Properties

Label 105.2.m.a
Level $105$
Weight $2$
Character orbit 105.m
Analytic conductor $0.838$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,2,Mod(13,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 6x^{12} - 12x^{10} + 33x^{8} - 48x^{6} + 96x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} + \beta_{10} q^{3} + ( - \beta_{11} + \beta_{9} - \beta_{2}) q^{4} + ( - \beta_{14} - \beta_{12} + \cdots + \beta_{4}) q^{5} - \beta_{8} q^{6} + (\beta_{13} - \beta_{9} + \beta_{2} - 1) q^{7}+ \cdots + (\beta_{11} + \beta_{7} + \beta_{6} + \cdots + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 24 q^{8} - 16 q^{11} + 8 q^{15} - 48 q^{16} + 8 q^{21} - 16 q^{22} - 40 q^{23} + 24 q^{28} - 8 q^{30} + 48 q^{32} - 8 q^{35} - 16 q^{36} + 32 q^{37} - 16 q^{42} - 16 q^{43} + 64 q^{46}+ \cdots - 96 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4x^{14} + 6x^{12} - 12x^{10} + 33x^{8} - 48x^{6} + 96x^{4} - 256x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{14} - 21\nu^{12} + 18\nu^{10} - 18\nu^{8} + 189\nu^{6} - 81\nu^{4} - 72\nu^{2} - 1072 ) / 480 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{14} - 6\nu^{10} - 12\nu^{8} - 81\nu^{6} + 108\nu^{4} - 48\nu^{2} + 448 ) / 384 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\nu^{14} - 72\nu^{12} + 6\nu^{10} - 36\nu^{8} + 513\nu^{6} - 1332\nu^{4} + 3696\nu^{2} - 4544 ) / 3840 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{15} - 3\nu^{13} + 24\nu^{11} + 6\nu^{9} - 78\nu^{7} + 117\nu^{5} - 216\nu^{3} - 16\nu ) / 960 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -29\nu^{15} + 144\nu^{13} + 18\nu^{11} + 132\nu^{9} - 621\nu^{7} + 204\nu^{5} - 1392\nu^{3} + 4928\nu ) / 7680 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -43\nu^{14} + 48\nu^{12} + 126\nu^{10} - 36\nu^{8} - 27\nu^{6} - 492\nu^{4} - 144\nu^{2} + 1216 ) / 3840 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -13\nu^{14} + 18\nu^{12} - 54\nu^{10} + 144\nu^{8} - 117\nu^{6} + 558\nu^{4} - 624\nu^{2} + 736 ) / 960 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{15} - 4\nu^{13} + 6\nu^{11} - 12\nu^{9} + 33\nu^{7} - 48\nu^{5} + 96\nu^{3} - 128\nu ) / 128 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -43\nu^{14} + 108\nu^{12} - 114\nu^{10} + 324\nu^{8} - 747\nu^{6} + 528\nu^{4} - 3024\nu^{2} + 6016 ) / 1920 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 149\nu^{15} - 264\nu^{13} + 222\nu^{11} - 1332\nu^{9} + 2181\nu^{7} - 1764\nu^{5} + 8112\nu^{3} - 14528\nu ) / 7680 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -11\nu^{14} + 24\nu^{12} - 18\nu^{10} + 108\nu^{8} - 219\nu^{6} + 156\nu^{4} - 864\nu^{2} + 1472 ) / 192 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 105 \nu^{15} + 274 \nu^{14} - 360 \nu^{13} - 384 \nu^{12} + 150 \nu^{11} + 492 \nu^{10} + \cdots - 28288 ) / 7680 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 56 \nu^{15} + 137 \nu^{14} - 96 \nu^{13} - 192 \nu^{12} + 48 \nu^{11} + 246 \nu^{10} - 288 \nu^{9} + \cdots - 14144 ) / 3840 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 94 \nu^{15} - 137 \nu^{14} + 204 \nu^{13} + 192 \nu^{12} - 132 \nu^{11} - 246 \nu^{10} + \cdots + 14144 ) / 3840 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 109\nu^{15} - 224\nu^{13} + 142\nu^{11} - 932\nu^{9} + 1661\nu^{7} - 1244\nu^{5} + 8432\nu^{3} - 13888\nu ) / 2560 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{14} + \beta_{13} + \beta_{8} - \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{9} + \beta_{7} + \beta_{6} + \beta_{3} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{15} + \beta_{14} + \beta_{13} - 4\beta_{10} + \beta_{8} + 2\beta_{5} - \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -3\beta_{9} + 3\beta_{7} + \beta_{6} - 3\beta_{3} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3 \beta_{14} + 3 \beta_{13} + 4 \beta_{12} + 2 \beta_{11} - \beta_{8} + 