Properties

Label 1024.2.a.g.1.3
Level $1024$
Weight $2$
Character 1024.1
Self dual yes
Analytic conductor $8.177$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1024,2,Mod(1,1024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1024, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1024.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,4,0,-12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.17668116698\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 256)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.93185\) of defining polynomial
Character \(\chi\) \(=\) 1024.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{3} -2.44949 q^{5} +3.86370 q^{7} -2.46410 q^{9} -4.73205 q^{11} -0.378937 q^{13} -1.79315 q^{15} -3.46410 q^{17} -4.73205 q^{19} +2.82843 q^{21} +1.79315 q^{23} +1.00000 q^{25} -4.00000 q^{27} +2.44949 q^{29} -5.65685 q^{31} -3.46410 q^{33} -9.46410 q^{35} +5.27792 q^{37} -0.277401 q^{39} +6.92820 q^{41} +2.19615 q^{43} +6.03579 q^{45} -9.79796 q^{47} +7.92820 q^{49} -2.53590 q^{51} -10.9348 q^{53} +11.5911 q^{55} -3.46410 q^{57} -7.26795 q^{59} -5.27792 q^{61} -9.52056 q^{63} +0.928203 q^{65} -6.19615 q^{67} +1.31268 q^{69} -1.79315 q^{71} -2.53590 q^{73} +0.732051 q^{75} -18.2832 q^{77} +4.14110 q^{79} +4.46410 q^{81} +2.19615 q^{83} +8.48528 q^{85} +1.79315 q^{87} -2.53590 q^{89} -1.46410 q^{91} -4.14110 q^{93} +11.5911 q^{95} +3.46410 q^{97} +11.6603 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{9} - 12 q^{11} - 12 q^{19} + 4 q^{25} - 16 q^{27} - 24 q^{35} - 12 q^{43} + 4 q^{49} - 24 q^{51} - 36 q^{59} - 24 q^{65} - 4 q^{67} - 24 q^{73} - 4 q^{75} + 4 q^{81} - 12 q^{83} - 24 q^{89}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 0 0
\(5\) −2.44949 −1.09545 −0.547723 0.836660i \(-0.684505\pi\)
−0.547723 + 0.836660i \(0.684505\pi\)
\(6\) 0 0
\(7\) 3.86370 1.46034 0.730171 0.683264i \(-0.239440\pi\)
0.730171 + 0.683264i \(0.239440\pi\)
\(8\) 0 0
\(9\) −2.46410 −0.821367
\(10\) 0 0
\(11\) −4.73205 −1.42677 −0.713384 0.700774i \(-0.752838\pi\)
−0.713384 + 0.700774i \(0.752838\pi\)
\(12\) 0 0
\(13\) −0.378937 −0.105098 −0.0525492 0.998618i \(-0.516735\pi\)
−0.0525492 + 0.998618i \(0.516735\pi\)
\(14\) 0 0
\(15\) −1.79315 −0.462990
\(16\) 0 0
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0 0
\(19\) −4.73205 −1.08561 −0.542803 0.839860i \(-0.682637\pi\)
−0.542803 + 0.839860i \(0.682637\pi\)
\(20\) 0 0
\(21\) 2.82843 0.617213
\(22\) 0 0
\(23\) 1.79315 0.373898 0.186949 0.982370i \(-0.440140\pi\)
0.186949 + 0.982370i \(0.440140\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 2.44949 0.454859 0.227429 0.973795i \(-0.426968\pi\)
0.227429 + 0.973795i \(0.426968\pi\)
\(30\) 0 0
\(31\) −5.65685 −1.01600 −0.508001 0.861357i \(-0.669615\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) −9.46410 −1.59973
\(36\) 0 0
\(37\) 5.27792 0.867684 0.433842 0.900989i \(-0.357158\pi\)
0.433842 + 0.900989i \(0.357158\pi\)
\(38\) 0 0
\(39\) −0.277401 −0.0444198
\(40\) 0 0
\(41\) 6.92820 1.08200 0.541002 0.841021i \(-0.318045\pi\)
0.541002 + 0.841021i \(0.318045\pi\)
\(42\) 0 0
\(43\) 2.19615 0.334910 0.167455 0.985880i \(-0.446445\pi\)
0.167455 + 0.985880i \(0.446445\pi\)
\(44\) 0 0
\(45\) 6.03579 0.899763
\(46\) 0 0
\(47\) −9.79796 −1.42918 −0.714590 0.699544i \(-0.753387\pi\)
−0.714590 + 0.699544i \(0.753387\pi\)
\(48\) 0 0
\(49\) 7.92820 1.13260
\(50\) 0 0
\(51\) −2.53590 −0.355097
\(52\) 0 0
\(53\) −10.9348 −1.50201 −0.751003 0.660299i \(-0.770430\pi\)
−0.751003 + 0.660299i \(0.770430\pi\)
\(54\) 0 0
\(55\) 11.5911 1.56294
\(56\) 0 0
\(57\) −3.46410 −0.458831
\(58\) 0 0
\(59\) −7.26795 −0.946206 −0.473103 0.881007i \(-0.656866\pi\)
−0.473103 + 0.881007i \(0.656866\pi\)
\(60\) 0 0
\(61\) −5.27792 −0.675768 −0.337884 0.941188i \(-0.609711\pi\)
−0.337884 + 0.941188i \(0.609711\pi\)
\(62\) 0 0
\(63\) −9.52056 −1.19948
\(64\) 0 0
\(65\) 0.928203 0.115129
\(66\) 0 0
\(67\) −6.19615 −0.756980 −0.378490 0.925605i \(-0.623557\pi\)
−0.378490 + 0.925605i \(0.623557\pi\)
\(68\) 0 0
\(69\) 1.31268 0.158028
\(70\) 0 0
\(71\) −1.79315 −0.212808 −0.106404 0.994323i \(-0.533934\pi\)
−0.106404 + 0.994323i \(0.533934\pi\)
\(72\) 0 0
\(73\) −2.53590 −0.296804 −0.148402 0.988927i \(-0.547413\pi\)
−0.148402 + 0.988927i \(0.547413\pi\)
\(74\) 0 0
\(75\) 0.732051 0.0845299
\(76\) 0 0
