646 0.0685797i \(-0.0218467\pi\)
\(488\) −236.273 −0.484165
\(489\) 14.7622i 0.0301886i
\(490\) 0 0
\(491\) 546.122 1.11227 0.556133 0.831094i \(-0.312285\pi\)
0.556133 + 0.831094i \(0.312285\pi\)
\(492\) 93.8178i 0.190687i
\(493\) −440.363 −0.893231
\(494\) −329.450 −0.666904
\(495\) 0 0
\(496\) 63.6060i 0.128238i
\(497\) 50.2981 + 166.647i 0.101203 + 0.335306i
\(498\) 177.496i 0.356417i
\(499\) −714.060 −1.43098 −0.715491 0.698622i \(-0.753797\pi\)
−0.715491 + 0.698622i \(0.753797\pi\)
\(500\) 0 0
\(501\) 447.126 0.892467
\(502\) −215.886 −0.430052
\(503\) 878.751 1.74702 0.873510 0.486807i \(-0.161838\pi\)
0.873510 + 0.486807i \(0.161838\pi\)
\(504\) 56.8634 17.1627i 0.112824 0.0340530i
\(505\) 0 0
\(506\) −290.158 −0.573435
\(507\) −150.252 −0.296355
\(508\) 460.613i 0.906718i
\(509\) 510.558i 1.00306i 0.865140 + 0.501530i \(0.167229\pi\)
−0.865140 + 0.501530i \(0.832771\pi\)
\(510\) 0 0
\(511\) −137.282 454.841i −0.268654 0.890100i
\(512\) 22.6274i 0.0441942i
\(513\) 133.470i 0.260175i
\(514\) 28.4988i 0.0554452i
\(515\) 0 0
\(516\) 106.241i 0.205893i
\(517\) 291.184 0.563218
\(518\) 128.007 + 424.112i 0.247118 + 0.818749i
\(519\) −566.813 −1.09213
\(520\) 0 0
\(521\) 17.2889i 0.0331841i 0.999862 + 0.0165921i \(0.00528166\pi\)
−0.999862 + 0.0165921i \(0.994718\pi\)
\(522\) 94.6408i 0.181304i
\(523\) −287.840 −0.550364 −0.275182 0.961392i \(-0.588738\pi\)
−0.275182 + 0.961392i \(0.588738\pi\)
\(524\) 81.8254i 0.156155i
\(525\) 0 0
\(526\) 453.536 0.862237
\(527\) 313.911i 0.595657i
\(528\) −34.6968 −0.0657137
\(529\) −1149.42 −2.17282
\(530\) 0 0
\(531\) 97.7238i 0.184037i
\(532\) −344.269 + 103.909i −0.647122 + 0.195317i
\(533\) 245.622i 0.460830i
\(534\) 278.643 0.521804
\(535\) 0 0
\(536\) −203.812 −0.380247
\(537\) 290.239 0.540481
\(538\) −55.4562 −0.103078
\(539\) 204.418 135.764i 0.379254 0.251882i
\(540\) 0 0
\(541\) −228.274 −0.421949 −0.210974 0.977492i \(-0.567664\pi\)
−0.210974 + 0.977492i \(0.567664\pi\)
\(542\) 422.950 0.780351
\(543\) 256.269i 0.471950i
\(544\) 111.672i 0.205279i
\(545\) 0 0
\(546\) 148.873 44.9334i 0.272661 0.0822955i
\(547\) 876.996i 1.60328i 0.597805 + 0.801642i \(0.296040\pi\)
−0.597805 + 0.801642i \(0.703960\pi\)
\(548\) 316.600i 0.577737i
\(549\) 250.605i 0.456475i
\(550\) 0 0
\(551\) 572.986i 1.03990i
\(552\) −200.704 −0.363595
\(553\) 61.5799 + 204.026i 0.111356 + 0.368944i
\(554\) −620.792 −1.12056
\(555\) 0 0
\(556\) 283.168i 0.509296i
\(557\) 561.224i 1.00758i 0.863825 + 0.503792i \(0.168062\pi\)
