Properties

Label 1035.2.a.p.1.5
Level $1035$
Weight $2$
Character 1035.1
Self dual yes
Analytic conductor $8.265$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1035,2,Mod(1,1035)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1035, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1035.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1035.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,-6,0,6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.26451660920\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.98838128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.09026\) of defining polynomial
Character \(\chi\) \(=\) 1035.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.70496 q^{2} +0.906890 q^{4} -1.00000 q^{5} +3.36634 q^{7} -1.86371 q^{8} -1.70496 q^{10} -2.32955 q^{11} +5.56867 q^{13} +5.73947 q^{14} -4.99133 q^{16} +3.47556 q^{17} +7.73947 q^{19} -0.906890 q^{20} -3.97179 q^{22} +1.00000 q^{23} +1.00000 q^{25} +9.49436 q^{26} +3.05290 q^{28} +4.93501 q^{29} +2.09311 q^{31} -4.78260 q^{32} +5.92569 q^{34} -3.36634 q^{35} -8.67448 q^{37} +13.1955 q^{38} +1.86371 q^{40} +3.88211 q^{41} -3.71200 q^{43} -2.11265 q^{44} +1.70496 q^{46} -6.30134 q^{47} +4.33223 q^{49} +1.70496 q^{50} +5.05017 q^{52} -0.310014 q^{53} +2.32955 q^{55} -6.27387 q^{56} +8.41399 q^{58} -5.61225 q^{59} +4.51577 q^{61} +3.56867 q^{62} +1.82851 q^{64} -5.56867 q^{65} -9.35173 q^{67} +3.15195 q^{68} -5.73947 q^{70} -1.45424 q^{71} -1.56867 q^{73} -14.7896 q^{74} +7.01885 q^{76} -7.84206 q^{77} -1.54120 q^{79} +4.99133 q^{80} +6.61884 q^{82} +14.3209 q^{83} -3.47556 q^{85} -6.32882 q^{86} +4.34161 q^{88} -15.9250 q^{89} +18.7460 q^{91} +0.906890 q^{92} -10.7435 q^{94} -7.73947 q^{95} +1.94184 q^{97} +7.38628 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} - 6 q^{5} + 6 q^{7} + 4 q^{11} + 12 q^{13} - 4 q^{14} + 14 q^{16} + 4 q^{17} + 8 q^{19} - 10 q^{20} + 8 q^{22} + 6 q^{23} + 6 q^{25} - 12 q^{26} + 24 q^{28} - 6 q^{29} + 8 q^{31} + 20 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.70496 1.20559 0.602795 0.797896i \(-0.294054\pi\)
0.602795 + 0.797896i \(0.294054\pi\)
\(3\) 0 0
\(4\) 0.906890 0.453445
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.36634 1.27236 0.636178 0.771542i \(-0.280514\pi\)
0.636178 + 0.771542i \(0.280514\pi\)
\(8\) −1.86371 −0.658921
\(9\) 0 0
\(10\) −1.70496 −0.539156
\(11\) −2.32955 −0.702386 −0.351193 0.936303i \(-0.614224\pi\)
−0.351193 + 0.936303i \(0.614224\pi\)
\(12\) 0 0
\(13\) 5.56867 1.54447 0.772236 0.635336i \(-0.219139\pi\)
0.772236 + 0.635336i \(0.219139\pi\)
\(14\) 5.73947 1.53394
\(15\) 0 0
\(16\) −4.99133 −1.24783
\(17\) 3.47556 0.842947 0.421474 0.906841i \(-0.361513\pi\)
0.421474 + 0.906841i \(0.361513\pi\)
\(18\) 0 0
\(19\) 7.73947 1.77556 0.887778 0.460271i \(-0.152248\pi\)
0.887778 + 0.460271i \(0.152248\pi\)
\(20\) −0.906890 −0.202787
\(21\) 0 0
\(22\) −3.97179 −0.846789
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 9.49436 1.86200
\(27\) 0 0
\(28\) 3.05290 0.576944
\(29\) 4.93501 0.916408 0.458204 0.888847i \(-0.348493\pi\)
0.458204 + 0.888847i \(0.348493\pi\)
\(30\) 0 0
\(31\) 2.09311 0.375934 0.187967 0.982175i \(-0.439810\pi\)
0.187967 + 0.982175i \(0.439810\pi\)
\(32\) −4.78260 −0.845453
\(33\) 0 0
\(34\) 5.92569 1.01625
\(35\) −3.36634 −0.569015
\(36\) 0 0
\(37\) −8.67448 −1.42608 −0.713038 0.701126i \(-0.752681\pi\)
−0.713038 + 0.701126i \(0.752681\pi\)
\(38\) 13.1955 2.14059
\(39\) 0 0
\(40\) 1.86371 0.294678
\(41\) 3.88211 0.606283 0.303142 0.952945i \(-0.401964\pi\)
0.303142 + 0.952945i \(0.401964\pi\)
\(42\) 0 0
\(43\) −3.71200 −0.566075 −0.283037 0.959109i \(-0.591342\pi\)
−0.283037 + 0.959109i \(0.591342\pi\)
\(44\) −2.11265 −0.318494
\(45\) 0 0
\(46\) 1.70496 0.251383
\(47\) −6.30134 −0.919146 −0.459573 0.888140i \(-0.651997\pi\)
−0.459573 + 0.888140i \(0.651997\pi\)
\(48\) 0 0
\(49\) 4.33223 0.618890
\(50\) 1.70496 0.241118
\(51\) 0 0
\(52\) 5.05017 0.700333
\(53\) −0.310014 −0.0425837 −0.0212918 0.999773i \(-0.506778\pi\)
−0.0212918 + 0.999773i \(0.506778\pi\)
\(54\) 0 0
\(55\) 2.32955 0.314117
\(56\) −6.27387 −0.838382
\(57\) 0 0
\(58\) 8.41399 1.10481
\(59\) −5.61225 −0.730653 −0.365327 0.930879i \(-0.619043\pi\)
−0.365327 + 0.930879i \(0.619043\pi\)
\(60\) 0 0
\(61\) 4.51577 0.578185 0.289093 0.957301i \(-0.406646\pi\)
0.289093 + 0.957301i \(0.406646\pi\)
\(62\) 3.56867 0.453221
\(63\) 0 0
\(64\) 1.82851 0.228564
\(65\) −5.56867 −0.690708
\(66\) 0 0