\(77\) −18.2832 −2.08357
\(78\) 0 0
\(79\) 4.14110 0.465911 0.232955 0.972487i \(-0.425160\pi\)
0.232955 + 0.972487i \(0.425160\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) 2.19615 0.241059 0.120530 0.992710i \(-0.461541\pi\)
0.120530 + 0.992710i \(0.461541\pi\)
\(84\) 0 0
\(85\) 8.48528 0.920358
\(86\) 0 0
\(87\) 1.79315 0.192246
\(88\) 0 0
\(89\) −2.53590 −0.268805 −0.134402 0.990927i \(-0.542911\pi\)
−0.134402 + 0.990927i \(0.542911\pi\)
\(90\) 0 0
\(91\) −1.46410 −0.153480
\(92\) 0 0
\(93\) −4.14110 −0.429413
\(94\) 0 0
\(95\) 11.5911 1.18922
\(96\) 0 0
\(97\) 3.46410 0.351726 0.175863 0.984415i \(-0.443728\pi\)
0.175863 + 0.984415i \(0.443728\pi\)
\(98\) 0 0
\(99\) 11.6603 1.17190
\(100\) 0 0
\(101\) 1.13681 0.113117 0.0565585 0.998399i \(-0.481987\pi\)
0.0565585 + 0.998399i \(0.481987\pi\)
\(102\) 0 0
\(103\) 9.52056 0.938088 0.469044 0.883175i \(-0.344598\pi\)
0.469044 + 0.883175i \(0.344598\pi\)
\(104\) 0 0
\(105\) −6.92820 −0.676123
\(106\) 0 0
\(107\) −18.5885 −1.79701 −0.898507 0.438959i \(-0.855347\pi\)
−0.898507 + 0.438959i \(0.855347\pi\)
\(108\) 0 0
\(109\) 18.6622 1.78751 0.893756 0.448553i \(-0.148060\pi\)
0.893756 + 0.448553i \(0.148060\pi\)
\(110\) 0 0
\(111\) 3.86370 0.366726
\(112\) 0 0
\(113\) −12.9282 −1.21618 −0.608092 0.793867i \(-0.708065\pi\)
−0.608092 + 0.793867i \(0.708065\pi\)
\(114\) 0 0
\(115\) −4.39230 −0.409585
\(116\) 0 0
\(117\) 0.933740 0.0863243
\(118\) 0 0
\(119\) −13.3843 −1.22693
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 0 0
\(123\) 5.07180 0.457309
\(124\) 0 0
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) 5.65685 0.501965 0.250982 0.967992i \(-0.419246\pi\)
0.250982 + 0.967992i \(0.419246\pi\)
\(128\) 0 0
\(129\) 1.60770 0.141550
\(130\) 0 0
\(131\) −0.339746 −0.0296837 −0.0148419 0.999890i \(-0.504724\pi\)
−0.0148419 + 0.999890i \(0.504724\pi\)
\(132\) 0 0
\(133\) −18.2832 −1.58536
\(134\) 0 0
\(135\) 9.79796 0.843274
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 10.1962 0.864826 0.432413 0.901676i \(-0.357662\pi\)
0.432413 + 0.901676i \(0.357662\pi\)
\(140\) 0 0
\(141\) −7.17260 −0.604042
\(142\) 0 0
\(143\) 1.79315 0.149951
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 5.80385 0.478693
\(148\) 0 0
\(149\) 19.4201 1.59095 0.795476 0.605985i \(-0.207221\pi\)
0.795476 + 0.605985i \(0.207221\pi\)
\(150\) 0 0
\(151\) −9.52056 −0.774772 −0.387386 0.921918i \(-0.626622\pi\)
−0.387386 + 0.921918i \(0.626622\pi\)
\(152\) 0 0
\(153\) 8.53590 0.690086
\(154\) 0 0
\(155\) 13.8564 1.11297
\(156\) 0 0
\(157\) 10.1769 0.812205 0.406102 0.913828i \(-0.366888\pi\)
0.406102 + 0.913828i \(0.366888\pi\)
\(158\) 0 0
\(159\) −8.00481 −0.634823
\(160\) 0 0
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) 16.7321 1.31056 0.655278 0.755388i \(-0.272552\pi\)
0.655278 + 0.755388i \(0.272552\pi\)
\(164\) 0 0
\(165\) 8.48528 0.660578
\(166\) 0 0
\(167\) −18.7637 −1.45198 −0.725990 0.687705i \(-0.758618\pi\)
−0.725990 + 0.687705i \(0.758618\pi\)
\(168\) 0 0
\(169\) −12.8564 −0.988954
\(170\) 0 0
\(171\) 11.6603 0.891682
\(172\) 0 0
\(173\) 10.9348 0.831355 0.415678 0.909512i \(-0.363544\pi\)
0.415678 + 0.909512i \(0.363544\pi\)
\(174\) 0 0
\(175\) 3.86370 0.292069
\(176\) 0 0
\(177\) −5.32051 −0.399914
\(178\) 0 0
\(179\) 2.19615 0.164148 0.0820741 0.996626i \(-0.473846\pi\)
0.0820741 + 0.996626i \(0.473846\pi\)
\(180\) 0 0
\(181\) −22.8033 −1.69495 −0.847477 0.530832i \(-0.821880\pi\)
−0.847477 + 0.530832i \(0.821880\pi\)
\(182\) 0 0
\(183\) −3.86370 −0.285613
\(184\) 0 0
\(185\) −12.9282 −0.950500
\(186\) 0 0
\(187\) 16.3923 1.19872
\(188\) 0 0
\(189\) −15.4548 −1.12417
\(190\) 0 0
\(191\) 16.9706 1.22795 0.613973 0.789327i \(-0.289570\pi\)
0.613973 + 0.789327i \(0.289570\pi\)
\(192\) 0 0
\(193\) −18.3923 −1.32391 −0.661954 0.749545i \(-0.730272\pi\)
−0.661954 + 0.749545i \(0.730272\pi\)
\(194\) 0 0
\(195\) 0.679492 0.0486594
\(196\) 0 0
\(197\) −2.44949 −0.174519 −0.0872595 0.996186i \(-0.527811\pi\)
−0.0872595 + 0.996186i \(0.527811\pi\)
\(198\) 0 0
\(199\) −15.7322 −1.11523 −0.557614 0.830101i \(-0.688283\pi\)
−0.557614 + 0.830101i \(0.688283\pi\)
\(200\) 0 0
\(201\) −4.53590 −0.319938
\(202\) 0 0
\(203\) 9.46410 0.664250
\(204\) 0 0
\(205\) −16.9706 −1.18528
\(206\) 0 0
\(207\) −4.41851 −0.307107
\(208\) 0 0
\(209\) 22.3923 1.54891
\(210\) 0 0