−0.863825 + 0.503792i \(0.831938\pi\)
\(558\) −67.4644 −0.120904
\(559\) 278.146i 0.497578i
\(560\) 0 0
\(561\) 171.237 0.305236
\(562\) 282.105i 0.501967i
\(563\) 890.386 1.58150 0.790752 0.612137i \(-0.209690\pi\)
0.790752 + 0.612137i \(0.209690\pi\)
\(564\) 201.413 0.357116
\(565\) 0 0
\(566\) 765.343i 1.35220i
\(567\) −18.2038 60.3127i −0.0321055 0.106372i
\(568\) 70.3358i 0.123831i
\(569\) −138.453 −0.243327 −0.121663 0.992571i \(-0.538823\pi\)
−0.121663 + 0.992571i \(0.538823\pi\)
\(570\) 0 0
\(571\) 476.343 0.834225 0.417113 0.908855i \(-0.363042\pi\)
0.417113 + 0.908855i \(0.363042\pi\)
\(572\) −90.8390 −0.158810
\(573\) 85.7259 0.149609
\(574\) −77.4693 256.670i −0.134964 0.447161i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) −678.464 −1.17585 −0.587924 0.808916i \(-0.700055\pi\)
−0.587924 + 0.808916i \(0.700055\pi\)
\(578\) 142.419i 0.246400i
\(579\) 299.081i 0.516547i
\(580\) 0 0
\(581\) −146.566 485.600i −0.252264 0.835800i
\(582\) 254.267i 0.436885i
\(583\) 328.628i 0.563684i
\(584\) 191.972i 0.328720i
\(585\) 0 0
\(586\) 535.643i 0.914067i
\(587\) −48.9046 −0.0833128 −0.0416564 0.999132i \(-0.513263\pi\)
−0.0416564 + 0.999132i \(0.513263\pi\)
\(588\) 141.397 93.9089i 0.240471 0.159709i
\(589\) 408.451 0.693465
\(590\) 0 0
\(591\) 131.020i 0.221692i
\(592\) 179.003i 0.302369i
\(593\) −487.761 −0.822531 −0.411266 0.911516i \(-0.634913\pi\)
−0.411266 + 0.911516i \(0.634913\pi\)
\(594\) 36.8015i 0.0619555i
\(595\) 0 0
\(596\) −242.911 −0.407569
\(597\) 255.685i 0.428283i
\(598\) −525.459 −0.878695
\(599\) 1083.77 1.80931 0.904653 0.426149i \(-0.140130\pi\)
0.904653 + 0.426149i \(0.140130\pi\)
\(600\) 0 0
\(601\) 274.481i 0.456707i −0.973578 0.228353i \(-0.926666\pi\)
0.973578 0.228353i \(-0.0733342\pi\)
\(602\) −87.7273 290.657i −0.145726 0.482819i
\(603\) 216.175i 0.358500i
\(604\) 438.185 0.725472
\(605\) 0 0
\(606\) 380.600 0.628052
\(607\) 941.550 1.55115 0.775577 0.631253i \(-0.217459\pi\)
0.775577 + 0.631253i \(0.217459\pi\)
\(608\) 145.304 0.238986
\(609\) −78.1489 258.922i −0.128323 0.425159i
\(610\) 0 0
\(611\) 527.316 0.863038
\(612\) 118.446 0.193539
\(613\) 658.706i 1.07456i 0.843404 + 0.537281i \(0.180548\pi\)
−0.843404 + 0.537281i \(0.819452\pi\)
\(614\) 198.287i 0.322942i
\(615\) 0 0
\(616\) −94.9249 + 28.6506i −0.154099 + 0.0465108i
\(617\) 355.965i 0.576929i 0.957491 + 0.288464i \(0.0931447\pi\)
−0.957491 + 0.288464i \(0.906855\pi\)
\(618\) 161.537i 0.261387i
