Properties

Label 1020.2.g.d.409.7
Level $1020$
Weight $2$
Character 1020.409
Analytic conductor $8.145$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1020,2,Mod(409,1020)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1020.409"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1020, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1020 = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1020.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,-10,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.14474100617\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 14x^{7} + 42x^{6} + 2x^{5} + 10x^{4} + 54x^{3} + 121x^{2} + 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 409.7
Root \(-1.29737 + 1.29737i\) of defining polynomial
Character \(\chi\) \(=\) 1020.409
Dual form 1020.2.g.d.409.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.55795 + 1.60399i) q^{5} +3.74956i q^{7} -1.00000 q^{9} -4.55583 q^{11} -5.60969i q^{13} +(-1.60399 - 1.55795i) q^{15} +1.00000i q^{17} -3.76805 q^{19} -3.74956 q^{21} +2.71420i q^{23} +(-0.145568 - 4.99788i) q^{25} -1.00000i q^{27} +1.43993 q^{29} +7.18949 q^{31} -4.55583i q^{33} +(-6.01425 - 5.84163i) q^{35} -4.66640i q^{37} +5.60969 q^{39} +2.32402 q^{41} -8.72845i q^{43} +(1.55795 - 1.60399i) q^{45} -1.13030i q^{47} -7.05919 q^{49} -1.00000 q^{51} +2.25044i q^{53} +(7.09777 - 7.30751i) q^{55} -3.76805i q^{57} -12.1063 q^{59} -5.11877 q^{61} -3.74956i q^{63} +(8.99788 + 8.73962i) q^{65} +12.1063i q^{67} -2.71420 q^{69} -11.2194 q^{71} +9.93371i q^{73} +(4.99788 - 0.145568i) q^{75} -17.0824i q^{77} -16.3790 q^{79} +1.00000 q^{81} +10.3025i q^{83} +(-1.60399 - 1.55795i) q^{85} +1.43993i q^{87} -12.6179 q^{89} +21.0338 q^{91} +7.18949i q^{93} +(5.87045 - 6.04392i) q^{95} -9.03522i q^{97} +4.55583 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{9} + 12 q^{11} + 4 q^{15} - 24 q^{19} - 4 q^{21} + 12 q^{25} - 12 q^{29} + 12 q^{31} + 4 q^{35} + 28 q^{41} - 30 q^{49} - 10 q^{51} + 26 q^{55} - 48 q^{59} - 28 q^{61} + 48 q^{65} - 12 q^{69}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1020\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.55795 + 1.60399i −0.696738 + 0.717326i
\(6\) 0 0
\(7\) 3.74956i 1.41720i 0.705610 + 0.708600i \(0.250673\pi\)
−0.705610 + 0.708600i \(0.749327\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.55583 −1.37364 −0.686818 0.726830i \(-0.740993\pi\)
−0.686818 + 0.726830i \(0.740993\pi\)
\(12\) 0 0
\(13\) 5.60969i 1.55585i −0.628359 0.777923i \(-0.716273\pi\)
0.628359 0.777923i \(-0.283727\pi\)
\(14\) 0 0
\(15\) −1.60399 1.55795i −0.414148 0.402262i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −3.76805 −0.864450 −0.432225 0.901766i \(-0.642271\pi\)
−0.432225 + 0.901766i \(0.642271\pi\)
\(20\) 0 0