\(211\) 10.1962 0.701932 0.350966 0.936388i \(-0.385853\pi\)
0.350966 + 0.936388i \(0.385853\pi\)
\(212\) 0 0
\(213\) −1.31268 −0.0899432
\(214\) 0 0
\(215\) −5.37945 −0.366876
\(216\) 0 0
\(217\) −21.8564 −1.48371
\(218\) 0 0
\(219\) −1.85641 −0.125444
\(220\) 0 0
\(221\) 1.31268 0.0883003
\(222\) 0 0
\(223\) −5.65685 −0.378811 −0.189405 0.981899i \(-0.560656\pi\)
−0.189405 + 0.981899i \(0.560656\pi\)
\(224\) 0 0
\(225\) −2.46410 −0.164273
\(226\) 0 0
\(227\) −21.1244 −1.40207 −0.701036 0.713126i \(-0.747279\pi\)
−0.701036 + 0.713126i \(0.747279\pi\)
\(228\) 0 0
\(229\) 13.0053 0.859416 0.429708 0.902968i \(-0.358617\pi\)
0.429708 + 0.902968i \(0.358617\pi\)
\(230\) 0 0
\(231\) −13.3843 −0.880620
\(232\) 0 0
\(233\) −2.53590 −0.166132 −0.0830661 0.996544i \(-0.526471\pi\)
−0.0830661 + 0.996544i \(0.526471\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 0 0
\(237\) 3.03150 0.196917
\(238\) 0 0
\(239\) 26.7685 1.73151 0.865756 0.500467i \(-0.166838\pi\)
0.865756 + 0.500467i \(0.166838\pi\)
\(240\) 0 0
\(241\) 2.39230 0.154102 0.0770510 0.997027i \(-0.475450\pi\)
0.0770510 + 0.997027i \(0.475450\pi\)
\(242\) 0 0
\(243\) 15.2679 0.979439
\(244\) 0 0
\(245\) −19.4201 −1.24070
\(246\) 0 0
\(247\) 1.79315 0.114095
\(248\) 0 0
\(249\) 1.60770 0.101884
\(250\) 0 0
\(251\) −21.1244 −1.33336 −0.666679 0.745345i \(-0.732285\pi\)
−0.666679 + 0.745345i \(0.732285\pi\)
\(252\) 0 0
\(253\) −8.48528 −0.533465
\(254\) 0 0
\(255\) 6.21166 0.388989
\(256\) 0 0
\(257\) 12.9282 0.806439 0.403220 0.915103i \(-0.367891\pi\)
0.403220 + 0.915103i \(0.367891\pi\)
\(258\) 0 0
\(259\) 20.3923 1.26712
\(260\) 0 0
\(261\) −6.03579 −0.373606
\(262\) 0 0
\(263\) −21.3891 −1.31891 −0.659453 0.751746i \(-0.729212\pi\)
−0.659453 + 0.751746i \(0.729212\pi\)
\(264\) 0 0
\(265\) 26.7846 1.64537
\(266\) 0 0
\(267\) −1.85641 −0.113610
\(268\) 0 0
\(269\) 7.34847 0.448044 0.224022 0.974584i \(-0.428081\pi\)
0.224022 + 0.974584i \(0.428081\pi\)
\(270\) 0 0
\(271\) 1.51575 0.0920752 0.0460376 0.998940i \(-0.485341\pi\)
0.0460376 + 0.998940i \(0.485341\pi\)
\(272\) 0 0
\(273\) −1.07180 −0.0648681
\(274\) 0 0
\(275\) −4.73205 −0.285353
\(276\) 0 0
\(277\) 4.52004 0.271583 0.135792 0.990737i \(-0.456642\pi\)
0.135792 + 0.990737i \(0.456642\pi\)
\(278\) 0 0
\(279\) 13.9391 0.834510
\(280\) 0 0
\(281\) 16.3923 0.977883 0.488941 0.872317i \(-0.337383\pi\)
0.488941 + 0.872317i \(0.337383\pi\)
\(282\) 0 0
\(283\) 1.80385 0.107228 0.0536138 0.998562i \(-0.482926\pi\)
0.0536138 + 0.998562i \(0.482926\pi\)
\(284\) 0 0
\(285\) 8.48528 0.502625
\(286\) 0 0
\(287\) 26.7685 1.58010
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 2.53590 0.148657
\(292\) 0 0
\(293\) 17.1464 1.00171 0.500853 0.865533i \(-0.333020\pi\)
0.500853 + 0.865533i \(0.333020\pi\)
\(294\) 0 0
\(295\) 17.8028 1.03652
\(296\) 0 0
\(297\) 18.9282 1.09833
\(298\) 0 0
\(299\) −0.679492 −0.0392960
\(300\) 0 0
\(301\) 8.48528 0.489083
\(302\) 0 0
\(303\) 0.832204 0.0478089
\(304\) 0 0
\(305\) 12.9282 0.740267
\(306\) 0 0
\(307\) 30.9808 1.76817 0.884083 0.467330i \(-0.154784\pi\)
0.884083 + 0.467330i \(0.154784\pi\)
\(308\) 0 0
\(309\) 6.96953 0.396483
\(310\) 0 0
\(311\) −15.1774 −0.860632 −0.430316 0.902678i \(-0.641598\pi\)
−0.430316 + 0.902678i \(0.641598\pi\)
\(312\) 0 0
\(313\) 12.7846 0.722629 0.361314 0.932444i \(-0.382328\pi\)
0.361314 + 0.932444i \(0.382328\pi\)
\(314\) 0 0
\(315\) 23.3205 1.31396
\(316\) 0 0
\(317\) 9.62209 0.540431 0.270215 0.962800i \(-0.412905\pi\)
0.270215 + 0.962800i \(0.412905\pi\)
\(318\) 0 0
\(319\) −11.5911 −0.648978
\(320\) 0 0
\(321\) −13.6077 −0.759507
\(322\) 0 0
\(323\) 16.3923 0.912092
\(324\) 0 0
\(325\) −0.378937 −0.0210197
\(326\) 0 0
\(327\) 13.6617 0.755492
\(328\) 0 0
\(329\) −37.8564 −2.08709
\(330\) 0 0
\(331\) −26.5885 −1.46143 −0.730717 0.682681i \(-0.760814\pi\)
−0.730717 + 0.682681i \(0.760814\pi\)
\(332\) 0 0
\(333\) −13.0053 −0.712687
\(334\) 0 0
\(335\) 15.1774 0.829231
\(336\) 0 0
\(337\) −21.7128 −1.18277 −0.591386 0.806389i \(-0.701419\pi\)
−0.591386 + 0.806389i \(0.701419\pi\)
\(338\) 0 0
\(339\) −9.46410 −0.514019
\(340\) 0 0
\(341\) 26.7685 1.44960
\(342\) 0 0
\(343\) 3.58630 0.193642
\(344\) 0 0
\(345\) −3.21539 −0.173111
\(346\) 0 0
\(347\) −7.26795 −0.390164 −0.195082 0.980787i \(-0.562497\pi\)
−0.195082 + 0.980787i \(0.562497\pi\)