\(67\) −9.35173 −1.14250 −0.571248 0.820778i \(-0.693540\pi\)
−0.571248 + 0.820778i \(0.693540\pi\)
\(68\) 3.15195 0.382230
\(69\) 0 0
\(70\) −5.73947 −0.685998
\(71\) −1.45424 −0.172587 −0.0862933 0.996270i \(-0.527502\pi\)
−0.0862933 + 0.996270i \(0.527502\pi\)
\(72\) 0 0
\(73\) −1.56867 −0.183599 −0.0917994 0.995778i \(-0.529262\pi\)
−0.0917994 + 0.995778i \(0.529262\pi\)
\(74\) −14.7896 −1.71926
\(75\) 0 0
\(76\) 7.01885 0.805118
\(77\) −7.84206 −0.893685
\(78\) 0 0
\(79\) −1.54120 −0.173398 −0.0866992 0.996235i \(-0.527632\pi\)
−0.0866992 + 0.996235i \(0.527632\pi\)
\(80\) 4.99133 0.558048
\(81\) 0 0
\(82\) 6.61884 0.730929
\(83\) 14.3209 1.57192 0.785961 0.618277i \(-0.212169\pi\)
0.785961 + 0.618277i \(0.212169\pi\)
\(84\) 0 0
\(85\) −3.47556 −0.376977
\(86\) −6.32882 −0.682454
\(87\) 0 0
\(88\) 4.34161 0.462817
\(89\) −15.9250 −1.68804 −0.844021 0.536310i \(-0.819818\pi\)
−0.844021 + 0.536310i \(0.819818\pi\)
\(90\) 0 0
\(91\) 18.7460 1.96512
\(92\) 0.906890 0.0945498
\(93\) 0 0
\(94\) −10.7435 −1.10811
\(95\) −7.73947 −0.794053
\(96\) 0 0
\(97\) 1.94184 0.197164 0.0985822 0.995129i \(-0.468569\pi\)
0.0985822 + 0.995129i \(0.468569\pi\)
\(98\) 7.38628 0.746127
\(99\) 0 0
\(100\) 0.906890 0.0906890
\(101\) 0.776994 0.0773138 0.0386569 0.999253i \(-0.487692\pi\)
0.0386569 + 0.999253i \(0.487692\pi\)
\(102\) 0 0
\(103\) 9.87274 0.972790 0.486395 0.873739i \(-0.338312\pi\)
0.486395 + 0.873739i \(0.338312\pi\)
\(104\) −10.3784 −1.01768
\(105\) 0 0
\(106\) −0.528561 −0.0513384
\(107\) 10.9691 1.06042 0.530212 0.847865i \(-0.322112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(108\) 0 0
\(109\) 13.2552 1.26962 0.634808 0.772670i \(-0.281079\pi\)
0.634808 + 0.772670i \(0.281079\pi\)
\(110\) 3.97179 0.378696
\(111\) 0 0
\(112\) −16.8025 −1.58769
\(113\) −18.9263 −1.78044 −0.890218 0.455534i \(-0.849448\pi\)
−0.890218 + 0.455534i \(0.849448\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 4.47551 0.415541
\(117\) 0 0
\(118\) −9.56867 −0.880867
\(119\) 11.6999 1.07253
\(120\) 0 0
\(121\) −5.57319 −0.506654
\(122\) 7.69921 0.697054
\(123\) 0 0
\(124\) 1.89822 0.170465
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −17.3074 −1.53578 −0.767892 0.640579i \(-0.778694\pi\)
−0.767892 + 0.640579i \(0.778694\pi\)
\(128\) 12.6827 1.12101
\(129\) 0 0
\(130\) −9.49436 −0.832711
\(131\) −19.7273 −1.72359 −0.861793 0.507261i \(-0.830658\pi\)
−0.861793 + 0.507261i \(0.830658\pi\)
\(132\) 0 0
\(133\) 26.0537 2.25914
\(134\) −15.9443 −1.37738
\(135\) 0 0
\(136\) −6.47743 −0.555435
\(137\) 15.0033 1.28182 0.640911 0.767615i \(-0.278557\pi\)
0.640911 + 0.767615i \(0.278557\pi\)
\(138\) 0 0
\(139\) 15.1287 1.28320 0.641598 0.767041i \(-0.278272\pi\)
0.641598 + 0.767041i \(0.278272\pi\)
\(140\) −3.05290 −0.258017
\(141\) 0 0
\(142\) −2.47942 −0.208069
\(143\) −12.9725 −1.08482
\(144\) 0 0
\(145\) −4.93501 −0.409830
\(146\) −2.67452 −0.221345
\(147\) 0 0
\(148\) −7.86680 −0.646647
\(149\) −20.6147 −1.68883 −0.844413 0.535693i \(-0.820050\pi\)
−0.844413 + 0.535693i \(0.820050\pi\)
\(150\) 0 0
\(151\) −22.3696 −1.82041 −0.910207 0.414153i \(-0.864078\pi\)
−0.910207 + 0.414153i \(0.864078\pi\)
\(152\) −14.4241 −1.16995
\(153\) 0 0
\(154\) −13.3704 −1.07742
\(155\) −2.09311 −0.168123
\(156\) 0 0
\(157\) −7.18092 −0.573100 −0.286550 0.958065i \(-0.592508\pi\)
−0.286550 + 0.958065i \(0.592508\pi\)
\(158\) −2.62768 −0.209047
\(159\) 0 0
\(160\) 4.78260 0.378098
\(161\) 3.36634 0.265305
\(162\) 0 0
\(163\) −11.3236 −0.886930 −0.443465 0.896292i \(-0.646251\pi\)
−0.443465 + 0.896292i \(0.646251\pi\)
\(164\) 3.52065 0.274916
\(165\) 0 0
\(166\) 24.4165 1.89509
\(167\) −21.9987 −1.70231 −0.851157 0.524912i \(-0.824098\pi\)
−0.851157 + 0.524912i \(0.824098\pi\)
\(168\) 0 0
\(169\) 18.0101 1.38539
\(170\) −5.92569 −0.454480
\(171\) 0 0
\(172\) −3.36638 −0.256684
\(173\) 6.32882 0.481171 0.240585 0.970628i \(-0.422661\pi\)
0.240585 + 0.970628i \(0.422661\pi\)
\(174\) 0 0
\(175\) 3.36634 0.254471
\(176\) 11.6276 0.876460
\(177\) 0 0
\(178\) −27.1514 −2.03509
\(179\) 4.71726 0.352584 0.176292 0.984338i \(-0.443590\pi\)
0.176292 + 0.984338i \(0.443590\pi\)
\(180\) 0 0
\(181\) −12.1434 −0.902612 −0.451306 0.892369i \(-0.649042\pi\)
−0.451306 + 0.892369i \(0.649042\pi\)
\(182\) 31.9612 2.36912
\(183\) 0 0
\(184\) −1.86371 −0.137394
\(185\) 8.67448 0.637760
\(186\) 0 0
\(187\) −8.09649 −0.592074
\(188\) −5.71463 −0.416782
\(189\) 0 0
\(190\) −13.1955 −0.957302
\(191\) 4.30407 0.311432 0.155716 0.987802i \(-0.450232\pi\)
