Properties

Label 1029.2.a.b
Level $1029$
Weight $2$
Character orbit 1029.a
Self dual yes
Analytic conductor $8.217$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1029,2,Mod(1,1029)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1029, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1029.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1029 = 3 \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1029.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-3,-1,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.21660636799\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + \beta_{2} q^{4} + 2 q^{5} + \beta_1 q^{6} + ( - \beta_{2} + 2 \beta_1 - 1) q^{8} + q^{9} - 2 \beta_1 q^{10} + \beta_1 q^{11} - \beta_{2} q^{12} + (2 \beta_{2} + 2) q^{13}+ \cdots + \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 3 q^{3} - q^{4} + 6 q^{5} + q^{6} + 3 q^{9} - 2 q^{10} + q^{11} + q^{12} + 4 q^{13} - 6 q^{15} - 5 q^{16} - q^{18} + 18 q^{19} - 2 q^{20} - 5 q^{22} + 7 q^{23} - 3 q^{25} - 6 q^{26}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.80194 −1.00000 1.24698 2.00000 1.80194 0 1.35690 1.00000 −3.60388
1.2 −0.445042 −1.00000 −1.80194 2.00000 0.445042 0 1.69202 1.00000 −0.890084
1.3 1.24698 −1.00000 −0.445042 2.00000 −1.24698 0 −3.04892 1.00000 2.49396
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1029.2.a.b 3
3.b odd 2 1 3087.2.a.b 3
7.b odd 2 1 1029.2.a.c yes 3
7.c even 3 2 1029.2.e.c 6
7.d odd 6 2 1029.2.e.b 6
21.c even 2 1 3087.2.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1029.2.a.b 3 1.a even 1 1 trivial
1029.2.a.c yes 3 7.b odd 2 1
1029.2.e.b 6 7.d odd 6 2
1029.2.e.c 6 7.c even 3 2
3087.2.a.b 3 3.b odd 2 1
3087.2.a.e 3 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1029))\):

\( T_{2}^{3} + T_{2}^{2} - 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T - 2)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 28T - 56 \) Copy content Toggle raw display
$19$ \( (T - 6)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 7 T^{2} + \cdots + 203 \) Copy content Toggle raw display
$29$ \( T^{3} - 5 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$31$ \( T^{3} - 8 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$37$ \( T^{3} + 19 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$43$ \( T^{3} - T^{2} + \cdots - 41 \) Copy content Toggle raw display
$47$ \( T^{3} - 18 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$53$ \( T^{3} - T^{2} + \cdots - 83 \) Copy content Toggle raw display
$59$ \( T^{3} - 22 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$61$ \( T^{3} - 12 T^{2} + \cdots + 832 \) Copy content Toggle raw display
$67$ \( T^{3} + 15 T^{2} + \cdots + 83 \) Copy content Toggle raw display
$71$ \( T^{3} - 17 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$73$ \( T^{3} - 16 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$79$ \( T^{3} - 11 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$83$ \( T^{3} - 24 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$89$ \( T^{3} + 6 T^{2} + \cdots - 776 \) Copy content Toggle raw display
$97$ \( T^{3} - 4 T^{2} + \cdots - 664 \) Copy content Toggle raw display
show more
show less