\(348\) 0 0
\(349\) −5.83272 −0.312218 −0.156109 0.987740i \(-0.549895\pi\)
−0.156109 + 0.987740i \(0.549895\pi\)
\(350\) 0 0
\(351\) 1.51575 0.0809047
\(352\) 0 0
\(353\) −0.928203 −0.0494033 −0.0247016 0.999695i \(-0.507864\pi\)
−0.0247016 + 0.999695i \(0.507864\pi\)
\(354\) 0 0
\(355\) 4.39230 0.233119
\(356\) 0 0
\(357\) −9.79796 −0.518563
\(358\) 0 0
\(359\) 17.8028 0.939594 0.469797 0.882774i \(-0.344327\pi\)
0.469797 + 0.882774i \(0.344327\pi\)
\(360\) 0 0
\(361\) 3.39230 0.178542
\(362\) 0 0
\(363\) 8.33975 0.437723
\(364\) 0 0
\(365\) 6.21166 0.325133
\(366\) 0 0
\(367\) −32.4254 −1.69259 −0.846295 0.532714i \(-0.821172\pi\)
−0.846295 + 0.532714i \(0.821172\pi\)
\(368\) 0 0
\(369\) −17.0718 −0.888722
\(370\) 0 0
\(371\) −42.2487 −2.19344
\(372\) 0 0
\(373\) 19.9749 1.03426 0.517129 0.855907i \(-0.327001\pi\)
0.517129 + 0.855907i \(0.327001\pi\)
\(374\) 0 0
\(375\) 7.17260 0.370392
\(376\) 0 0
\(377\) −0.928203 −0.0478049
\(378\) 0 0
\(379\) 2.87564 0.147712 0.0738560 0.997269i \(-0.476469\pi\)
0.0738560 + 0.997269i \(0.476469\pi\)
\(380\) 0 0
\(381\) 4.14110 0.212155
\(382\) 0 0
\(383\) −19.5959 −1.00130 −0.500652 0.865648i \(-0.666906\pi\)
−0.500652 + 0.865648i \(0.666906\pi\)
\(384\) 0 0
\(385\) 44.7846 2.28244
\(386\) 0 0
\(387\) −5.41154 −0.275084
\(388\) 0 0
\(389\) −6.03579 −0.306027 −0.153013 0.988224i \(-0.548898\pi\)
−0.153013 + 0.988224i \(0.548898\pi\)
\(390\) 0 0
\(391\) −6.21166 −0.314137
\(392\) 0 0
\(393\) −0.248711 −0.0125458
\(394\) 0 0
\(395\) −10.1436 −0.510380
\(396\) 0 0
\(397\) −27.7023 −1.39034 −0.695168 0.718847i \(-0.744670\pi\)
−0.695168 + 0.718847i \(0.744670\pi\)
\(398\) 0 0
\(399\) −13.3843 −0.670051
\(400\) 0 0
\(401\) −13.6077 −0.679536 −0.339768 0.940509i \(-0.610349\pi\)
−0.339768 + 0.940509i \(0.610349\pi\)
\(402\) 0 0
\(403\) 2.14359 0.106780
\(404\) 0 0
\(405\) −10.9348 −0.543353
\(406\) 0 0
\(407\) −24.9754 −1.23798
\(408\) 0 0
\(409\) 17.0718 0.844146 0.422073 0.906562i \(-0.361303\pi\)
0.422073 + 0.906562i \(0.361303\pi\)
\(410\) 0 0
\(411\) 8.78461 0.433313
\(412\) 0 0
\(413\) −28.0812 −1.38179
\(414\) 0 0
\(415\) −5.37945 −0.264067
\(416\) 0 0
\(417\) 7.46410 0.365519
\(418\) 0 0
\(419\) −14.1962 −0.693527 −0.346764 0.937953i \(-0.612719\pi\)
−0.346764 + 0.937953i \(0.612719\pi\)
\(420\) 0 0
\(421\) −26.1865 −1.27625 −0.638126 0.769932i \(-0.720290\pi\)
−0.638126 + 0.769932i \(0.720290\pi\)
\(422\) 0 0
\(423\) 24.1432 1.17388
\(424\) 0 0
\(425\) −3.46410 −0.168034
\(426\) 0 0
\(427\) −20.3923 −0.986853
\(428\) 0 0
\(429\) 1.31268 0.0633767
\(430\) 0 0
\(431\) 26.7685 1.28939 0.644697 0.764438i \(-0.276983\pi\)
0.644697 + 0.764438i \(0.276983\pi\)
\(432\) 0 0
\(433\) 34.3923 1.65279 0.826394 0.563092i \(-0.190388\pi\)
0.826394 + 0.563092i \(0.190388\pi\)
\(434\) 0 0
\(435\) −4.39230 −0.210595
\(436\) 0 0
\(437\) −8.48528 −0.405906
\(438\) 0 0
\(439\) −12.1459 −0.579693 −0.289846 0.957073i \(-0.593604\pi\)
−0.289846 + 0.957073i \(0.593604\pi\)
\(440\) 0 0
\(441\) −19.5359 −0.930281
\(442\) 0 0
\(443\) −14.1962 −0.674480 −0.337240 0.941419i \(-0.609493\pi\)
−0.337240 + 0.941419i \(0.609493\pi\)
\(444\) 0 0
\(445\) 6.21166 0.294461
\(446\) 0 0
\(447\) 14.2165 0.672416
\(448\) 0 0
\(449\) −24.2487 −1.14437 −0.572184 0.820125i \(-0.693904\pi\)
−0.572184 + 0.820125i \(0.693904\pi\)
\(450\) 0 0
\(451\) −32.7846 −1.54377
\(452\) 0 0
\(453\) −6.96953 −0.327457
\(454\) 0 0
\(455\) 3.58630 0.168128
\(456\) 0 0
\(457\) −20.7846 −0.972263 −0.486132 0.873886i \(-0.661592\pi\)
−0.486132 + 0.873886i \(0.661592\pi\)
\(458\) 0 0
\(459\) 13.8564 0.646762
\(460\) 0 0
\(461\) 34.1170 1.58899 0.794493 0.607273i \(-0.207737\pi\)
0.794493 + 0.607273i \(0.207737\pi\)
\(462\) 0 0
\(463\) −38.0822 −1.76983 −0.884916 0.465751i \(-0.845784\pi\)
−0.884916 + 0.465751i \(0.845784\pi\)
\(464\) 0 0
\(465\) 10.1436 0.470398
\(466\) 0 0
\(467\) −28.7321 −1.32956 −0.664780 0.747039i \(-0.731475\pi\)
−0.664780 + 0.747039i \(0.731475\pi\)
\(468\) 0 0
\(469\) −23.9401 −1.10545
\(470\) 0 0
\(471\) 7.45001 0.343278
\(472\) 0 0
\(473\) −10.3923 −0.477839
\(474\) 0 0
\(475\) −4.73205 −0.217121
\(476\) 0 0
\(477\) 26.9444 1.23370
\(478\) 0 0
\(479\) −36.5665 −1.67077 −0.835383 0.549669i \(-0.814754\pi\)
−0.835383 + 0.549669i \(0.814754\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 5.07180 0.230775
\(484\) 0 0