2 \beta_{7} + 4 \beta_{5} + \cdots + 2 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -2\beta_{11} + 3\beta_{9} + 3\beta_{7} + \beta_{6} - 3\beta_{3} - 6\beta_{2} + \beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 6 \beta_{15} + \beta_{14} + 5 \beta_{13} + 8 \beta_{12} + 6 \beta_{11} + 4 \beta_{10} + \cdots + 6 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 6\beta_{11} - 15\beta_{9} + 5\beta_{7} - 3\beta_{6} + 5\beta_{3} - 10\beta_{2} - 3\beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 12 \beta_{15} - 21 \beta_{14} + 27 \beta_{13} - 8 \beta_{12} + 20 \beta_{11} - 20 \beta_{10} + \cdots + 20 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 12\beta_{11} - 45\beta_{9} + \beta_{7} + 21\beta_{6} - 19\beta_{3} - 12\beta_{2} - 9\beta _1 + 13 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 14 \beta_{15} - 15 \beta_{14} + 25 \beta_{13} + 20 \beta_{11} - 4 \beta_{10} + 25 \beta_{8} + \cdots + 20 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( -12\beta_{11} + 13\beta_{9} + 7\beta_{7} + 17\beta_{6} - 43\beta_{3} - 60\beta_{2} - 37\beta _1 - 23 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 24 \beta_{15} - 37 \beta_{14} + 11 \beta_{13} + 12 \beta_{12} + 30 \beta_{11} + 24 \beta_{10} + \cdots + 30 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 18\beta_{11} - 69\beta_{9} - 33\beta_{7} - 111\beta_{6} - 75\beta_{3} - 90\beta_{2} - 51\beta _1 + 41 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 150 \beta_{15} - 167 \beta_{14} + 229 \beta_{13} - 120 \beta_{12} + 138 \beta_{11} + 132 \beta_{10} + \cdots + 138 \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(\beta_{9}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
−0.517174 + 1.31626i
0.517174 1.31626i
1.40927 + 0.118126i
−1.40927 0.118126i
−1.36166 0.381939i
1.36166 + 0.381939i
−0.944649 1.05244i
0.944649 + 1.05244i
−0.517174 1.31626i
0.517174 + 1.31626i
1.40927 0.118126i
−1.40927 + 0.118126i
−1.36166 + 0.381939i
1.36166 0.381939i
−0.944649 + 1.05244i
0.944649 1.05244i
−1.86147 + 1.86147i −0.707107 + 0.707107i 4.93012i −1.50619 1.65269i 2.63251i −2.20563 1.46123i 5.45433 + 5.45433i 1.00000i 5.88016 + 0.272713i
13.2 −1.86147 + 1.86147i 0.707107 0.707107i 4.93012i 1.50619 + 1.65269i 2.63251i 1.46123 + 2.20563i 5.45433 + 5.45433i 1.00000i −5.88016 0.272713i
13.3 −0.167056 + 0.167056i −0.707107 + 0.707107i 1.94418i −2.23450 + 0.0836010i 0.236253i −0.0627175 + 2.64501i −0.658899 0.658899i 1.00000i 0.359321 0.387253i
13.4 −0.167056 + 0.167056i 0.707107 0.707107i 1.94418i 2.23450 0.0836010i 0.236253i −2.64501 + 0.0627175i −0.658899 0.658899i 1.00000i −0.359321 + 0.387253i
13.5 0.540143 0.540143i −0.707107 + 0.707107i 1.41649i 1.03649 + 1.98133i 0.763878i 0.614060 2.57351i 1.84539 + 1.84539i 1.00000i 1.63006 + 0.510348i
13.6 0.540143 0.540143i 0.707107 0.707107i 1.41649i −1.03649 1.98133i 0.763878i 2.57351 0.614060i 1.84539 + 1.84539i 1.00000i −1.63006 0.510348i
13.7 1.48838 1.48838i −0.707107 + 0.707107i 2.43055i 1.28999 1.82645i 2.10489i −1.75993 + 1.97552i −0.640825 0.640825i 1.00000i −0.798469 4.63845i
13.8 1.48838 1.48838i 0.707107 0.707107i 2.43055i −1.28999 + 1.82645i 2.10489i −1.97552 + 1.75993i −0.640825 0.640825i 1.00000i 0.798469 + 4.63845i
97.1 −1.86147 1.86147i −0.707107 0.707107i 4.93012i −1.50619 + 1.65269i 2.63251i −2.20563 + 1.46123i 5.45433 5.45433i 1.00000i 5.88016 0.272713i
97.2 −1.86147 1.86147i 0.707107 + 0.707107i 4.93012i 1.50619 1.65269i 2.63251i 1.46123 2.20563i 5.45433 5.45433i 1.00000i −5.88016 + 0.272713i
97.3 −0.167056 0.167056i −0.707107 0.707107i 1.94418i −2.23450 0.0836010i 0.236253i −0.0627175 2.64501i −0.658899 + 0.658899i 1.00000i 0.359321 + 0.387253i
97.4 −0.167056 0.167056i 0.707107 + 0.707107i 1.94418i 2.23450 + 0.0836010i 0.236253i −2.64501 0.0627175i −0.658899 + 0.658899i 1.00000i −0.359321 0.387253i
