Defining parameters
Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 104.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(140\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(104, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 260 | 62 | 198 |
Cusp forms | 244 | 62 | 182 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(104, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
104.10.i.a | $30$ | $53.564$ | None | \(0\) | \(-81\) | \(-168\) | \(-5175\) | ||
104.10.i.b | $32$ | $53.564$ | None | \(0\) | \(-81\) | \(46\) | \(6201\) |
Decomposition of \(S_{10}^{\mathrm{old}}(104, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(104, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)