\(485\) −8.48528 −0.385297
\(486\) 0 0
\(487\) −27.0459 −1.22557 −0.612784 0.790251i \(-0.709950\pi\)
−0.612784 + 0.790251i \(0.709950\pi\)
\(488\) 0 0
\(489\) 12.2487 0.553906
\(490\) 0 0
\(491\) −21.8038 −0.983994 −0.491997 0.870597i \(-0.663733\pi\)
−0.491997 + 0.870597i \(0.663733\pi\)
\(492\) 0 0
\(493\) −8.48528 −0.382158
\(494\) 0 0
\(495\) −28.5617 −1.28375
\(496\) 0 0
\(497\) −6.92820 −0.310772
\(498\) 0 0
\(499\) −5.80385 −0.259816 −0.129908 0.991526i \(-0.541468\pi\)
−0.129908 + 0.991526i \(0.541468\pi\)
\(500\) 0 0
\(501\) −13.7360 −0.613679
\(502\) 0 0
\(503\) 40.9850 1.82743 0.913715 0.406355i \(-0.133200\pi\)
0.913715 + 0.406355i \(0.133200\pi\)
\(504\) 0 0
\(505\) −2.78461 −0.123914
\(506\) 0 0
\(507\) −9.41154 −0.417981
\(508\) 0 0
\(509\) −13.5601 −0.601042 −0.300521 0.953775i \(-0.597161\pi\)
−0.300521 + 0.953775i \(0.597161\pi\)
\(510\) 0 0
\(511\) −9.79796 −0.433436
\(512\) 0 0
\(513\) 18.9282 0.835701
\(514\) 0 0
\(515\) −23.3205 −1.02762
\(516\) 0 0
\(517\) 46.3644 2.03911
\(518\) 0 0
\(519\) 8.00481 0.351372
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 19.2679 0.842529 0.421264 0.906938i \(-0.361586\pi\)
0.421264 + 0.906938i \(0.361586\pi\)
\(524\) 0 0
\(525\) 2.82843 0.123443
\(526\) 0 0
\(527\) 19.5959 0.853612
\(528\) 0 0
\(529\) −19.7846 −0.860200
\(530\) 0 0
\(531\) 17.9090 0.777183
\(532\) 0 0
\(533\) −2.62536 −0.113717
\(534\) 0 0
\(535\) 45.5322 1.96853
\(536\) 0 0
\(537\) 1.60770 0.0693772
\(538\) 0 0
\(539\) −37.5167 −1.61596
\(540\) 0 0
\(541\) 14.3180 0.615579 0.307789 0.951454i \(-0.400411\pi\)
0.307789 + 0.951454i \(0.400411\pi\)
\(542\) 0 0
\(543\) −16.6932 −0.716372
\(544\) 0 0
\(545\) −45.7128 −1.95812
\(546\) 0 0
\(547\) −0.339746 −0.0145265 −0.00726324 0.999974i \(-0.502312\pi\)
−0.00726324 + 0.999974i \(0.502312\pi\)
\(548\) 0 0
\(549\) 13.0053 0.555054
\(550\) 0 0
\(551\) −11.5911 −0.493798
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 0 0
\(555\) −9.46410 −0.401729
\(556\) 0 0
\(557\) −15.8338 −0.670898 −0.335449 0.942058i \(-0.608888\pi\)
−0.335449 + 0.942058i \(0.608888\pi\)
\(558\) 0 0
\(559\) −0.832204 −0.0351985
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) −14.8756 −0.626934 −0.313467 0.949599i \(-0.601490\pi\)
−0.313467 + 0.949599i \(0.601490\pi\)
\(564\) 0 0
\(565\) 31.6675 1.33226
\(566\) 0 0
\(567\) 17.2480 0.724346
\(568\) 0 0
\(569\) 12.0000 0.503066 0.251533 0.967849i \(-0.419065\pi\)
0.251533 + 0.967849i \(0.419065\pi\)
\(570\) 0 0
\(571\) −30.1962 −1.26367 −0.631835 0.775103i \(-0.717698\pi\)
−0.631835 + 0.775103i \(0.717698\pi\)
\(572\) 0 0
\(573\) 12.4233 0.518991
\(574\) 0 0
\(575\) 1.79315 0.0747796
\(576\) 0 0
\(577\) −43.8564 −1.82577 −0.912883 0.408221i \(-0.866149\pi\)
−0.912883 + 0.408221i \(0.866149\pi\)
\(578\) 0 0
\(579\) −13.4641 −0.559549
\(580\) 0 0
\(581\) 8.48528 0.352029
\(582\) 0 0
\(583\) 51.7439 2.14301
\(584\) 0 0
\(585\) −2.28719 −0.0945635
\(586\) 0 0
\(587\) 9.12436 0.376602 0.188301 0.982111i \(-0.439702\pi\)
0.188301 + 0.982111i \(0.439702\pi\)
\(588\) 0 0
\(589\) 26.7685 1.10298
\(590\) 0 0
\(591\) −1.79315 −0.0737604
\(592\) 0 0
\(593\) 19.8564 0.815405 0.407702 0.913115i \(-0.366330\pi\)
0.407702 + 0.913115i \(0.366330\pi\)
\(594\) 0 0
\(595\) 32.7846 1.34404
\(596\) 0 0
\(597\) −11.5168 −0.471350
\(598\) 0 0
\(599\) 4.41851 0.180535 0.0902676 0.995918i \(-0.471228\pi\)
0.0902676 + 0.995918i \(0.471228\pi\)
\(600\) 0 0
\(601\) −40.3923 −1.64764 −0.823818 0.566854i \(-0.808160\pi\)
−0.823818 + 0.566854i \(0.808160\pi\)
\(602\) 0 0
\(603\) 15.2679 0.621759
\(604\) 0 0
\(605\) −27.9053 −1.13451
\(606\) 0 0
\(607\) 8.28221 0.336165 0.168082 0.985773i \(-0.446243\pi\)
0.168082 + 0.985773i \(0.446243\pi\)
\(608\) 0 0
\(609\) 6.92820 0.280745
\(610\) 0 0
\(611\) 3.71281 0.150204
\(612\) 0 0
\(613\) 21.2875 0.859795 0.429898 0.902878i \(-0.358550\pi\)
0.429898 + 0.902878i \(0.358550\pi\)
\(614\) 0 0
\(615\) −12.4233 −0.500956
\(616\) 0 0
\(617\) −11.3205 −0.455746 −0.227873 0.973691i \(-0.573177\pi\)
−0.227873 + 0.973691i \(0.573177\pi\)
\(618\) 0 0
\(619\) −26.5885 −1.06868 −0.534340 0.845270i \(-0.679440\pi\)
−0.534340 + 0.845270i \(0.679440\pi\)
\(620\) 0 0
\(621\) −7.17260 −0.287827
\(622\) 0 0
\(623\) −9.79796 −0.392547
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 16.3923 0.654646
\(628\) 0 0