97.5 0.540143 + 0.540143i −0.707107 0.707107i 1.41649i 1.03649 1.98133i 0.763878i 0.614060 + 2.57351i 1.84539 1.84539i 1.00000i 1.63006 0.510348i
97.6 0.540143 + 0.540143i 0.707107 + 0.707107i 1.41649i −1.03649 + 1.98133i 0.763878i 2.57351 + 0.614060i 1.84539 1.84539i 1.00000i −1.63006 + 0.510348i
97.7 1.48838 + 1.48838i −0.707107 0.707107i 2.43055i 1.28999 + 1.82645i 2.10489i −1.75993 1.97552i −0.640825 + 0.640825i 1.00000i −0.798469 + 4.63845i
97.8 1.48838 + 1.48838i 0.707107 + 0.707107i 2.43055i −1.28999 1.82645i 2.10489i −1.97552 1.75993i −0.640825 + 0.640825i 1.00000i 0.798469 4.63845i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.b odd 2 1 inner
35.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.2.m.a 16
3.b odd 2 1 315.2.p.e 16
4.b odd 2 1 1680.2.cz.d 16
5.b even 2 1 525.2.m.b 16
5.c odd 4 1 inner 105.2.m.a 16
5.c odd 4 1 525.2.m.b 16
7.b odd 2 1 inner 105.2.m.a 16
7.c even 3 2 735.2.v.a 32
7.d odd 6 2 735.2.v.a 32
15.e even 4 1 315.2.p.e 16
20.e even 4 1 1680.2.cz.d 16
21.c even 2 1 315.2.p.e 16
28.d even 2 1 1680.2.cz.d 16
35.c odd 2 1 525.2.m.b 16
35.f even 4 1 inner 105.2.m.a 16
35.f even 4 1 525.2.m.b 16
35.k even 12 2 735.2.v.a 32
35.l odd 12 2 735.2.v.a 32
105.k odd 4 1 315.2.p.e 16
140.j odd 4 1 1680.2.cz.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.m.a 16 1.a even 1 1 trivial
105.2.m.a 16 5.c odd 4 1 inner
105.2.m.a 16 7.b odd 2 1 inner
105.2.m.a 16 35.f even 4 1 inner
315.2.p.e 16 3.b odd 2 1
315.2.p.e 16 15.e even 4 1
315.2.p.e 16 21.c even 2 1
315.2.p.e 16 105.k odd 4 1
525.2.m.b 16 5.b even 2 1
525.2.m.b 16 5.c odd 4 1
525.2.m.b 16 35.c odd 2 1
525.2.m.b 16 35.f even 4 1
735.2.v.a 32 7.c even 3 2
735.2.v.a 32 7.d odd 6 2
735.2.v.a 32 35.k even 12 2
735.2.v.a 32 35.l odd 12 2
1680.2.cz.d 16 4.b odd 2 1
1680.2.cz.d 16 20.e even 4 1
1680.2.cz.d 16 28.d even 2 1
1680.2.cz.d 16 140.j odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(105, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - 4 T^{5} + 34 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{4} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{16} + 28 T^{12} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{16} + 8 T^{15} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( (T^{4} + 4 T^{3} - 12 T^{2} + \cdots - 60)^{4} \) Copy content Toggle raw display
$13$ \( T^{16} + 736 T^{12} + \cdots + 4096 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 100000000 \) Copy content Toggle raw display
$19$ \( (T^{8} - 104 T^{6} + \cdots + 144)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 20 T^{7} + \cdots + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 48 T^{6} + \cdots + 256)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 120 T^{6} + \cdots + 274576)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} - 16 T^{7} + \cdots + 144)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + 184 T^{6} + \cdots + 129600)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 8 T^{7} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + 25216 T^{12} + \cdots + 1048576 \) Copy content Toggle raw display
$53$ \( (T^{8} - 12 T^{7} + \cdots + 129600)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} - 160 T^{6} + \cdots + 1183744)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 288 T^{6} + \cdots + 640000)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + 16 T^{7} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 16 T^{3} + \cdots - 1132)^{4} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 169459576016896 \) Copy content Toggle raw display
$79$ \( (T^{8} + 320 T^{6} + \cdots + 18939904)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 45137758519296 \) Copy content Toggle raw display
$89$ \( (T^{8} - 136 T^{6} + \cdots + 107584)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 60\!\cdots\!56 \) Copy content Toggle raw display
show more
show less