\(619\) 214.933i 0.347226i 0.984814 + 0.173613i \(0.0555442\pi\)
−0.984814 + 0.173613i \(0.944456\pi\)
\(620\) 0 0
\(621\) 212.879i 0.342800i
\(622\) 353.392 0.568154
\(623\) 762.323 230.087i 1.22363 0.369322i
\(624\) −62.8339 −0.100695
\(625\) 0 0
\(626\) 732.413i 1.16999i
\(627\) 222.808i 0.355356i
\(628\) −114.563 −0.182425
\(629\) 883.421i 1.40448i
\(630\) 0 0
\(631\) 589.714 0.934570 0.467285 0.884107i \(-0.345232\pi\)
0.467285 + 0.884107i \(0.345232\pi\)
\(632\) 86.1121i 0.136253i
\(633\) 271.728 0.429270
\(634\) −254.619 −0.401608
\(635\) 0 0
\(636\) 227.314i 0.357412i
\(637\) 370.189 245.861i 0.581144 0.385967i
\(638\) 157.989i 0.247631i
\(639\) −74.6024 −0.116749
\(640\) 0 0
\(641\) −675.508 −1.05383 −0.526917 0.849917i \(-0.676652\pi\)
−0.526917 + 0.849917i \(0.676652\pi\)
\(642\) −333.789 −0.519921
\(643\) 733.747 1.14113 0.570565 0.821252i \(-0.306724\pi\)
0.570565 + 0.821252i \(0.306724\pi\)
\(644\) −549.095 + 165.730i −0.852631 + 0.257345i
\(645\) 0 0
\(646\) −717.109 −1.11008
\(647\) 645.060 0.997002 0.498501 0.866889i \(-0.333884\pi\)
0.498501 + 0.866889i \(0.333884\pi\)
\(648\) 25.4558i 0.0392837i
\(649\) 163.135i 0.251364i
\(650\) 0 0
\(651\) −184.572 + 55.7082i −0.283520 + 0.0855732i
\(652\) 17.0459i 0.0261441i
\(653\) 610.744i 0.935289i 0.883917 + 0.467644i \(0.154897\pi\)
−0.883917 + 0.467644i \(0.845103\pi\)
\(654\) 406.623i 0.621747i
\(655\) 0 0
\(656\) 108.331i 0.165139i
\(657\) 203.617 0.309920
\(658\) 551.035 166.315i 0.837439 0.252759i
\(659\) −220.888 −0.335187 −0.167594 0.985856i \(-0.553600\pi\)
−0.167594 + 0.985856i \(0.553600\pi\)
\(660\) 0 0
\(661\) 306.043i 0.463000i −0.972835 0.231500i \(-0.925637\pi\)
0.972835 0.231500i \(-0.0743634\pi\)
\(662\) 114.591i 0.173099i
\(663\) 310.100 0.467723
\(664\) 204.954i 0.308666i
\(665\) 0 0
\(666\) −189.861 −0.285076
\(667\) 913.888i 1.37015i
\(668\) −516.297 −0.772899
\(669\) −104.621 −0.156384
\(670\) 0 0
\(671\) 418.348i 0.623469i
\(672\) −65.6601 + 19.8178i −0.0977085 + 0.0294908i
\(673\) 1025.63i 1.52397i 0.647594 + 0.761986i \(0.275775\pi\)
−0.647594 + 0.761986i \(0.724225\pi\)
\(674\) −527.412 −0.782510
\(675\) 0 0
\(676\) 173.496 0.256651
\(677\) 622.692 0.919781 0.459891 0.887976i \(-0.347889\pi\)
0.459891 + 0.887976i \(0.347889\pi\)
\(678\) 62.4711 0.0921402
\(679\) 209.959 + 695.634i 0.309218 + 1.02450i
\(680\) 0 0
\(681\) −543.190 −0.797636
\(682\) 112.622 0.165135
\(683\) 170.676i 0.249891i −0.992164 0.124946i \(-0.960124\pi\)
0.992164 0.124946i \(-0.0398757\pi\)