\(629\) −18.2832 −0.729001
\(630\) 0 0
\(631\) −1.23835 −0.0492979 −0.0246489 0.999696i \(-0.507847\pi\)
−0.0246489 + 0.999696i \(0.507847\pi\)
\(632\) 0 0
\(633\) 7.46410 0.296671
\(634\) 0 0
\(635\) −13.8564 −0.549875
\(636\) 0 0
\(637\) −3.00429 −0.119034
\(638\) 0 0
\(639\) 4.41851 0.174793
\(640\) 0 0
\(641\) 13.6077 0.537472 0.268736 0.963214i \(-0.413394\pi\)
0.268736 + 0.963214i \(0.413394\pi\)
\(642\) 0 0
\(643\) 9.80385 0.386626 0.193313 0.981137i \(-0.438077\pi\)
0.193313 + 0.981137i \(0.438077\pi\)
\(644\) 0 0
\(645\) −3.93803 −0.155060
\(646\) 0 0
\(647\) −1.79315 −0.0704960 −0.0352480 0.999379i \(-0.511222\pi\)
−0.0352480 + 0.999379i \(0.511222\pi\)
\(648\) 0 0
\(649\) 34.3923 1.35002
\(650\) 0 0
\(651\) −16.0000 −0.627089
\(652\) 0 0
\(653\) 21.6937 0.848939 0.424470 0.905442i \(-0.360461\pi\)
0.424470 + 0.905442i \(0.360461\pi\)
\(654\) 0 0
\(655\) 0.832204 0.0325169
\(656\) 0 0
\(657\) 6.24871 0.243785
\(658\) 0 0
\(659\) −25.5167 −0.993988 −0.496994 0.867754i \(-0.665563\pi\)
−0.496994 + 0.867754i \(0.665563\pi\)
\(660\) 0 0
\(661\) −25.8348 −1.00486 −0.502428 0.864619i \(-0.667560\pi\)
−0.502428 + 0.864619i \(0.667560\pi\)
\(662\) 0 0
\(663\) 0.960947 0.0373201
\(664\) 0 0
\(665\) 44.7846 1.73667
\(666\) 0 0
\(667\) 4.39230 0.170071
\(668\) 0 0
\(669\) −4.14110 −0.160104
\(670\) 0 0
\(671\) 24.9754 0.964163
\(672\) 0 0
\(673\) 41.3205 1.59279 0.796394 0.604778i \(-0.206738\pi\)
0.796394 + 0.604778i \(0.206738\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) −39.9769 −1.53644 −0.768219 0.640187i \(-0.778857\pi\)
−0.768219 + 0.640187i \(0.778857\pi\)
\(678\) 0 0
\(679\) 13.3843 0.513641
\(680\) 0 0
\(681\) −15.4641 −0.592586
\(682\) 0 0
\(683\) 12.3397 0.472167 0.236084 0.971733i \(-0.424136\pi\)
0.236084 + 0.971733i \(0.424136\pi\)
\(684\) 0 0
\(685\) −29.3939 −1.12308
\(686\) 0 0
\(687\) 9.52056 0.363232
\(688\) 0 0
\(689\) 4.14359 0.157858
\(690\) 0 0
\(691\) −39.3731 −1.49782 −0.748911 0.662671i \(-0.769423\pi\)
−0.748911 + 0.662671i \(0.769423\pi\)
\(692\) 0 0
\(693\) 45.0518 1.71137
\(694\) 0 0
\(695\) −24.9754 −0.947370
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 0 0
\(699\) −1.85641 −0.0702157
\(700\) 0 0
\(701\) 13.2084 0.498874 0.249437 0.968391i \(-0.419754\pi\)
0.249437 + 0.968391i \(0.419754\pi\)
\(702\) 0 0
\(703\) −24.9754 −0.941964
\(704\) 0 0
\(705\) 17.5692 0.661695
\(706\) 0 0
\(707\) 4.39230 0.165190
\(708\) 0 0
\(709\) −41.0865 −1.54304 −0.771518 0.636207i \(-0.780502\pi\)
−0.771518 + 0.636207i \(0.780502\pi\)
\(710\) 0 0
\(711\) −10.2041 −0.382684
\(712\) 0 0
\(713\) −10.1436 −0.379881
\(714\) 0 0
\(715\) −4.39230 −0.164263
\(716\) 0 0
\(717\) 19.5959 0.731823
\(718\) 0 0
\(719\) 12.4233 0.463311 0.231656 0.972798i \(-0.425586\pi\)
0.231656 + 0.972798i \(0.425586\pi\)
\(720\) 0 0
\(721\) 36.7846 1.36993
\(722\) 0 0
\(723\) 1.75129 0.0651311
\(724\) 0 0
\(725\) 2.44949 0.0909718
\(726\) 0 0
\(727\) −23.4596 −0.870069 −0.435035 0.900414i \(-0.643264\pi\)
−0.435035 + 0.900414i \(0.643264\pi\)
\(728\) 0 0
\(729\) −2.21539 −0.0820515
\(730\) 0 0
\(731\) −7.60770 −0.281381
\(732\) 0 0
\(733\) 20.9358 0.773281 0.386641 0.922230i \(-0.373635\pi\)
0.386641 + 0.922230i \(0.373635\pi\)
\(734\) 0 0
\(735\) −14.2165 −0.524382
\(736\) 0 0
\(737\) 29.3205 1.08003
\(738\) 0 0
\(739\) −2.98076 −0.109649 −0.0548246 0.998496i \(-0.517460\pi\)
−0.0548246 + 0.998496i \(0.517460\pi\)
\(740\) 0 0
\(741\) 1.31268 0.0482224
\(742\) 0 0
\(743\) 15.1774 0.556805 0.278403 0.960464i \(-0.410195\pi\)
0.278403 + 0.960464i \(0.410195\pi\)
\(744\) 0 0
\(745\) −47.5692 −1.74280
\(746\) 0 0
\(747\) −5.41154 −0.197998
\(748\) 0 0
\(749\) −71.8203 −2.62426
\(750\) 0 0
\(751\) −4.14110 −0.151111 −0.0755555 0.997142i \(-0.524073\pi\)
−0.0755555 + 0.997142i \(0.524073\pi\)
\(752\) 0 0
\(753\) −15.4641 −0.563543
\(754\) 0 0
\(755\) 23.3205 0.848720
\(756\) 0 0
\(757\) 30.7338 1.11704 0.558519 0.829492i \(-0.311370\pi\)
0.558519 + 0.829492i \(0.311370\pi\)
\(758\) 0 0
\(759\) −6.21166 −0.225469
\(760\) 0 0
\(761\) 34.6410 1.25574 0.627868 0.778320i \(-0.283928\pi\)
0.627868 + 0.778320i \(0.283928\pi\)
\(762\) 0 0
\(763\) 72.1051 2.61038
\(764\) 0 0
\(765\) −20.9086 −0.755952
\(766\) 0 0
\(767\) 2.75410 0.0994447
\(768\) 0 0
\(769\) −2.39230 −0.0862687 −0.0431344 0.999069i \(-0.513734\pi\)