\(21\) −3.74956 −0.818221
\(22\) 0 0
\(23\) 2.71420i 0.565950i 0.959127 + 0.282975i \(0.0913213\pi\)
−0.959127 + 0.282975i \(0.908679\pi\)
\(24\) 0 0
\(25\) −0.145568 4.99788i −0.0291137 0.999576i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.43993 0.267388 0.133694 0.991023i \(-0.457316\pi\)
0.133694 + 0.991023i \(0.457316\pi\)
\(30\) 0 0
\(31\) 7.18949 1.29127 0.645635 0.763646i \(-0.276593\pi\)
0.645635 + 0.763646i \(0.276593\pi\)
\(32\) 0 0
\(33\) 4.55583i 0.793069i
\(34\) 0 0
\(35\) −6.01425 5.84163i −1.01659 0.987416i
\(36\) 0 0
\(37\) 4.66640i 0.767152i −0.923509 0.383576i \(-0.874692\pi\)
0.923509 0.383576i \(-0.125308\pi\)
\(38\) 0 0
\(39\) 5.60969 0.898269
\(40\) 0 0
\(41\) 2.32402 0.362951 0.181476 0.983395i \(-0.441913\pi\)
0.181476 + 0.983395i \(0.441913\pi\)
\(42\) 0 0
\(43\) 8.72845i 1.33108i −0.746364 0.665538i \(-0.768202\pi\)
0.746364 0.665538i \(-0.231798\pi\)
\(44\) 0 0
\(45\) 1.55795 1.60399i 0.232246 0.239109i
\(46\) 0 0
\(47\) 1.13030i 0.164871i −0.996596 0.0824354i \(-0.973730\pi\)
0.996596 0.0824354i \(-0.0262698\pi\)
\(48\) 0 0
\(49\) −7.05919 −1.00846
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 2.25044i 0.309122i 0.987983 + 0.154561i \(0.0493963\pi\)
−0.987983 + 0.154561i \(0.950604\pi\)
\(54\) 0 0
\(55\) 7.09777 7.30751i 0.957063 0.985345i
\(56\) 0 0
\(57\) 3.76805i 0.499091i
\(58\) 0 0
\(59\) −12.1063 −1.57611 −0.788055 0.615605i \(-0.788912\pi\)
−0.788055 + 0.615605i \(0.788912\pi\)
\(60\) 0 0
\(61\) −5.11877 −0.655391 −0.327696 0.944783i \(-0.606272\pi\)
−0.327696 + 0.944783i \(0.606272\pi\)
\(62\) 0 0
\(63\) 3.74956i 0.472400i
\(64\) 0 0
\(65\) 8.99788 + 8.73962i 1.11605 + 1.08402i
\(66\) 0 0
\(67\) 12.1063i 1.47902i 0.673144 + 0.739512i \(0.264944\pi\)
−0.673144 + 0.739512i \(0.735056\pi\)
\(68\) 0 0
\(69\) −2.71420 −0.326751
\(70\) 0 0
\(71\) −11.2194 −1.33149 −0.665747 0.746177i \(-0.731887\pi\)
−0.665747 + 0.746177i \(0.731887\pi\)
\(72\) 0 0
\(73\) 9.93371i 1.16265i 0.813670 + 0.581326i \(0.197466\pi\)
−0.813670 + 0.581326i \(0.802534\pi\)
\(74\) 0 0
\(75\) 4.99788 0.145568i 0.577106 0.0168088i
\(76\) 0 0
\(77\) 17.0824i 1.94672i
\(78\) 0 0
\(79\) −16.3790 −1.84278 −0.921389 0.388641i \(-0.872945\pi\)
−0.921389 + 0.388641i \(0.872945\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.3025i 1.13085i 0.824800 + 0.565425i \(0.191288\pi\)
−0.824800 + 0.565425i \(0.808712\pi\)
\(84\) 0 0
\(85\) −1.60399 1.55795i −0.173977 0.168984i
\(86\) 0 0
\(87\) 1.43993i 0.154376i
\(88\) 0 0
\(89\) −12.6179 −1.33749 −0.668747 0.743490i \(-0.733169\pi\)
−0.668747 + 0.743490i \(0.733169\pi\)
\(90\) 0 0
\(91\) 21.0338 2.20495
\(92\) 0 0
\(93\) 7.18949i 0.745515i
\(94\) 0 0
\(95\) 5.87045 6.04392i 0.602295 0.620093i
\(96\) 0 0
\(97\) 9.03522i 0.917388i −0.888594 0.458694i \(-0.848317\pi\)