\(684\) 154.118i 0.225319i
\(685\) 0 0
\(686\) 309.295 373.677i 0.450867 0.544719i
\(687\) 191.163i 0.278258i
\(688\) 122.676i 0.178308i
\(689\) 595.126i 0.863753i
\(690\) 0 0
\(691\) 1353.09i 1.95816i 0.203481 + 0.979079i \(0.434774\pi\)
−0.203481 + 0.979079i \(0.565226\pi\)
\(692\) 654.499 0.945808
\(693\) 30.3886 + 100.683i 0.0438508 + 0.145286i
\(694\) 587.226 0.846147
\(695\) 0 0
\(696\) 109.282i 0.157014i
\(697\) 534.642i 0.767061i
\(698\) −758.312 −1.08641
\(699\) 66.5223i 0.0951678i
\(700\) 0 0
\(701\) −631.426 −0.900750 −0.450375 0.892840i \(-0.648710\pi\)
−0.450375 + 0.892840i \(0.648710\pi\)
\(702\) 66.6454i 0.0949365i
\(703\) 1149.48 1.63510
\(704\) 40.0644 0.0569097
\(705\) 0 0
\(706\) 588.638i 0.833764i
\(707\) 1041.26 314.277i 1.47279 0.444522i
\(708\) 112.842i 0.159381i
\(709\) 294.907 0.415947 0.207974 0.978134i \(-0.433313\pi\)
0.207974 + 0.978134i \(0.433313\pi\)
\(710\) 0 0
\(711\) −91.3357 −0.128461
\(712\) −321.749 −0.451895
\(713\) 651.462 0.913692
\(714\) 324.049 97.8056i 0.453850 0.136983i
\(715\) 0 0
\(716\) −335.139 −0.468071
\(717\) 216.730 0.302273
\(718\) 382.634i 0.532917i
\(719\) 884.788i 1.23058i 0.788301 + 0.615290i \(0.210961\pi\)
−0.788301 + 0.615290i \(0.789039\pi\)
\(720\) 0 0
\(721\) 133.388 + 441.939i 0.185004 + 0.612953i
\(722\) 422.548i 0.585247i
\(723\) 267.818i 0.370427i
\(724\) 295.914i 0.408721i
\(725\) 0 0
\(726\) 234.954i 0.323627i
\(727\) −361.739 −0.497578 −0.248789 0.968558i \(-0.580033\pi\)
−0.248789 + 0.968558i \(0.580033\pi\)
\(728\) −171.903 + 51.8846i −0.236131 + 0.0712700i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 605.436i 0.828230i
\(732\) 289.374i 0.395319i
\(733\) 819.923 1.11859 0.559293 0.828970i \(-0.311073\pi\)
0.559293 + 0.828970i \(0.311073\pi\)
\(734\) 855.633i 1.16571i
\(735\) 0 0
\(736\) 231.753 0.314882
\(737\) 360.873i 0.489651i
\(738\) 114.903 0.155695
\(739\) 802.663 1.08615 0.543074 0.839685i \(-0.317260\pi\)
0.543074 + 0.839685i \(0.317260\pi\)
\(740\) 0 0
\(741\) 403.493i 0.544525i
\(742\) 187.703 + 621.894i 0.252968 + 0.838132i
\(743\) 1061.48i 1.42865i 0.699816 + 0.714323i \(0.253265\pi\)
−0.699816 + 0.714323i \(0.746735\pi\)
\(744\) 77.9012 0.104706
\(745\) 0 0
\(746\) 30.4231 0.0407816
\(747\) 217.387 0.291013
\(748\) −197.728 −0.264342
\(749\) −913.194 + 275.624i −1.21922 + 0.367989i
\(750\) 0 0
\(751\) −1044.41 −1.39069 −0.695346 0.718675i \(-0.744749\pi\)
−0.695346 + 0.718675i \(0.744749\pi\)
\(752\) −232.572 −0.309272
\(753\) 264.405i 0.351136i