−0.0431344 + 0.999069i \(0.513734\pi\)
\(770\) 0 0
\(771\) 9.46410 0.340841
\(772\) 0 0
\(773\) 20.7327 0.745704 0.372852 0.927891i \(-0.378380\pi\)
0.372852 + 0.927891i \(0.378380\pi\)
\(774\) 0 0
\(775\) −5.65685 −0.203200
\(776\) 0 0
\(777\) 14.9282 0.535546
\(778\) 0 0
\(779\) −32.7846 −1.17463
\(780\) 0 0
\(781\) 8.48528 0.303627
\(782\) 0 0
\(783\) −9.79796 −0.350150
\(784\) 0 0
\(785\) −24.9282 −0.889726
\(786\) 0 0
\(787\) −35.6603 −1.27115 −0.635575 0.772039i \(-0.719237\pi\)
−0.635575 + 0.772039i \(0.719237\pi\)
\(788\) 0 0
\(789\) −15.6579 −0.557435
\(790\) 0 0
\(791\) −49.9507 −1.77604
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 0 0
\(795\) 19.6077 0.695413
\(796\) 0 0
\(797\) −47.5013 −1.68258 −0.841290 0.540584i \(-0.818203\pi\)
−0.841290 + 0.540584i \(0.818203\pi\)
\(798\) 0 0
\(799\) 33.9411 1.20075
\(800\) 0 0
\(801\) 6.24871 0.220787
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −16.9706 −0.598134
\(806\) 0 0
\(807\) 5.37945 0.189366
\(808\) 0 0
\(809\) 17.0718 0.600212 0.300106 0.953906i \(-0.402978\pi\)
0.300106 + 0.953906i \(0.402978\pi\)
\(810\) 0 0
\(811\) 46.9808 1.64972 0.824859 0.565339i \(-0.191255\pi\)
0.824859 + 0.565339i \(0.191255\pi\)
\(812\) 0 0
\(813\) 1.10961 0.0389156
\(814\) 0 0
\(815\) −40.9850 −1.43564
\(816\) 0 0
\(817\) −10.3923 −0.363581
\(818\) 0 0
\(819\) 3.60770 0.126063
\(820\) 0 0
\(821\) 28.2571 0.986178 0.493089 0.869979i \(-0.335868\pi\)
0.493089 + 0.869979i \(0.335868\pi\)
\(822\) 0 0
\(823\) 15.7322 0.548391 0.274195 0.961674i \(-0.411589\pi\)
0.274195 + 0.961674i \(0.411589\pi\)
\(824\) 0 0
\(825\) −3.46410 −0.120605
\(826\) 0 0
\(827\) 23.6603 0.822748 0.411374 0.911467i \(-0.365049\pi\)
0.411374 + 0.911467i \(0.365049\pi\)
\(828\) 0 0
\(829\) 3.00429 0.104343 0.0521717 0.998638i \(-0.483386\pi\)
0.0521717 + 0.998638i \(0.483386\pi\)
\(830\) 0 0
\(831\) 3.30890 0.114784
\(832\) 0 0
\(833\) −27.4641 −0.951575
\(834\) 0 0
\(835\) 45.9615 1.59056
\(836\) 0 0
\(837\) 22.6274 0.782118
\(838\) 0 0
\(839\) −38.3596 −1.32432 −0.662161 0.749362i \(-0.730360\pi\)
−0.662161 + 0.749362i \(0.730360\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) 0 0
\(843\) 12.0000 0.413302
\(844\) 0 0
\(845\) 31.4916 1.08335
\(846\) 0 0
\(847\) 44.0165 1.51242
\(848\) 0 0
\(849\) 1.32051 0.0453197
\(850\) 0 0
\(851\) 9.46410 0.324425
\(852\) 0 0
\(853\) −13.9663 −0.478196 −0.239098 0.970995i \(-0.576852\pi\)
−0.239098 + 0.970995i \(0.576852\pi\)
\(854\) 0 0
\(855\) −28.5617 −0.976789
\(856\) 0 0
\(857\) −25.8564 −0.883238 −0.441619 0.897203i \(-0.645596\pi\)
−0.441619 + 0.897203i \(0.645596\pi\)
\(858\) 0 0
\(859\) 20.4449 0.697570 0.348785 0.937203i \(-0.386594\pi\)
0.348785 + 0.937203i \(0.386594\pi\)
\(860\) 0 0
\(861\) 19.5959 0.667827
\(862\) 0 0
\(863\) 2.62536 0.0893681 0.0446841 0.999001i \(-0.485772\pi\)
0.0446841 + 0.999001i \(0.485772\pi\)
\(864\) 0 0
\(865\) −26.7846 −0.910704
\(866\) 0 0
\(867\) −3.66025 −0.124309
\(868\) 0 0
\(869\) −19.5959 −0.664746
\(870\) 0 0
\(871\) 2.34795 0.0795574
\(872\) 0 0
\(873\) −8.53590 −0.288896
\(874\) 0 0
\(875\) 37.8564 1.27978
\(876\) 0 0
\(877\) 22.8033 0.770012 0.385006 0.922914i \(-0.374199\pi\)
0.385006 + 0.922914i \(0.374199\pi\)
\(878\) 0 0
\(879\) 12.5521 0.423370
\(880\) 0 0
\(881\) −31.8564 −1.07327 −0.536635 0.843815i \(-0.680305\pi\)
−0.536635 + 0.843815i \(0.680305\pi\)
\(882\) 0 0
\(883\) 57.1244 1.92239 0.961194 0.275874i \(-0.0889672\pi\)
0.961194 + 0.275874i \(0.0889672\pi\)
\(884\) 0 0
\(885\) 13.0325 0.438084
\(886\) 0 0
\(887\) −15.1774 −0.509608 −0.254804 0.966993i \(-0.582011\pi\)
−0.254804 + 0.966993i \(0.582011\pi\)
\(888\) 0 0
\(889\) 21.8564 0.733040
\(890\) 0 0
\(891\) −21.1244 −0.707693
\(892\) 0 0
\(893\) 46.3644 1.55153
\(894\) 0 0
\(895\) −5.37945 −0.179815
\(896\) 0 0
\(897\) −0.497423 −0.0166085
\(898\) 0 0
\(899\) −13.8564 −0.462137
\(900\) 0 0
\(901\) 37.8792 1.26194
\(902\) 0 0
\(903\) 6.21166 0.206711
\(904\) 0 0
\(905\) 55.8564 1.85673
\(906\) 0 0
\(907\) 29.9090 0.993111 0.496555 0.868005i \(-0.334598\pi\)
0.496555 + 0.868005i \(0.334598\pi\)
\(908\) 0 0
\(909\) −2.80122 −0.0929106
\(910\) 0 0
\(911\) 24.1432 0.799899 0.399949 0.916537i \(-0.369028\pi\)
0.399949 + 0.916537i \(0.369028\pi\)
\(912\) 0 0
\(913\) −10.3923 −0.343935
\(914\) 0 0
\(915\) 9.46410 0.312874
\(916\) 0 0
\(917\) −1.31268 −0.0433484