0.155716 + 0.987802i \(0.450232\pi\)
\(192\) 0 0
\(193\) 1.81378 0.130559 0.0652794 0.997867i \(-0.479206\pi\)
0.0652794 + 0.997867i \(0.479206\pi\)
\(194\) 3.31077 0.237699
\(195\) 0 0
\(196\) 3.92886 0.280633
\(197\) 18.5150 1.31914 0.659571 0.751642i \(-0.270738\pi\)
0.659571 + 0.751642i \(0.270738\pi\)
\(198\) 0 0
\(199\) −1.93098 −0.136883 −0.0684416 0.997655i \(-0.521803\pi\)
−0.0684416 + 0.997655i \(0.521803\pi\)
\(200\) −1.86371 −0.131784
\(201\) 0 0
\(202\) 1.32474 0.0932087
\(203\) 16.6129 1.16600
\(204\) 0 0
\(205\) −3.88211 −0.271138
\(206\) 16.8326 1.17279
\(207\) 0 0
\(208\) −27.7951 −1.92724
\(209\) −18.0295 −1.24713
\(210\) 0 0
\(211\) −9.63249 −0.663128 −0.331564 0.943433i \(-0.607576\pi\)
−0.331564 + 0.943433i \(0.607576\pi\)
\(212\) −0.281148 −0.0193094
\(213\) 0 0
\(214\) 18.7019 1.27844
\(215\) 3.71200 0.253156
\(216\) 0 0
\(217\) 7.04611 0.478321
\(218\) 22.5996 1.53064
\(219\) 0 0
\(220\) 2.11265 0.142435
\(221\) 19.3542 1.30191
\(222\) 0 0
\(223\) 16.9632 1.13594 0.567971 0.823048i \(-0.307728\pi\)
0.567971 + 0.823048i \(0.307728\pi\)
\(224\) −16.0999 −1.07572
\(225\) 0 0
\(226\) −32.2686 −2.14647
\(227\) 12.7785 0.848138 0.424069 0.905630i \(-0.360601\pi\)
0.424069 + 0.905630i \(0.360601\pi\)
\(228\) 0 0
\(229\) −5.75737 −0.380457 −0.190229 0.981740i \(-0.560923\pi\)
−0.190229 + 0.981740i \(0.560923\pi\)
\(230\) −1.70496 −0.112422
\(231\) 0 0
\(232\) −9.19742 −0.603840
\(233\) −26.6304 −1.74461 −0.872307 0.488959i \(-0.837377\pi\)
−0.872307 + 0.488959i \(0.837377\pi\)
\(234\) 0 0
\(235\) 6.30134 0.411054
\(236\) −5.08970 −0.331311
\(237\) 0 0
\(238\) 19.9479 1.29303
\(239\) 11.0068 0.711968 0.355984 0.934492i \(-0.384146\pi\)
0.355984 + 0.934492i \(0.384146\pi\)
\(240\) 0 0
\(241\) 6.49029 0.418076 0.209038 0.977907i \(-0.432967\pi\)
0.209038 + 0.977907i \(0.432967\pi\)
\(242\) −9.50207 −0.610816
\(243\) 0 0
\(244\) 4.09531 0.262175
\(245\) −4.33223 −0.276776
\(246\) 0 0
\(247\) 43.0986 2.74230
\(248\) −3.90095 −0.247710
\(249\) 0 0
\(250\) −1.70496 −0.107831
\(251\) 4.47288 0.282326 0.141163 0.989986i \(-0.454916\pi\)
0.141163 + 0.989986i \(0.454916\pi\)
\(252\) 0 0
\(253\) −2.32955 −0.146458
\(254\) −29.5084 −1.85152
\(255\) 0 0
\(256\) 17.9666 1.12291
\(257\) −4.68657 −0.292340 −0.146170 0.989259i \(-0.546695\pi\)
−0.146170 + 0.989259i \(0.546695\pi\)
\(258\) 0 0
\(259\) −29.2012 −1.81448
\(260\) −5.05017 −0.313198
\(261\) 0 0
\(262\) −33.6343 −2.07794
\(263\) 13.8747 0.855553 0.427776 0.903885i \(-0.359297\pi\)
0.427776 + 0.903885i \(0.359297\pi\)
\(264\) 0 0
\(265\) 0.310014 0.0190440
\(266\) 44.4205 2.72359
\(267\) 0 0
\(268\) −8.48099 −0.518059
\(269\) 11.7548 0.716706 0.358353 0.933586i \(-0.383338\pi\)
0.358353 + 0.933586i \(0.383338\pi\)
\(270\) 0 0
\(271\) −7.49950 −0.455562 −0.227781 0.973712i \(-0.573147\pi\)
−0.227781 + 0.973712i \(0.573147\pi\)
\(272\) −17.3477 −1.05186
\(273\) 0 0
\(274\) 25.5801 1.54535
\(275\) −2.32955 −0.140477
\(276\) 0 0
\(277\) −12.3296 −0.740815 −0.370408 0.928869i \(-0.620782\pi\)
−0.370408 + 0.928869i \(0.620782\pi\)
\(278\) 25.7938 1.54701
\(279\) 0 0
\(280\) 6.27387 0.374936
\(281\) 33.3077 1.98697 0.993485 0.113965i \(-0.0363551\pi\)
0.993485 + 0.113965i \(0.0363551\pi\)
\(282\) 0 0
\(283\) 12.6644 0.752821 0.376411 0.926453i \(-0.377158\pi\)
0.376411 + 0.926453i \(0.377158\pi\)
\(284\) −1.31884 −0.0782585
\(285\) 0 0
\(286\) −22.1176 −1.30784
\(287\) 13.0685 0.771408
\(288\) 0 0
\(289\) −4.92049 −0.289440
\(290\) −8.41399 −0.494087
\(291\) 0 0
\(292\) −1.42261 −0.0832520
\(293\) 14.7133 0.859563 0.429781 0.902933i \(-0.358591\pi\)
0.429781 + 0.902933i \(0.358591\pi\)
\(294\) 0 0
\(295\) 5.61225 0.326758
\(296\) 16.1667 0.939671
\(297\) 0 0
\(298\) −35.1473 −2.03603
\(299\) 5.56867 0.322044
\(300\) 0 0
\(301\) −12.4958 −0.720249
\(302\) −38.1393 −2.19467
\(303\) 0 0
\(304\) −38.6303 −2.21560
\(305\) −4.51577 −0.258572
\(306\) 0 0
\(307\) −1.37571 −0.0785157 −0.0392578 0.999229i \(-0.512499\pi\)
−0.0392578 + 0.999229i \(0.512499\pi\)
\(308\) −7.11188 −0.405237
\(309\) 0 0
\(310\) −3.56867 −0.202687
\(311\) −25.6524 −1.45461 −0.727306 0.686313i \(-0.759228\pi\)
−0.727306 + 0.686313i \(0.759228\pi\)
\(312\) 0 0
\(313\) 21.0483 1.18972 0.594860 0.803829i \(-0.297207\pi\)
0.594860 + 0.803829i \(0.297207\pi\)
\(314\) −12.2432 −0.690923
\(315\) 0 0
\(316\) −1.39770 −0.0786266
\(317\) −12.2096 −0.685761 −0.342881 0.939379i \(-0.611403\pi\)
−0.342881 + 0.939379i \(0.611403\pi\)
\(318\) 0 0
\(319\) −11.4964 −0.643672