\(754\) 286.108i 0.379454i
\(755\) 0 0
\(756\) 21.0200 + 69.6431i 0.0278042 + 0.0921205i
\(757\) 1267.83i 1.67481i −0.546581 0.837406i \(-0.684071\pi\)
0.546581 0.837406i \(-0.315929\pi\)
\(758\) 636.202i 0.839316i
\(759\) 355.370i 0.468208i
\(760\) 0 0
\(761\) 257.020i 0.337740i 0.985638 + 0.168870i \(0.0540118\pi\)
−0.985638 + 0.168870i \(0.945988\pi\)
\(762\) −564.133 −0.740332
\(763\) 335.765 + 1112.45i 0.440060 + 1.45800i
\(764\) −98.9878 −0.129565
\(765\) 0 0
\(766\) 793.029i 1.03529i
\(767\) 295.428i 0.385174i
\(768\) 27.7128 0.0360844
\(769\) 1192.50i 1.55071i 0.631524 + 0.775357i \(0.282430\pi\)
−0.631524 + 0.775357i \(0.717570\pi\)
\(770\) 0 0
\(771\) 34.9038 0.0452708
\(772\) 345.349i 0.447343i
\(773\) −1121.01 −1.45021 −0.725104 0.688639i \(-0.758208\pi\)
−0.725104 + 0.688639i \(0.758208\pi\)
\(774\) 130.118 0.168111
\(775\) 0 0
\(776\) 293.602i 0.378353i
\(777\) −519.429 + 156.776i −0.668506 + 0.201771i
\(778\) 823.386i 1.05834i
\(779\) −695.659 −0.893015
\(780\) 0 0
\(781\) 124.538 0.159459
\(782\) −1143.76 −1.46261
\(783\) 115.911 0.148034
\(784\) −163.271 + 108.437i −0.208254 + 0.138312i
\(785\) 0 0
\(786\) 100.215 0.127500
\(787\) −1207.04 −1.53372 −0.766861 0.641813i \(-0.778183\pi\)
−0.766861 + 0.641813i \(0.778183\pi\)
\(788\) 151.289i 0.191991i
\(789\) 555.466i 0.704013i
\(790\) 0 0
\(791\) 170.911 51.5850i 0.216069 0.0652149i
\(792\) 42.4948i 0.0536550i
\(793\) 757.603i 0.955363i
\(794\) 1027.51i 1.29410i
\(795\) 0 0
\(796\) 295.240i 0.370904i
\(797\) −378.901 −0.475409 −0.237704 0.971338i \(-0.576395\pi\)
−0.237704 + 0.971338i \(0.576395\pi\)
\(798\) −127.262 421.642i −0.159476 0.528373i
\(799\) 1147.80 1.43655
\(800\) 0 0
\(801\) 341.267i 0.426051i
\(802\) 46.3808i 0.0578314i
\(803\) −339.909 −0.423299
\(804\) 249.618i 0.310470i
\(805\) 0 0
\(806\) 203.951 0.253041
\(807\) 67.9196i 0.0841631i
\(808\) −439.479 −0.543909
\(809\) 403.691 0.499000 0.249500 0.968375i \(-0.419734\pi\)
0.249500 + 0.968375i \(0.419734\pi\)
\(810\) 0 0
\(811\) 109.713i 0.135281i −0.997710 0.0676407i \(-0.978453\pi\)
0.997710 0.0676407i \(-0.0215471\pi\)
\(812\) 90.2386 + 298.977i 0.111131 + 0.368199i
\(813\) 518.006i 0.637154i
\(814\) 316.945 0.389367
\(815\) 0 0
\(816\) −136.769 −0.167610
\(817\) −787.774 −0.964228
\(818\) 901.899 1.10257
\(819\) 55.0319 + 182.331i 0.0671940 + 0.222627i
\(820\) 0 0
\(821\) 426.293 0.519236 0.259618 0.965711i \(-0.416403\pi\)
0.259618 + 0.965711i \(0.416403\pi\)
\(822\) 387.754 0.471721