0.888594 0.458694i \(-0.151683\pi\)
\(98\) 0 0
\(99\) 4.55583 0.457878
\(100\) 0 0
\(101\) −15.9151 −1.58361 −0.791805 0.610774i \(-0.790858\pi\)
−0.791805 + 0.610774i \(0.790858\pi\)
\(102\) 0 0
\(103\) 8.72845i 0.860040i 0.902819 + 0.430020i \(0.141494\pi\)
−0.902819 + 0.430020i \(0.858506\pi\)
\(104\) 0 0
\(105\) 5.84163 6.01425i 0.570085 0.586931i
\(106\) 0 0
\(107\) 6.29114i 0.608187i −0.952642 0.304094i \(-0.901646\pi\)
0.952642 0.304094i \(-0.0983536\pi\)
\(108\) 0 0
\(109\) −5.53610 −0.530263 −0.265131 0.964212i \(-0.585415\pi\)
−0.265131 + 0.964212i \(0.585415\pi\)
\(110\) 0 0
\(111\) 4.66640 0.442915
\(112\) 0 0
\(113\) 2.16566i 0.203728i −0.994798 0.101864i \(-0.967519\pi\)
0.994798 0.101864i \(-0.0324806\pi\)
\(114\) 0 0
\(115\) −4.35355 4.22859i −0.405970 0.394318i
\(116\) 0 0
\(117\) 5.60969i 0.518616i
\(118\) 0 0
\(119\) −3.74956 −0.343721
\(120\) 0 0
\(121\) 9.75561 0.886874
\(122\) 0 0
\(123\) 2.32402i 0.209550i
\(124\) 0 0
\(125\) 8.24334 + 7.55297i 0.737307 + 0.675558i
\(126\) 0 0
\(127\) 4.76929i 0.423206i −0.977356 0.211603i \(-0.932132\pi\)
0.977356 0.211603i \(-0.0678684\pi\)
\(128\) 0 0
\(129\) 8.72845 0.768498
\(130\) 0 0
\(131\) 15.4554 1.35035 0.675173 0.737659i \(-0.264069\pi\)
0.675173 + 0.737659i \(0.264069\pi\)
\(132\) 0 0
\(133\) 14.1285i 1.22510i
\(134\) 0 0
\(135\) 1.60399 + 1.55795i 0.138049 + 0.134087i
\(136\) 0 0
\(137\) 10.8982i 0.931097i 0.885022 + 0.465549i \(0.154143\pi\)
−0.885022 + 0.465549i \(0.845857\pi\)
\(138\) 0 0
\(139\) 18.3310 1.55482 0.777409 0.628995i \(-0.216534\pi\)
0.777409 + 0.628995i \(0.216534\pi\)
\(140\) 0 0
\(141\) 1.13030 0.0951882
\(142\) 0 0
\(143\) 25.5568i 2.13717i
\(144\) 0 0
\(145\) −2.24334 + 2.30963i −0.186299 + 0.191804i
\(146\) 0 0
\(147\) 7.05919i 0.582232i
\(148\) 0 0
\(149\) −13.6424 −1.11763 −0.558816 0.829292i \(-0.688744\pi\)
−0.558816 + 0.829292i \(0.688744\pi\)
\(150\) 0 0
\(151\) 17.9035 1.45697 0.728485 0.685062i \(-0.240225\pi\)
0.728485 + 0.685062i \(0.240225\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) −11.2009 + 11.5319i −0.899676 + 0.926262i
\(156\) 0 0
\(157\) 6.61502i 0.527936i −0.964531 0.263968i \(-0.914969\pi\)
0.964531 0.263968i \(-0.0850314\pi\)
\(158\) 0 0
\(159\) −2.25044 −0.178472
\(160\) 0 0
\(161\) −10.1770 −0.802064
\(162\) 0 0
\(163\) 19.7411i 1.54624i 0.634259 + 0.773120i \(0.281305\pi\)
−0.634259 + 0.773120i \(0.718695\pi\)
\(164\) 0 0
\(165\) 7.30751 + 7.09777i 0.568889 + 0.552561i
\(166\) 0 0
\(167\) 20.5515i 1.59032i 0.606400 + 0.795160i \(0.292613\pi\)
−0.606400 + 0.795160i \(0.707387\pi\)
\(168\) 0 0
\(169\) −18.4686 −1.42066
\(170\) 0 0
\(171\) 3.76805 0.288150
\(172\) 0 0
\(173\) 21.5461i 1.63812i −0.573707 0.819061i \(-0.694495\pi\)
0.573707 0.819061i \(-0.305505\pi\)
\(174\) 0 0