\(918\) 0 0
\(919\) 18.3576 0.605560 0.302780 0.953060i \(-0.402085\pi\)
0.302780 + 0.953060i \(0.402085\pi\)
\(920\) 0 0
\(921\) 22.6795 0.747315
\(922\) 0 0
\(923\) 0.679492 0.0223657
\(924\) 0 0
\(925\) 5.27792 0.173537
\(926\) 0 0
\(927\) −23.4596 −0.770515
\(928\) 0 0
\(929\) 3.46410 0.113653 0.0568267 0.998384i \(-0.481902\pi\)
0.0568267 + 0.998384i \(0.481902\pi\)
\(930\) 0 0
\(931\) −37.5167 −1.22956
\(932\) 0 0
\(933\) −11.1106 −0.363746
\(934\) 0 0
\(935\) −40.1528 −1.31314
\(936\) 0 0
\(937\) 9.17691 0.299797 0.149898 0.988701i \(-0.452105\pi\)
0.149898 + 0.988701i \(0.452105\pi\)
\(938\) 0 0
\(939\) 9.35898 0.305419
\(940\) 0 0
\(941\) −26.5927 −0.866896 −0.433448 0.901179i \(-0.642703\pi\)
−0.433448 + 0.901179i \(0.642703\pi\)
\(942\) 0 0
\(943\) 12.4233 0.404559
\(944\) 0 0
\(945\) 37.8564 1.23147
\(946\) 0 0
\(947\) 19.2679 0.626124 0.313062 0.949733i \(-0.398645\pi\)
0.313062 + 0.949733i \(0.398645\pi\)
\(948\) 0 0
\(949\) 0.960947 0.0311936
\(950\) 0 0
\(951\) 7.04386 0.228413
\(952\) 0 0
\(953\) −53.5692 −1.73528 −0.867639 0.497195i \(-0.834363\pi\)
−0.867639 + 0.497195i \(0.834363\pi\)
\(954\) 0 0
\(955\) −41.5692 −1.34515
\(956\) 0 0
\(957\) −8.48528 −0.274290
\(958\) 0 0
\(959\) 46.3644 1.49719
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 45.8038 1.47601
\(964\) 0 0
\(965\) 45.0518 1.45027
\(966\) 0 0
\(967\) −27.0459 −0.869738 −0.434869 0.900494i \(-0.643205\pi\)
−0.434869 + 0.900494i \(0.643205\pi\)
\(968\) 0 0
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) −39.3731 −1.26354 −0.631771 0.775155i \(-0.717672\pi\)
−0.631771 + 0.775155i \(0.717672\pi\)
\(972\) 0 0
\(973\) 39.3949 1.26294
\(974\) 0 0
\(975\) −0.277401 −0.00888396
\(976\) 0 0
\(977\) 44.5359 1.42483 0.712415 0.701759i \(-0.247601\pi\)
0.712415 + 0.701759i \(0.247601\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) −45.9855 −1.46820
\(982\) 0 0
\(983\) 52.7048 1.68102 0.840512 0.541793i \(-0.182255\pi\)
0.840512 + 0.541793i \(0.182255\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) −27.7128 −0.882109
\(988\) 0 0
\(989\) 3.93803 0.125222
\(990\) 0 0
\(991\) 61.8193 1.96375 0.981877 0.189521i \(-0.0606936\pi\)
0.981877 + 0.189521i \(0.0606936\pi\)
\(992\) 0 0
\(993\) −19.4641 −0.617675
\(994\) 0 0
\(995\) 38.5359 1.22167
\(996\) 0 0
\(997\) −21.4906 −0.680614 −0.340307 0.940314i \(-0.610531\pi\)
−0.340307 + 0.940314i \(0.610531\pi\)
\(998\) 0 0
\(999\) −21.1117 −0.667944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1024.2.a.g.1.3 4
3.2 odd 2 9216.2.a.bk.1.4 4
4.3 odd 2 1024.2.a.j.1.1 4
8.3 odd 2 inner 1024.2.a.g.1.4 4
8.5 even 2 1024.2.a.j.1.2 4
12.11 even 2 9216.2.a.bb.1.3 4
16.3 odd 4 1024.2.b.h.513.4 8
16.5 even 4 1024.2.b.h.513.3 8
16.11 odd 4 1024.2.b.h.513.5 8
16.13 even 4 1024.2.b.h.513.6 8
24.5 odd 2 9216.2.a.bb.1.2 4
24.11 even 2 9216.2.a.bk.1.1 4
32.3 odd 8 256.2.e.b.65.2 yes 8
32.5 even 8 256.2.e.a.193.2 yes 8
32.11 odd 8 256.2.e.b.193.2 yes 8
32.13 even 8 256.2.e.a.65.2 8
32.19 odd 8 256.2.e.a.65.3 yes 8
32.21 even 8 256.2.e.b.193.3 yes 8
32.27 odd 8 256.2.e.a.193.3 yes 8
32.29 even 8 256.2.e.b.65.3 yes 8
96.5 odd 8 2304.2.k.f.1729.4 8
96.11 even 8 2304.2.k.k.1729.1 8
96.29 odd 8 2304.2.k.k.577.1 8
96.35 even 8 2304.2.k.k.577.2 8
96.53 odd 8 2304.2.k.k.1729.2 8
96.59 even 8 2304.2.k.f.1729.3 8
96.77 odd 8 2304.2.k.f.577.3 8
96.83 even 8 2304.2.k.f.577.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
256.2.e.a.65.2 8 32.13 even 8
256.2.e.a.65.3 yes 8 32.19 odd 8
256.2.e.a.193.2 yes 8 32.5 even 8
256.2.e.a.193.3 yes 8 32.27 odd 8
256.2.e.b.65.2 yes 8 32.3 odd 8
256.2.e.b.65.3 yes 8 32.29 even 8
256.2.e.b.193.2 yes 8 32.11 odd 8
256.2.e.b.193.3 yes 8 32.21 even 8
1024.2.a.g.1.3 4 1.1 even 1 trivial
1024.2.a.g.1.4 4 8.3 odd 2 inner
1024.2.a.j.1.1 4 4.3 odd 2
1024.2.a.j.1.2 4 8.5 even 2
1024.2.b.h.513.3 8 16.5 even 4
1024.2.b.h.513.4 8 16.3 odd 4
1024.2.b.h.513.5 8 16.11 odd 4
1024.2.b.h.513.6 8 16.13 even 4
2304.2.k.f.577.3 8 96.77 odd 8
2304.2.k.f.577.4 8 96.83 even 8
2304.2.k.f.1729.3 8 96.59 even 8
2304.2.k.f.1729.4 8 96.5 odd 8
2304.2.k.k.577.1 8 96.29 odd 8
2304.2.k.k.577.2 8 96.35 even 8
2304.2.k.k.1729.1 8 96.11 even 8
2304.2.k.k.1729.2 8 96.53 odd 8
9216.2.a.bb.1.2 4 24.5 odd 2
9216.2.a.bb.1.3 4 12.11 even 2
9216.2.a.bk.1.1 4 24.11 even 2
9216.2.a.bk.1.4 4 3.2 odd 2