\(823\) 708.932i 0.861400i 0.902495 + 0.430700i \(0.141733\pi\)
−0.902495 + 0.430700i \(0.858267\pi\)
\(824\) 186.527i 0.226367i
\(825\) 0 0
\(826\) −93.1781 308.717i −0.112806 0.373749i
\(827\) 813.963i 0.984236i −0.870528 0.492118i \(-0.836223\pi\)
0.870528 0.492118i \(-0.163777\pi\)
\(828\) 245.811i 0.296874i
\(829\) 92.7107i 0.111834i 0.998435 + 0.0559172i \(0.0178083\pi\)
−0.998435 + 0.0559172i \(0.982192\pi\)
\(830\) 0 0
\(831\) 760.312i 0.914936i
\(832\) 72.5543 0.0872047
\(833\) 805.783 535.161i 0.967326 0.642450i
\(834\) −346.809 −0.415838
\(835\) 0 0
\(836\) 257.277i 0.307748i
\(837\) 82.6267i 0.0987176i
\(838\) −487.247 −0.581440
\(839\) 852.206i 1.01574i 0.861434 + 0.507870i \(0.169567\pi\)
−0.861434 + 0.507870i \(0.830433\pi\)
\(840\) 0 0
\(841\) −343.395 −0.408318
\(842\) 410.704i 0.487772i
\(843\) −345.507 −0.409854
\(844\) −313.764 −0.371759
\(845\) 0 0
\(846\) 246.680i 0.291584i
\(847\) 194.011 + 642.795i 0.229057 + 0.758908i
\(848\) 262.479i 0.309528i
\(849\) −937.349 −1.10406
\(850\) 0 0
\(851\) 1833.37 2.15437
\(852\) 86.1434 0.101107
\(853\) 1472.75 1.72655 0.863275 0.504733i \(-0.168409\pi\)
0.863275 + 0.504733i \(0.168409\pi\)
\(854\) −238.948 791.680i −0.279798 0.927025i
\(855\) 0 0
\(856\) 385.427 0.450265
\(857\) −882.824 −1.03013 −0.515066 0.857150i \(-0.672233\pi\)
−0.515066 + 0.857150i \(0.672233\pi\)
\(858\) 111.255i 0.129667i
\(859\) 700.963i 0.816023i −0.912977 0.408011i \(-0.866222\pi\)
0.912977 0.408011i \(-0.133778\pi\)
\(860\) 0 0
\(861\) 314.356 94.8801i 0.365105 0.110198i
\(862\) 303.744i 0.352372i
\(863\) 1246.07i 1.44388i −0.691957 0.721938i \(-0.743251\pi\)
0.691957 0.721938i \(-0.256749\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) 601.099i 0.694109i
\(867\) 174.427 0.201185
\(868\) 213.125 64.3263i 0.245536 0.0741086i
\(869\) 152.471 0.175456
\(870\) 0 0
\(871\) 653.519i 0.750309i
\(872\) 469.527i 0.538449i
\(873\) −311.412 −0.356715
\(874\) 1488.22i 1.70277i
\(875\) 0 0
\(876\) −235.117 −0.268399
\(877\) 957.986i 1.09234i 0.837673 + 0.546172i \(0.183916\pi\)
−0.837673 + 0.546172i \(0.816084\pi\)
\(878\) −288.783 −0.328910
\(879\) −656.026 −0.746333
\(880\) 0 0
\(881\) 865.707i 0.982642i −0.870979 0.491321i \(-0.836514\pi\)
0.870979 0.491321i \(-0.163486\pi\)
\(882\) 115.014 + 173.175i 0.130402 + 0.196344i
\(883\) 985.817i 1.11644i −0.829693 0.558220i \(-0.811484\pi\)
0.829693 0.558220i \(-0.188516\pi\)
\(884\) −358.073 −0.405060
\(885\) 0 0
\(886\) −390.843 −0.441132