\(320\) −1.82851 −0.102217
\(321\) 0 0
\(322\) 5.73947 0.319848
\(323\) 26.8990 1.49670
\(324\) 0 0
\(325\) 5.56867 0.308894
\(326\) −19.3062 −1.06927
\(327\) 0 0
\(328\) −7.23512 −0.399493
\(329\) −21.2125 −1.16948
\(330\) 0 0
\(331\) −13.8386 −0.760638 −0.380319 0.924855i \(-0.624186\pi\)
−0.380319 + 0.924855i \(0.624186\pi\)
\(332\) 12.9875 0.712780
\(333\) 0 0
\(334\) −37.5070 −2.05229
\(335\) 9.35173 0.510939
\(336\) 0 0
\(337\) −6.20030 −0.337752 −0.168876 0.985637i \(-0.554014\pi\)
−0.168876 + 0.985637i \(0.554014\pi\)
\(338\) 30.7065 1.67021
\(339\) 0 0
\(340\) −3.15195 −0.170939
\(341\) −4.87601 −0.264051
\(342\) 0 0
\(343\) −8.98062 −0.484908
\(344\) 6.91809 0.372998
\(345\) 0 0
\(346\) 10.7904 0.580094
\(347\) −0.203558 −0.0109276 −0.00546379 0.999985i \(-0.501739\pi\)
−0.00546379 + 0.999985i \(0.501739\pi\)
\(348\) 0 0
\(349\) −36.0301 −1.92865 −0.964325 0.264722i \(-0.914720\pi\)
−0.964325 + 0.264722i \(0.914720\pi\)
\(350\) 5.73947 0.306788
\(351\) 0 0
\(352\) 11.1413 0.593834
\(353\) 14.0529 0.747959 0.373979 0.927437i \(-0.377993\pi\)
0.373979 + 0.927437i \(0.377993\pi\)
\(354\) 0 0
\(355\) 1.45424 0.0771831
\(356\) −14.4422 −0.765434
\(357\) 0 0
\(358\) 8.04274 0.425072
\(359\) 14.5840 0.769714 0.384857 0.922976i \(-0.374251\pi\)
0.384857 + 0.922976i \(0.374251\pi\)
\(360\) 0 0
\(361\) 40.8994 2.15260
\(362\) −20.7040 −1.08818
\(363\) 0 0
\(364\) 17.0006 0.891073
\(365\) 1.56867 0.0821079
\(366\) 0 0
\(367\) −29.6047 −1.54535 −0.772676 0.634800i \(-0.781082\pi\)
−0.772676 + 0.634800i \(0.781082\pi\)
\(368\) −4.99133 −0.260191
\(369\) 0 0
\(370\) 14.7896 0.768877
\(371\) −1.04361 −0.0541816
\(372\) 0 0
\(373\) 31.8682 1.65007 0.825036 0.565080i \(-0.191155\pi\)
0.825036 + 0.565080i \(0.191155\pi\)
\(374\) −13.8042 −0.713798
\(375\) 0 0
\(376\) 11.7439 0.605644
\(377\) 27.4814 1.41537
\(378\) 0 0
\(379\) 26.3732 1.35470 0.677349 0.735662i \(-0.263129\pi\)
0.677349 + 0.735662i \(0.263129\pi\)
\(380\) −7.01885 −0.360059
\(381\) 0 0
\(382\) 7.33827 0.375459
\(383\) 7.12860 0.364254 0.182127 0.983275i \(-0.441702\pi\)
0.182127 + 0.983275i \(0.441702\pi\)
\(384\) 0 0
\(385\) 7.84206 0.399668
\(386\) 3.09242 0.157400
\(387\) 0 0
\(388\) 1.76104 0.0894032
\(389\) 2.49183 0.126341 0.0631704 0.998003i \(-0.479879\pi\)
0.0631704 + 0.998003i \(0.479879\pi\)
\(390\) 0 0
\(391\) 3.47556 0.175767
\(392\) −8.07401 −0.407799
\(393\) 0 0
\(394\) 31.5674 1.59034
\(395\) 1.54120 0.0775461
\(396\) 0 0
\(397\) 26.8571 1.34792 0.673960 0.738768i \(-0.264592\pi\)
0.673960 + 0.738768i \(0.264592\pi\)
\(398\) −3.29224 −0.165025
\(399\) 0 0
\(400\) −4.99133 −0.249567
\(401\) −4.98334 −0.248856 −0.124428 0.992229i \(-0.539710\pi\)
−0.124428 + 0.992229i \(0.539710\pi\)
\(402\) 0 0
\(403\) 11.6558 0.580619
\(404\) 0.704649 0.0350576
\(405\) 0 0
\(406\) 28.3243 1.40571
\(407\) 20.2076 1.00166
\(408\) 0 0
\(409\) 19.6429 0.971279 0.485639 0.874159i \(-0.338587\pi\)
0.485639 + 0.874159i \(0.338587\pi\)
\(410\) −6.61884 −0.326881
\(411\) 0 0
\(412\) 8.95349 0.441107
\(413\) −18.8927 −0.929651
\(414\) 0 0
\(415\) −14.3209 −0.702984
\(416\) −26.6327 −1.30578
\(417\) 0 0
\(418\) −30.7396 −1.50352
\(419\) −22.2454 −1.08676 −0.543379 0.839487i \(-0.682855\pi\)
−0.543379 + 0.839487i \(0.682855\pi\)
\(420\) 0 0
\(421\) 33.5231 1.63382 0.816909 0.576767i \(-0.195686\pi\)
0.816909 + 0.576767i \(0.195686\pi\)
\(422\) −16.4230 −0.799460
\(423\) 0 0
\(424\) 0.577775 0.0280593
\(425\) 3.47556 0.168589
\(426\) 0 0
\(427\) 15.2016 0.735657
\(428\) 9.94778 0.480844
\(429\) 0 0
\(430\) 6.32882 0.305203
\(431\) −28.1248 −1.35472 −0.677361 0.735651i \(-0.736877\pi\)
−0.677361 + 0.735651i \(0.736877\pi\)
\(432\) 0 0
\(433\) 0.328856 0.0158038 0.00790190 0.999969i \(-0.497485\pi\)
0.00790190 + 0.999969i \(0.497485\pi\)
\(434\) 12.0133 0.576659
\(435\) 0 0
\(436\) 12.0210 0.575702
\(437\) 7.73947 0.370229
\(438\) 0 0
\(439\) −5.91409 −0.282264 −0.141132 0.989991i \(-0.545074\pi\)
−0.141132 + 0.989991i \(0.545074\pi\)
\(440\) −4.34161 −0.206978
\(441\) 0 0
\(442\) 32.9982 1.56957
\(443\) 4.83291 0.229619 0.114809 0.993388i \(-0.463374\pi\)
0.114809 + 0.993388i \(0.463374\pi\)
\(444\) 0 0
\(445\) 15.9250 0.754915
\(446\) 28.9217 1.36948
\(447\) 0 0
\(448\) 6.15539 0.290815
\(449\) 4.10457 0.193707 0.0968533 0.995299i \(-0.469122\pi\)
0.0968533 + 0.995299i \(0.469122\pi\)
\(450\) 0 0
\(451\) −9.04357 −0.425845
\(452\) −17.1641 −0.807330
\(453\) 0 0
\(454\) 21.7868 1.02251
\(455\) −18.7460 −0.878827
\(456\) 0 0
