Defining parameters
| Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 105.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(64\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(105, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 52 | 16 | 36 |
| Cusp forms | 44 | 16 | 28 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(105, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 105.4.d.a | $6$ | $6.195$ | 6.0.84052224.1 | None | \(0\) | \(0\) | \(-14\) | \(0\) | \(q+\beta _{1}q^{2}-3\beta _{3}q^{3}+(-1-2\beta _{2}-\beta _{4}+\cdots)q^{4}+\cdots\) |
| 105.4.d.b | $10$ | $6.195$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(-14\) | \(0\) | \(q+\beta _{6}q^{2}-3\beta _{2}q^{3}+(-5-\beta _{1}+\beta _{5}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(105, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(105, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)