Properties

Label 1045.1.w.b
Level $1045$
Weight $1$
Character orbit 1045.w
Analytic conductor $0.522$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1045,1,Mod(284,1045)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1045.284"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1045, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 6, 5])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1045.w (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,1,-1,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.521522938201\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.2.87298324158753125.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10} q^{4} - \zeta_{10} q^{5} + (\zeta_{10}^{2} - 1) q^{7} + \zeta_{10}^{3} q^{9} - \zeta_{10}^{4} q^{11} + \zeta_{10}^{2} q^{16} + ( - \zeta_{10}^{4} + 1) q^{17} + \zeta_{10}^{4} q^{19} - \zeta_{10}^{2} q^{20} + \cdots + \zeta_{10}^{2} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{4} - q^{5} - 5 q^{7} + q^{9} + q^{11} - q^{16} + 5 q^{17} - q^{19} + q^{20} - q^{25} - q^{36} + 4 q^{44} + q^{45} + 4 q^{49} - 4 q^{55} - 3 q^{61} - 5 q^{63} + q^{64} + 5 q^{68} - 4 q^{76}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1045\mathbb{Z}\right)^\times\).

\(n\) \(496\) \(761\) \(837\)
\(\chi(n)\) \(-1\) \(-\zeta_{10}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
284.1
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0 0 0.809017 + 0.587785i −0.809017 0.587785i 0 −0.690983 + 0.951057i 0 −0.309017 + 0.951057i 0
379.1 0 0 0.809017 0.587785i −0.809017 + 0.587785i 0 −0.690983 0.951057i 0 −0.309017 0.951057i 0
664.1 0 0 −0.309017 0.951057i 0.309017 + 0.951057i 0 −1.80902 + 0.587785i 0 0.809017 + 0.587785i 0
949.1 0 0 −0.309017 + 0.951057i 0.309017 0.951057i 0 −1.80902 0.587785i 0 0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
55.j even 10 1 inner
1045.w odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1045.1.w.b 4
5.b even 2 1 1045.1.w.c yes 4
11.c even 5 1 1045.1.w.c yes 4
19.b odd 2 1 CM 1045.1.w.b 4
55.j even 10 1 inner 1045.1.w.b 4
95.d odd 2 1 1045.1.w.c yes 4
209.m odd 10 1 1045.1.w.c yes 4
1045.w odd 10 1 inner 1045.1.w.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1045.1.w.b 4 1.a even 1 1 trivial
1045.1.w.b 4 19.b odd 2 1 CM
1045.1.w.b 4 55.j even 10 1 inner
1045.1.w.b 4 1045.w odd 10 1 inner
1045.1.w.c yes 4 5.b even 2 1
1045.1.w.c yes 4 11.c even 5 1
1045.1.w.c yes 4 95.d odd 2 1
1045.1.w.c yes 4 209.m odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1045, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7}^{4} + 5T_{7}^{3} + 10T_{7}^{2} + 10T_{7} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$47$ \( T^{4} - 5T + 5 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 5T + 5 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less