\(457\) 22.8312 1.06800 0.534000 0.845484i \(-0.320688\pi\)
0.534000 + 0.845484i \(0.320688\pi\)
\(458\) −9.81608 −0.458675
\(459\) 0 0
\(460\) −0.906890 −0.0422840
\(461\) −41.1132 −1.91483 −0.957416 0.288713i \(-0.906773\pi\)
−0.957416 + 0.288713i \(0.906773\pi\)
\(462\) 0 0
\(463\) −25.9987 −1.20826 −0.604132 0.796884i \(-0.706480\pi\)
−0.604132 + 0.796884i \(0.706480\pi\)
\(464\) −24.6323 −1.14352
\(465\) 0 0
\(466\) −45.4037 −2.10329
\(467\) −39.6897 −1.83662 −0.918311 0.395860i \(-0.870446\pi\)
−0.918311 + 0.395860i \(0.870446\pi\)
\(468\) 0 0
\(469\) −31.4811 −1.45366
\(470\) 10.7435 0.495563
\(471\) 0 0
\(472\) 10.4596 0.481442
\(473\) 8.64730 0.397603
\(474\) 0 0
\(475\) 7.73947 0.355111
\(476\) 10.6105 0.486333
\(477\) 0 0
\(478\) 18.7661 0.858341
\(479\) 17.5510 0.801925 0.400962 0.916095i \(-0.368676\pi\)
0.400962 + 0.916095i \(0.368676\pi\)
\(480\) 0 0
\(481\) −48.3053 −2.20253
\(482\) 11.0657 0.504028
\(483\) 0 0
\(484\) −5.05427 −0.229740
\(485\) −1.94184 −0.0881746
\(486\) 0 0
\(487\) −36.1405 −1.63768 −0.818842 0.574019i \(-0.805383\pi\)
−0.818842 + 0.574019i \(0.805383\pi\)
\(488\) −8.41608 −0.380978
\(489\) 0 0
\(490\) −7.38628 −0.333678
\(491\) 11.0375 0.498116 0.249058 0.968489i \(-0.419879\pi\)
0.249058 + 0.968489i \(0.419879\pi\)
\(492\) 0 0
\(493\) 17.1519 0.772483
\(494\) 73.4813 3.30608
\(495\) 0 0
\(496\) −10.4474 −0.469102
\(497\) −4.89546 −0.219592
\(498\) 0 0
\(499\) −18.2229 −0.815770 −0.407885 0.913033i \(-0.633734\pi\)
−0.407885 + 0.913033i \(0.633734\pi\)
\(500\) −0.906890 −0.0405574
\(501\) 0 0
\(502\) 7.62609 0.340369
\(503\) −30.3839 −1.35475 −0.677375 0.735638i \(-0.736882\pi\)
−0.677375 + 0.735638i \(0.736882\pi\)
\(504\) 0 0
\(505\) −0.776994 −0.0345758
\(506\) −3.97179 −0.176568
\(507\) 0 0
\(508\) −15.6959 −0.696394
\(509\) 11.4948 0.509500 0.254750 0.967007i \(-0.418007\pi\)
0.254750 + 0.967007i \(0.418007\pi\)
\(510\) 0 0
\(511\) −5.28067 −0.233603
\(512\) 5.26678 0.232761
\(513\) 0 0
\(514\) −7.99042 −0.352442
\(515\) −9.87274 −0.435045
\(516\) 0 0
\(517\) 14.6793 0.645595
\(518\) −49.7869 −2.18751
\(519\) 0 0
\(520\) 10.3784 0.455122
\(521\) −38.4421 −1.68418 −0.842090 0.539337i \(-0.818675\pi\)
−0.842090 + 0.539337i \(0.818675\pi\)
\(522\) 0 0
\(523\) −0.951200 −0.0415931 −0.0207965 0.999784i \(-0.506620\pi\)
−0.0207965 + 0.999784i \(0.506620\pi\)
\(524\) −17.8905 −0.781551
\(525\) 0 0
\(526\) 23.6559 1.03145
\(527\) 7.27473 0.316892
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0.528561 0.0229592
\(531\) 0 0
\(532\) 23.6278 1.02440
\(533\) 21.6182 0.936387
\(534\) 0 0
\(535\) −10.9691 −0.474236
\(536\) 17.4289 0.752814
\(537\) 0 0
\(538\) 20.0416 0.864053
\(539\) −10.0921 −0.434700
\(540\) 0 0
\(541\) −2.81851 −0.121177 −0.0605885 0.998163i \(-0.519298\pi\)
−0.0605885 + 0.998163i \(0.519298\pi\)
\(542\) −12.7864 −0.549221
\(543\) 0 0
\(544\) −16.6222 −0.712672
\(545\) −13.2552 −0.567790
\(546\) 0 0
\(547\) 36.5853 1.56427 0.782137 0.623107i \(-0.214130\pi\)
0.782137 + 0.623107i \(0.214130\pi\)
\(548\) 13.6064 0.581236
\(549\) 0 0
\(550\) −3.97179 −0.169358
\(551\) 38.1943 1.62713
\(552\) 0 0
\(553\) −5.18819 −0.220624
\(554\) −21.0215 −0.893119
\(555\) 0 0
\(556\) 13.7200 0.581859
\(557\) 7.67104 0.325032 0.162516 0.986706i \(-0.448039\pi\)
0.162516 + 0.986706i \(0.448039\pi\)
\(558\) 0 0
\(559\) −20.6709 −0.874286
\(560\) 16.8025 0.710035
\(561\) 0 0
\(562\) 56.7883 2.39547
\(563\) 4.50675 0.189937 0.0949684 0.995480i \(-0.469725\pi\)
0.0949684 + 0.995480i \(0.469725\pi\)
\(564\) 0 0
\(565\) 18.9263 0.796235
\(566\) 21.5923 0.907593
\(567\) 0 0
\(568\) 2.71028 0.113721
\(569\) −11.7146 −0.491103 −0.245551 0.969384i \(-0.578969\pi\)
−0.245551 + 0.969384i \(0.578969\pi\)
\(570\) 0 0
\(571\) −9.71776 −0.406676 −0.203338 0.979109i \(-0.565179\pi\)
−0.203338 + 0.979109i \(0.565179\pi\)
\(572\) −11.7646 −0.491904
\(573\) 0 0
\(574\) 22.2813 0.930002
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 7.50066 0.312256 0.156128 0.987737i \(-0.450099\pi\)
0.156128 + 0.987737i \(0.450099\pi\)
\(578\) −8.38923 −0.348946
\(579\) 0 0
\(580\) −4.47551 −0.185835
\(581\) 48.2089 2.00004
\(582\) 0 0
\(583\) 0.722193 0.0299102
\(584\) 2.92354 0.120977
\(585\) 0 0
\(586\) 25.0857 1.03628
\(587\) −6.49012 −0.267876 −0.133938 0.990990i \(-0.542762\pi\)
−0.133938 + 0.990990i \(0.542762\pi\)
\(588\) 0 0
\(589\) 16.1996 0.667491
\(590\) 9.56867 0.393936
\(591\) 0 0
\(592\) 43.2972 1.77950
\(593\) 6.73743 0.276673 0.138337 0.990385i \(-0.455824\pi\)
