Properties

Label 104.10.i
Level $104$
Weight $10$
Character orbit 104.i
Rep. character $\chi_{104}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $62$
Newform subspaces $2$
Sturm bound $140$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(140\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(104, [\chi])\).

Total New Old
Modular forms 260 62 198
Cusp forms 244 62 182
Eisenstein series 16 0 16

Trace form

\( 62 q - 162 q^{3} - 122 q^{5} + 1026 q^{7} - 190269 q^{9} + 28462 q^{11} + 160275 q^{13} - 294712 q^{15} + 89491 q^{17} + 363562 q^{19} + 1067660 q^{21} - 1226070 q^{23} + 19828132 q^{25} + 9616164 q^{27}+ \cdots + 225400784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
104.10.i.a 104.i 13.c $30$ $53.564$ None 104.10.i.a \(0\) \(-81\) \(-168\) \(-5175\) $\mathrm{SU}(2)[C_{3}]$
104.10.i.b 104.i 13.c $32$ $53.564$ None 104.10.i.b \(0\) \(-81\) \(46\) \(6201\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{10}^{\mathrm{old}}(104, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(104, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)