\(887\) −443.357 −0.499838 −0.249919 0.968267i \(-0.580404\pi\)
−0.249919 + 0.968267i \(0.580404\pi\)
\(888\) 219.232 0.246883
\(889\) −1543.38 + 465.828i −1.73608 + 0.523991i
\(890\) 0 0
\(891\) −45.0725 −0.0505864
\(892\) 120.806 0.135433
\(893\) 1493.48i 1.67243i
\(894\) 297.504i 0.332779i
\(895\) 0 0
\(896\) 75.8178 22.8836i 0.0846181 0.0255398i
\(897\) 643.554i 0.717451i
\(898\) 276.182i 0.307552i
\(899\) 354.716i 0.394567i
\(900\) 0 0
\(901\) 1295.40i 1.43774i
\(902\) −191.813 −0.212653
\(903\) 355.981 107.444i 0.394220 0.118985i
\(904\) −72.1354 −0.0797958
\(905\) 0 0
\(906\) 536.665i 0.592346i
\(907\) 49.0514i 0.0540810i 0.999634 + 0.0270405i \(0.00860830\pi\)
−0.999634 + 0.0270405i \(0.991392\pi\)
\(908\) 627.222 0.690773
\(909\) 466.138i 0.512803i
\(910\) 0 0
\(911\) −290.836 −0.319249 −0.159624 0.987178i \(-0.551028\pi\)
−0.159624 + 0.987178i \(0.551028\pi\)
\(912\) 177.960i 0.195132i
\(913\) −362.895 −0.397476
\(914\) 14.6269 0.0160032
\(915\) 0 0
\(916\) 220.736i 0.240979i
\(917\) 274.173 82.7519i 0.298989 0.0902420i
\(918\) 145.066i 0.158024i
\(919\) 721.872 0.785498 0.392749 0.919646i \(-0.371524\pi\)
0.392749 + 0.919646i \(0.371524\pi\)
\(920\) 0 0
\(921\) 242.851 0.263681
\(922\) −746.100 −0.809219
\(923\) 225.530 0.244345
\(924\) −35.0897 116.259i −0.0379759 0.125821i
\(925\) 0 0
\(926\) −1128.40 −1.21857
\(927\) −197.841 −0.213421
\(928\) 126.188i 0.135978i
\(929\) 617.161i 0.664329i 0.943222 + 0.332164i \(0.107779\pi\)
−0.943222 + 0.332164i \(0.892221\pi\)
\(930\) 0 0
\(931\) −696.335 1048.46i −0.747943 1.12616i
\(932\) 76.8133i 0.0824177i
\(933\) 432.815i 0.463896i
\(934\) 239.923i 0.256877i
\(935\) 0 0
\(936\) 76.9555i 0.0822174i
\(937\) −224.045 −0.239108 −0.119554 0.992828i \(-0.538147\pi\)
−0.119554 + 0.992828i \(0.538147\pi\)
\(938\) −206.120 682.915i −0.219744 0.728054i
\(939\) −897.019 −0.955292
\(940\) 0 0
\(941\) 522.371i 0.555124i 0.960708 + 0.277562i \(0.0895264\pi\)
−0.960708 + 0.277562i \(0.910474\pi\)
\(942\) 140.310i 0.148949i
\(943\) −1109.55 −1.17661
\(944\) 130.298i 0.138028i
\(945\) 0 0
\(946\) −217.212 −0.229611
\(947\) 728.427i 0.769194i −0.923084 0.384597i \(-0.874340\pi\)
0.923084 0.384597i \(-0.125660\pi\)
\(948\) 105.465 0.111250
\(949\) −615.555 −0.648636
\(950\) 0 0
\(951\) 311.844i 0.327911i
\(952\) −374.179 + 112.936i −0.393045 + 0.118630i
\(953\) 1169.38i 1.22705i 0.789674 + 0.613527i \(0.210250\pi\)
−0.789674 + 0.613527i \(0.789750\pi\)
\(954\) −278.402 −0.291825
\(955\) 0 0