0.138337 + 0.990385i \(0.455824\pi\)
\(594\) 0 0
\(595\) −11.6999 −0.479649
\(596\) −18.6953 −0.765790
\(597\) 0 0
\(598\) 9.49436 0.388253
\(599\) −11.1192 −0.454318 −0.227159 0.973858i \(-0.572944\pi\)
−0.227159 + 0.973858i \(0.572944\pi\)
\(600\) 0 0
\(601\) −20.8033 −0.848585 −0.424292 0.905525i \(-0.639477\pi\)
−0.424292 + 0.905525i \(0.639477\pi\)
\(602\) −21.3049 −0.868324
\(603\) 0 0
\(604\) −20.2868 −0.825458
\(605\) 5.57319 0.226582
\(606\) 0 0
\(607\) −9.26841 −0.376193 −0.188097 0.982151i \(-0.560232\pi\)
−0.188097 + 0.982151i \(0.560232\pi\)
\(608\) −37.0148 −1.50115
\(609\) 0 0
\(610\) −7.69921 −0.311732
\(611\) −35.0901 −1.41959
\(612\) 0 0
\(613\) 28.2753 1.14203 0.571014 0.820941i \(-0.306550\pi\)
0.571014 + 0.820941i \(0.306550\pi\)
\(614\) −2.34552 −0.0946576
\(615\) 0 0
\(616\) 14.6153 0.588868
\(617\) 46.0046 1.85208 0.926038 0.377431i \(-0.123193\pi\)
0.926038 + 0.377431i \(0.123193\pi\)
\(618\) 0 0
\(619\) −7.60289 −0.305586 −0.152793 0.988258i \(-0.548827\pi\)
−0.152793 + 0.988258i \(0.548827\pi\)
\(620\) −1.89822 −0.0762344
\(621\) 0 0
\(622\) −43.7363 −1.75367
\(623\) −53.6088 −2.14779
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 35.8865 1.43431
\(627\) 0 0
\(628\) −6.51231 −0.259869
\(629\) −30.1487 −1.20211
\(630\) 0 0
\(631\) −44.9382 −1.78896 −0.894481 0.447106i \(-0.852455\pi\)
−0.894481 + 0.447106i \(0.852455\pi\)
\(632\) 2.87235 0.114256
\(633\) 0 0
\(634\) −20.8169 −0.826746
\(635\) 17.3074 0.686823
\(636\) 0 0
\(637\) 24.1247 0.955857
\(638\) −19.6008 −0.776004
\(639\) 0 0
\(640\) −12.6827 −0.501330
\(641\) −5.52160 −0.218090 −0.109045 0.994037i \(-0.534779\pi\)
−0.109045 + 0.994037i \(0.534779\pi\)
\(642\) 0 0
\(643\) −31.7764 −1.25314 −0.626570 0.779365i \(-0.715542\pi\)
−0.626570 + 0.779365i \(0.715542\pi\)
\(644\) 3.05290 0.120301
\(645\) 0 0
\(646\) 45.8617 1.80441
\(647\) 49.3890 1.94168 0.970842 0.239721i \(-0.0770561\pi\)
0.970842 + 0.239721i \(0.0770561\pi\)
\(648\) 0 0
\(649\) 13.0740 0.513201
\(650\) 9.49436 0.372399
\(651\) 0 0
\(652\) −10.2692 −0.402174
\(653\) 41.3269 1.61725 0.808623 0.588328i \(-0.200213\pi\)
0.808623 + 0.588328i \(0.200213\pi\)
\(654\) 0 0
\(655\) 19.7273 0.770811
\(656\) −19.3769 −0.756540
\(657\) 0 0
\(658\) −36.1664 −1.40991
\(659\) 9.71854 0.378581 0.189290 0.981921i \(-0.439381\pi\)
0.189290 + 0.981921i \(0.439381\pi\)
\(660\) 0 0
\(661\) 24.0766 0.936470 0.468235 0.883604i \(-0.344890\pi\)
0.468235 + 0.883604i \(0.344890\pi\)
\(662\) −23.5943 −0.917017
\(663\) 0 0
\(664\) −26.6900 −1.03577
\(665\) −26.0537 −1.01032
\(666\) 0 0
\(667\) 4.93501 0.191084
\(668\) −19.9504 −0.771906
\(669\) 0 0
\(670\) 15.9443 0.615983
\(671\) −10.5197 −0.406109
\(672\) 0 0
\(673\) −29.6276 −1.14206 −0.571030 0.820929i \(-0.693456\pi\)
−0.571030 + 0.820929i \(0.693456\pi\)
\(674\) −10.5713 −0.407190
\(675\) 0 0
\(676\) 16.3332 0.628199
\(677\) 17.9990 0.691760 0.345880 0.938279i \(-0.387580\pi\)
0.345880 + 0.938279i \(0.387580\pi\)
\(678\) 0 0
\(679\) 6.53690 0.250863
\(680\) 6.47743 0.248398
\(681\) 0 0
\(682\) −8.31340 −0.318336
\(683\) 48.7141 1.86399 0.931996 0.362468i \(-0.118066\pi\)
0.931996 + 0.362468i \(0.118066\pi\)
\(684\) 0 0
\(685\) −15.0033 −0.573248
\(686\) −15.3116 −0.584600
\(687\) 0 0
\(688\) 18.5278 0.706367
\(689\) −1.72636 −0.0657692
\(690\) 0 0
\(691\) −15.4134 −0.586352 −0.293176 0.956059i \(-0.594712\pi\)
−0.293176 + 0.956059i \(0.594712\pi\)
\(692\) 5.73954 0.218185
\(693\) 0 0
\(694\) −0.347059 −0.0131742
\(695\) −15.1287 −0.573863
\(696\) 0 0
\(697\) 13.4925 0.511065
\(698\) −61.4300 −2.32516
\(699\) 0 0
\(700\) 3.05290 0.115389
\(701\) 6.21048 0.234566 0.117283 0.993099i \(-0.462581\pi\)
0.117283 + 0.993099i \(0.462581\pi\)
\(702\) 0 0
\(703\) −67.1359 −2.53208
\(704\) −4.25961 −0.160540
\(705\) 0 0
\(706\) 23.9596 0.901731
\(707\) 2.61563 0.0983707
\(708\) 0 0
\(709\) 51.9143 1.94968 0.974842 0.222899i \(-0.0715520\pi\)
0.974842 + 0.222899i \(0.0715520\pi\)
\(710\) 2.47942 0.0930511
\(711\) 0 0
\(712\) 29.6795 1.11229
\(713\) 2.09311 0.0783876
\(714\) 0 0
\(715\) 12.9725 0.485144
\(716\) 4.27804 0.159878
\(717\) 0 0
\(718\) 24.8651 0.927958
\(719\) 37.5760 1.40135 0.700674 0.713482i \(-0.252883\pi\)
0.700674 + 0.713482i \(0.252883\pi\)
\(720\) 0 0
\(721\) 33.2350 1.23774
\(722\) 69.7319 2.59515
\(723\) 0 0
\(724\) −11.0127 −0.409285
\(725\) 4.93501 0.183282
\(726\) 0 0
\(727\) −7.31279 −0.271216 −0.135608 0.990763i \(-0.543299\pi\)
−0.135608 + 0.990763i \(0.543299\pi\)
\(728\) −34.9371 −1.29486
