Properties

Label 1035.1.d.b
Level 10351035
Weight 11
Character orbit 1035.d
Self dual yes
Analytic conductor 0.5170.517
Analytic rank 00
Dimension 11
Projective image D2D_{2}
CM/RM discs -15, -115, 69
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1035,1,Mod(919,1035)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1035, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1035.919"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1035.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.5165322880750.516532288075
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(15,69)\Q(\sqrt{-15}, \sqrt{69})
Artin image: D4D_4
Artin field: Galois closure of 4.0.15525.2
Stark unit: Root of x41060x31722x21060x+1x^{4} - 1060x^{3} - 1722x^{2} - 1060x + 1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+q4+q5+q162q17+q20q23+q252q31q49+2q53+q642q68+q80+2q832q85q92+O(q100) q + q^{4} + q^{5} + q^{16} - 2 q^{17} + q^{20} - q^{23} + q^{25} - 2 q^{31} - q^{49} + 2 q^{53} + q^{64} - 2 q^{68} + q^{80} + 2 q^{83} - 2 q^{85} - q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1035Z)×\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times.

nn 461461 622622 856856
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
919.1
0
0 0 1.00000 1.00000 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
69.c even 2 1 RM by Q(69)\Q(\sqrt{69})
115.c odd 2 1 CM by Q(115)\Q(\sqrt{-115})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1035.1.d.b yes 1
3.b odd 2 1 1035.1.d.a 1
5.b even 2 1 1035.1.d.a 1
15.d odd 2 1 CM 1035.1.d.b yes 1
23.b odd 2 1 1035.1.d.a 1
69.c even 2 1 RM 1035.1.d.b yes 1
115.c odd 2 1 CM 1035.1.d.b yes 1
345.h even 2 1 1035.1.d.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1035.1.d.a 1 3.b odd 2 1
1035.1.d.a 1 5.b even 2 1
1035.1.d.a 1 23.b odd 2 1
1035.1.d.a 1 345.h even 2 1
1035.1.d.b yes 1 1.a even 1 1 trivial
1035.1.d.b yes 1 15.d odd 2 1 CM
1035.1.d.b yes 1 69.c even 2 1 RM
1035.1.d.b yes 1 115.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T17+2 T_{17} + 2 acting on S1new(1035,[χ])S_{1}^{\mathrm{new}}(1035, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T+2 T + 2 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T+1 T + 1 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T+2 T + 2 Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T2 T - 2 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T2 T - 2 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less