Properties

Label 105.5.n.a
Level $105$
Weight $5$
Character orbit 105.n
Analytic conductor $10.854$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,5,Mod(31,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.31"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 105.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8538461238\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2} - \beta_1) q^{2} + (3 \beta_{2} + 3) q^{3} + ( - 4 \beta_{3} + 2 \beta_1) q^{4} + (5 \beta_{3} - 5 \beta_1) q^{5} + ( - 9 \beta_{3} + 6 \beta_{2} - 3) q^{6} + (21 \beta_{3} + 14 \beta_{2} - 21 \beta_1) q^{7}+ \cdots + (459 \beta_{3} - 918 \beta_1 - 2565) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 18 q^{3} + 28 q^{7} - 56 q^{8} + 54 q^{9} + 150 q^{10} - 190 q^{11} + 602 q^{14} + 392 q^{16} - 402 q^{17} - 54 q^{18} - 1314 q^{19} + 640 q^{22} + 110 q^{23} - 252 q^{24} + 250 q^{25} - 1314 q^{26}+ \cdots - 10260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
1.93649 + 1.11803i
−1.93649 1.11803i
1.93649 1.11803i
−1.93649 + 1.11803i
−1.43649 2.48808i 4.50000 + 2.59808i 3.87298 6.70820i −9.68246 + 5.59017i 14.9285i −33.6663 + 35.6031i −68.2218 13.5000 + 23.3827i 27.8175 + 16.0605i
31.2 2.43649 + 4.22013i 4.50000 + 2.59808i −3.87298 + 6.70820i 9.68246 5.59017i 25.3208i 47.6663 11.3544i 40.2218 13.5000 + 23.3827i 47.1825 + 27.2408i
61.1 −1.43649 + 2.48808i 4.50000 2.59808i 3.87298 + 6.70820i −9.68246 5.59017i 14.9285i −33.6663 35.6031i −68.2218 13.5000 23.3827i 27.8175 16.0605i
61.2 2.43649 4.22013i 4.50000 2.59808i −3.87298 6.70820i 9.68246 + 5.59017i 25.3208i 47.6663 + 11.3544i 40.2218 13.5000 23.3827i 47.1825 27.2408i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.5.n.a 4
7.d odd 6 1 inner 105.5.n.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.5.n.a 4 1.a even 1 1 trivial
105.5.n.a 4 7.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 2T_{2}^{3} + 18T_{2}^{2} + 28T_{2} + 196 \) acting on \(S_{5}^{\mathrm{new}}(105, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$3$ \( (T^{2} - 9 T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 125 T^{2} + 15625 \) Copy content Toggle raw display
$7$ \( T^{4} - 28 T^{3} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( T^{4} + 190 T^{3} + \cdots + 21996100 \) Copy content Toggle raw display
$13$ \( T^{4} + 33786 T^{2} + 83119689 \) Copy content Toggle raw display
$17$ \( T^{4} + 402 T^{3} + \cdots + 34363044 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 15846529689 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 218004948100 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1442 T + 516466)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 577215504009 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 3258697225 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 38228852484 \) Copy content Toggle raw display
$43$ \( (T^{2} + 56 T - 427631)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 31051418864400 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 102637485192256 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 348440387567364 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 340588944322704 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 577518231128881 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1558 T - 14124374)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 697493751751449 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 27\!\cdots\!21 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 160308568335204 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
show more
show less