\(729\) 0 0
\(730\) 2.67452 0.0989884
\(731\) −12.9013 −0.477171
\(732\) 0 0
\(733\) −47.7195 −1.76256 −0.881281 0.472593i \(-0.843318\pi\)
−0.881281 + 0.472593i \(0.843318\pi\)
\(734\) −50.4748 −1.86306
\(735\) 0 0
\(736\) −4.78260 −0.176289
\(737\) 21.7853 0.802473
\(738\) 0 0
\(739\) −27.4272 −1.00893 −0.504463 0.863434i \(-0.668309\pi\)
−0.504463 + 0.863434i \(0.668309\pi\)
\(740\) 7.86680 0.289189
\(741\) 0 0
\(742\) −1.77932 −0.0653207
\(743\) 22.9968 0.843669 0.421835 0.906673i \(-0.361386\pi\)
0.421835 + 0.906673i \(0.361386\pi\)
\(744\) 0 0
\(745\) 20.6147 0.755266
\(746\) 54.3340 1.98931
\(747\) 0 0
\(748\) −7.34263 −0.268473
\(749\) 36.9257 1.34924
\(750\) 0 0
\(751\) −40.3144 −1.47109 −0.735547 0.677474i \(-0.763075\pi\)
−0.735547 + 0.677474i \(0.763075\pi\)
\(752\) 31.4521 1.14694
\(753\) 0 0
\(754\) 46.8547 1.70635
\(755\) 22.3696 0.814114
\(756\) 0 0
\(757\) 18.7386 0.681065 0.340533 0.940233i \(-0.389393\pi\)
0.340533 + 0.940233i \(0.389393\pi\)
\(758\) 44.9652 1.63321
\(759\) 0 0
\(760\) 14.4241 0.523218
\(761\) −49.3367 −1.78845 −0.894227 0.447613i \(-0.852274\pi\)
−0.894227 + 0.447613i \(0.852274\pi\)
\(762\) 0 0
\(763\) 44.6214 1.61540
\(764\) 3.90332 0.141217
\(765\) 0 0
\(766\) 12.1540 0.439141
\(767\) −31.2528 −1.12847
\(768\) 0 0
\(769\) −11.2643 −0.406202 −0.203101 0.979158i \(-0.565102\pi\)
−0.203101 + 0.979158i \(0.565102\pi\)
\(770\) 13.3704 0.481836
\(771\) 0 0
\(772\) 1.64490 0.0592012
\(773\) 41.4171 1.48967 0.744834 0.667249i \(-0.232528\pi\)
0.744834 + 0.667249i \(0.232528\pi\)
\(774\) 0 0
\(775\) 2.09311 0.0751867
\(776\) −3.61903 −0.129916
\(777\) 0 0
\(778\) 4.24847 0.152315
\(779\) 30.0455 1.07649
\(780\) 0 0
\(781\) 3.38773 0.121222
\(782\) 5.92569 0.211902
\(783\) 0 0
\(784\) −21.6236 −0.772271
\(785\) 7.18092 0.256298
\(786\) 0 0
\(787\) −14.0350 −0.500294 −0.250147 0.968208i \(-0.580479\pi\)
−0.250147 + 0.968208i \(0.580479\pi\)
\(788\) 16.7911 0.598158
\(789\) 0 0
\(790\) 2.62768 0.0934887
\(791\) −63.7123 −2.26535
\(792\) 0 0
\(793\) 25.1468 0.892990
\(794\) 45.7903 1.62504
\(795\) 0 0
\(796\) −1.75118 −0.0620691
\(797\) 21.4491 0.759765 0.379882 0.925035i \(-0.375964\pi\)
0.379882 + 0.925035i \(0.375964\pi\)
\(798\) 0 0
\(799\) −21.9007 −0.774791
\(800\) −4.78260 −0.169091
\(801\) 0 0
\(802\) −8.49640 −0.300018
\(803\) 3.65430 0.128957
\(804\) 0 0
\(805\) −3.36634 −0.118648
\(806\) 19.8727 0.699987
\(807\) 0 0
\(808\) −1.44809 −0.0509437
\(809\) 8.83096 0.310480 0.155240 0.987877i \(-0.450385\pi\)
0.155240 + 0.987877i \(0.450385\pi\)
\(810\) 0 0
\(811\) 8.39739 0.294872 0.147436 0.989072i \(-0.452898\pi\)
0.147436 + 0.989072i \(0.452898\pi\)
\(812\) 15.0661 0.528716
\(813\) 0 0
\(814\) 34.4532 1.20759
\(815\) 11.3236 0.396647
\(816\) 0 0
\(817\) −28.7289 −1.00510
\(818\) 33.4904 1.17096
\(819\) 0 0
\(820\) −3.52065 −0.122946
\(821\) −47.7871 −1.66778 −0.833891 0.551930i \(-0.813892\pi\)
−0.833891 + 0.551930i \(0.813892\pi\)
\(822\) 0 0
\(823\) 21.2580 0.741008 0.370504 0.928831i \(-0.379185\pi\)
0.370504 + 0.928831i \(0.379185\pi\)
\(824\) −18.3999 −0.640991
\(825\) 0 0
\(826\) −32.2114 −1.12078
\(827\) −23.2919 −0.809939 −0.404970 0.914330i \(-0.632718\pi\)
−0.404970 + 0.914330i \(0.632718\pi\)
\(828\) 0 0
\(829\) 17.1286 0.594902 0.297451 0.954737i \(-0.403864\pi\)
0.297451 + 0.954737i \(0.403864\pi\)
\(830\) −24.4165 −0.847510
\(831\) 0 0
\(832\) 10.1824 0.353010
\(833\) 15.0569 0.521691
\(834\) 0 0
\(835\) 21.9987 0.761298
\(836\) −16.3508 −0.565503
\(837\) 0 0
\(838\) −37.9275 −1.31018
\(839\) 41.9077 1.44681 0.723407 0.690422i \(-0.242575\pi\)
0.723407 + 0.690422i \(0.242575\pi\)
\(840\) 0 0
\(841\) −4.64571 −0.160197
\(842\) 57.1556 1.96971
\(843\) 0 0
\(844\) −8.73561 −0.300692
\(845\) −18.0101 −0.619566
\(846\) 0 0
\(847\) −18.7612 −0.644644
\(848\) 1.54738 0.0531373
\(849\) 0 0
\(850\) 5.92569 0.203250
\(851\) −8.67448 −0.297357
\(852\) 0 0
\(853\) 28.4367 0.973654 0.486827 0.873498i \(-0.338154\pi\)
0.486827 + 0.873498i \(0.338154\pi\)
\(854\) 25.9181 0.886901
\(855\) 0 0
\(856\) −20.4432 −0.698736
\(857\) 40.7539 1.39213 0.696064 0.717980i \(-0.254933\pi\)
0.696064 + 0.717980i \(0.254933\pi\)
\(858\) 0 0
\(859\) −34.5086 −1.17742 −0.588710 0.808344i \(-0.700364\pi\)
−0.588710 + 0.808344i \(0.700364\pi\)
\(860\) 3.36638 0.114793
\(861\) 0 0
\(862\) −47.9516 −1.63324
\(863\) −43.3918 −1.47707 −0.738537 0.674213i \(-0.764483\pi\)
−0.738537 + 0.674213i \(0.764483\pi\)
\(864\) 0 0
\(865\) −6.32882 −0.215186
\(866\) 0.560686 0.0190529