\(956\) −250.258 −0.261776
\(957\) −193.496 −0.202190
\(958\) −995.991 −1.03966
\(959\) 1060.83 320.185i 1.10619 0.333874i
\(960\) 0 0
\(961\) 708.142 0.736880
\(962\) 573.968 0.596640
\(963\) 408.807i 0.424514i
\(964\) 309.250i 0.320799i
\(965\) 0 0
\(966\) −202.977 672.501i −0.210121 0.696170i
\(967\) 771.440i 0.797767i 0.917002 + 0.398883i \(0.130602\pi\)
−0.917002 + 0.398883i \(0.869398\pi\)
\(968\) 271.301i 0.280270i
\(969\) 878.275i 0.906373i
\(970\) 0 0
\(971\) 1380.71i 1.42195i 0.703220 + 0.710973i \(0.251745\pi\)
−0.703220 + 0.710973i \(0.748255\pi\)
\(972\) −31.1769 −0.0320750
\(973\) −948.814 + 286.375i −0.975143 + 0.294321i
\(974\) −94.4647 −0.0969864
\(975\) 0 0
\(976\) 334.140i 0.342356i
\(977\) 974.771i 0.997718i 0.866683 + 0.498859i \(0.166248\pi\)
−0.866683 + 0.498859i \(0.833752\pi\)
\(978\) 20.8769 0.0213466
\(979\) 569.694i 0.581915i
\(980\) 0 0
\(981\) −498.009 −0.507655
\(982\) 772.333i 0.786490i
\(983\) 206.961 0.210540 0.105270 0.994444i \(-0.466429\pi\)
0.105270 + 0.994444i \(0.466429\pi\)
\(984\) −132.678 −0.134836
\(985\) 0 0
\(986\) 622.767i 0.631610i
\(987\) 203.694 + 674.877i 0.206377 + 0.683766i
\(988\) 465.913i 0.471572i
\(989\) −1256.47 −1.27044
\(990\) 0 0
\(991\) −413.701 −0.417459 −0.208729 0.977973i \(-0.566933\pi\)
−0.208729 + 0.977973i \(0.566933\pi\)
\(992\) −89.9525 −0.0906779
\(993\) 140.345 0.141335
\(994\) 235.675 71.1322i 0.237097 0.0715616i
\(995\) 0 0
\(996\) −251.017 −0.252025
\(997\) −542.511 −0.544143 −0.272072 0.962277i \(-0.587709\pi\)
−0.272072 + 0.962277i \(0.587709\pi\)
\(998\) 1009.83i 1.01186i
\(999\) 232.531i 0.232764i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.h.b.349.6 16
5.2 odd 4 1050.3.f.b.601.6 8
5.3 odd 4 210.3.f.a.181.4 yes 8
5.4 even 2 inner 1050.3.h.b.349.11 16
7.6 odd 2 inner 1050.3.h.b.349.3 16
15.8 even 4 630.3.f.c.181.5 8
20.3 even 4 1680.3.s.a.1441.4 8
35.13 even 4 210.3.f.a.181.1 8
35.27 even 4 1050.3.f.b.601.8 8
35.34 odd 2 inner 1050.3.h.b.349.14 16
105.83 odd 4 630.3.f.c.181.7 8
140.83 odd 4 1680.3.s.a.1441.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.3.f.a.181.1 8 35.13 even 4
210.3.f.a.181.4 yes 8 5.3 odd 4
630.3.f.c.181.5 8 15.8 even 4
630.3.f.c.181.7 8 105.83 odd 4
1050.3.f.b.601.6 8 5.2 odd 4
1050.3.f.b.601.8 8 35.27 even 4
1050.3.h.b.349.3 16 7.6 odd 2 inner
1050.3.h.b.349.6 16 1.1 even 1 trivial
1050.3.h.b.349.11 16 5.4 even 2 inner
1050.3.h.b.349.14 16 35.34 odd 2 inner
1680.3.s.a.1441.4 8 20.3 even 4
1680.3.s.a.1441.6 8 140.83 odd 4