\(867\) 0 0
\(868\) 6.39005 0.216892
\(869\) 3.59030 0.121793
\(870\) 0 0
\(871\) −52.0767 −1.76455
\(872\) −24.7038 −0.836577
\(873\) 0 0
\(874\) 13.1955 0.446344
\(875\) −3.36634 −0.113803
\(876\) 0 0
\(877\) 3.82061 0.129013 0.0645063 0.997917i \(-0.479453\pi\)
0.0645063 + 0.997917i \(0.479453\pi\)
\(878\) −10.0833 −0.340294
\(879\) 0 0
\(880\) −11.6276 −0.391965
\(881\) 41.0582 1.38329 0.691643 0.722240i \(-0.256887\pi\)
0.691643 + 0.722240i \(0.256887\pi\)
\(882\) 0 0
\(883\) −21.6971 −0.730166 −0.365083 0.930975i \(-0.618959\pi\)
−0.365083 + 0.930975i \(0.618959\pi\)
\(884\) 17.5522 0.590343
\(885\) 0 0
\(886\) 8.23993 0.276826
\(887\) −50.8277 −1.70663 −0.853314 0.521397i \(-0.825411\pi\)
−0.853314 + 0.521397i \(0.825411\pi\)
\(888\) 0 0
\(889\) −58.2626 −1.95406
\(890\) 27.1514 0.910118
\(891\) 0 0
\(892\) 15.3838 0.515088
\(893\) −48.7691 −1.63200
\(894\) 0 0
\(895\) −4.71726 −0.157681
\(896\) 42.6944 1.42632
\(897\) 0 0
\(898\) 6.99813 0.233531
\(899\) 10.3295 0.344508
\(900\) 0 0
\(901\) −1.07747 −0.0358958
\(902\) −15.4189 −0.513394
\(903\) 0 0
\(904\) 35.2731 1.17317
\(905\) 12.1434 0.403660
\(906\) 0 0
\(907\) −43.7967 −1.45424 −0.727122 0.686508i \(-0.759143\pi\)
−0.727122 + 0.686508i \(0.759143\pi\)
\(908\) 11.5887 0.384584
\(909\) 0 0
\(910\) −31.9612 −1.05950
\(911\) 4.63898 0.153696 0.0768481 0.997043i \(-0.475514\pi\)
0.0768481 + 0.997043i \(0.475514\pi\)
\(912\) 0 0
\(913\) −33.3612 −1.10410
\(914\) 38.9264 1.28757
\(915\) 0 0
\(916\) −5.22130 −0.172517
\(917\) −66.4089 −2.19301
\(918\) 0 0
\(919\) −7.27190 −0.239878 −0.119939 0.992781i \(-0.538270\pi\)
−0.119939 + 0.992781i \(0.538270\pi\)
\(920\) 1.86371 0.0614447
\(921\) 0 0
\(922\) −70.0963 −2.30850
\(923\) −8.09818 −0.266555
\(924\) 0 0
\(925\) −8.67448 −0.285215
\(926\) −44.3268 −1.45667
\(927\) 0 0
\(928\) −23.6022 −0.774780
\(929\) −1.48464 −0.0487096 −0.0243548 0.999703i \(-0.507753\pi\)
−0.0243548 + 0.999703i \(0.507753\pi\)
\(930\) 0 0
\(931\) 33.5292 1.09887
\(932\) −24.1508 −0.791086
\(933\) 0 0
\(934\) −67.6694 −2.21421
\(935\) 8.09649 0.264784
\(936\) 0 0
\(937\) 2.63415 0.0860540 0.0430270 0.999074i \(-0.486300\pi\)
0.0430270 + 0.999074i \(0.486300\pi\)
\(938\) −53.6740 −1.75252
\(939\) 0 0
\(940\) 5.71463 0.186391
\(941\) −46.0509 −1.50122 −0.750608 0.660748i \(-0.770239\pi\)
−0.750608 + 0.660748i \(0.770239\pi\)
\(942\) 0 0
\(943\) 3.88211 0.126419
\(944\) 28.0126 0.911733
\(945\) 0 0
\(946\) 14.7433 0.479346
\(947\) −46.2264 −1.50216 −0.751078 0.660213i \(-0.770466\pi\)
−0.751078 + 0.660213i \(0.770466\pi\)
\(948\) 0 0
\(949\) −8.73540 −0.283563
\(950\) 13.1955 0.428118
\(951\) 0 0
\(952\) −21.8052 −0.706711
\(953\) 13.0234 0.421869 0.210935 0.977500i \(-0.432349\pi\)
0.210935 + 0.977500i \(0.432349\pi\)
\(954\) 0 0
\(955\) −4.30407 −0.139276
\(956\) 9.98192 0.322838
\(957\) 0 0
\(958\) 29.9237 0.966792
\(959\) 50.5063 1.63093
\(960\) 0 0
\(961\) −26.6189 −0.858674
\(962\) −82.3586 −2.65535
\(963\) 0 0
\(964\) 5.88598 0.189575
\(965\) −1.81378 −0.0583877
\(966\) 0 0
\(967\) 3.69987 0.118980 0.0594898 0.998229i \(-0.481053\pi\)
0.0594898 + 0.998229i \(0.481053\pi\)
\(968\) 10.3868 0.333845
\(969\) 0 0
\(970\) −3.31077 −0.106302
\(971\) −21.6156 −0.693677 −0.346838 0.937925i \(-0.612745\pi\)
−0.346838 + 0.937925i \(0.612745\pi\)
\(972\) 0 0
\(973\) 50.9282 1.63268
\(974\) −61.6182 −1.97437
\(975\) 0 0
\(976\) −22.5397 −0.721478
\(977\) 26.5647 0.849881 0.424940 0.905221i \(-0.360295\pi\)
0.424940 + 0.905221i \(0.360295\pi\)
\(978\) 0 0
\(979\) 37.0980 1.18566
\(980\) −3.92886 −0.125503
\(981\) 0 0
\(982\) 18.8185 0.600523
\(983\) −15.3307 −0.488973 −0.244486 0.969653i \(-0.578619\pi\)
−0.244486 + 0.969653i \(0.578619\pi\)
\(984\) 0 0
\(985\) −18.5150 −0.589938
\(986\) 29.2433 0.931297
\(987\) 0 0
\(988\) 39.0857 1.24348
\(989\) −3.71200 −0.118035
\(990\) 0 0
\(991\) 7.53563 0.239377 0.119689 0.992811i \(-0.461810\pi\)
0.119689 + 0.992811i \(0.461810\pi\)
\(992\) −10.0105 −0.317834
\(993\) 0 0
\(994\) −8.34657 −0.264737
\(995\) 1.93098 0.0612161
\(996\) 0 0
\(997\) 35.6936 1.13043 0.565215 0.824944i \(-0.308793\pi\)
0.565215 + 0.824944i \(0.308793\pi\)
\(998\) −31.0694 −0.983483
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.p.1.5 6
3.2 odd 2 1035.2.a.q.1.2 yes 6
5.4 even 2 5175.2.a.bz.1.2 6
15.14 odd 2 5175.2.a.by.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.5 6 1.1 even 1 trivial
1035.2.a.q.1.2 yes 6 3.2 odd 2
5175.2.a.by.1.5 6 15.14 odd 2
5175.2.a.bz.1.2 6 5.4 even 2