\(175\) 18.7398 0.545817i 1.41660 0.0412599i
\(176\) 0 0
\(177\) 12.1063i 0.909967i
\(178\) 0 0
\(179\) −6.57160 −0.491185 −0.245592 0.969373i \(-0.578982\pi\)
−0.245592 + 0.969373i \(0.578982\pi\)
\(180\) 0 0
\(181\) −13.8266 −1.02772 −0.513861 0.857873i \(-0.671785\pi\)
−0.513861 + 0.857873i \(0.671785\pi\)
\(182\) 0 0
\(183\) 5.11877i 0.378390i
\(184\) 0 0
\(185\) 7.48486 + 7.27003i 0.550298 + 0.534503i
\(186\) 0 0
\(187\) 4.55583i 0.333156i
\(188\) 0 0
\(189\) 3.74956 0.272740
\(190\) 0 0
\(191\) 13.1525 0.951681 0.475841 0.879531i \(-0.342144\pi\)
0.475841 + 0.879531i \(0.342144\pi\)
\(192\) 0 0
\(193\) 5.01244i 0.360803i −0.983593 0.180402i \(-0.942260\pi\)
0.983593 0.180402i \(-0.0577397\pi\)
\(194\) 0 0
\(195\) −8.73962 + 8.99788i −0.625857 + 0.644352i
\(196\) 0 0
\(197\) 4.75503i 0.338782i −0.985549 0.169391i \(-0.945820\pi\)
0.985549 0.169391i \(-0.0541801\pi\)
\(198\) 0 0
\(199\) −17.9630 −1.27336 −0.636682 0.771126i \(-0.719694\pi\)
−0.636682 + 0.771126i \(0.719694\pi\)
\(200\) 0 0
\(201\) −12.1063 −0.853915
\(202\) 0 0
\(203\) 5.39909i 0.378942i
\(204\) 0 0
\(205\) −3.62072 + 3.72771i −0.252882 + 0.260355i
\(206\) 0 0
\(207\) 2.71420i 0.188650i
\(208\) 0 0
\(209\) 17.1666 1.18744
\(210\) 0 0
\(211\) −6.02851 −0.415020 −0.207510 0.978233i \(-0.566536\pi\)
−0.207510 + 0.978233i \(0.566536\pi\)
\(212\) 0 0
\(213\) 11.2194i 0.768739i
\(214\) 0 0
\(215\) 14.0004 + 13.5985i 0.954816 + 0.927411i
\(216\) 0 0
\(217\) 26.9574i 1.82999i
\(218\) 0 0
\(219\) −9.93371 −0.671258
\(220\) 0 0
\(221\) 5.60969 0.377348
\(222\) 0 0
\(223\) 24.7200i 1.65537i −0.561191 0.827686i \(-0.689657\pi\)
0.561191 0.827686i \(-0.310343\pi\)
\(224\) 0 0
\(225\) 0.145568 + 4.99788i 0.00970456 + 0.333192i
\(226\) 0 0
\(227\) 10.5816i 0.702327i 0.936314 + 0.351163i \(0.114214\pi\)
−0.936314 + 0.351163i \(0.885786\pi\)
\(228\) 0 0
\(229\) 28.3902 1.87608 0.938039 0.346528i \(-0.112640\pi\)
0.938039 + 0.346528i \(0.112640\pi\)
\(230\) 0 0
\(231\) 17.0824 1.12394
\(232\) 0 0
\(233\) 15.4985i 1.01534i 0.861552 + 0.507669i \(0.169493\pi\)
−0.861552 + 0.507669i \(0.830507\pi\)
\(234\) 0 0
\(235\) 1.81299 + 1.76095i 0.118266 + 0.114872i
\(236\) 0 0
\(237\) 16.3790i 1.06393i
\(238\) 0 0
\(239\) −11.8266 −0.764998 −0.382499 0.923956i \(-0.624936\pi\)
−0.382499 + 0.923956i \(0.624936\pi\)
\(240\) 0 0
\(241\) −10.3803 −0.668657 −0.334329 0.942457i \(-0.608510\pi\)
−0.334329 + 0.942457i \(0.608510\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 10.9979 11.3229i 0.702629 0.723392i
\(246\) 0 0
\(247\) 21.1376i 1.34495i
\(248\) 0 0
\(249\) −10.3025 −0.652896
\(250\) 0 0
\(251\) 6.81051 0.429876 0.214938 0.976628i \(-0.431045\pi\)
0.214938 + 0.976628i \(0.431045\pi\)
\(252\) 0 0
\(253\) 12.3654i 0.777408i
\(254\) 0 0
\(255\) 1.55795 1.60399i 0.0975628 0.100446i
\(256\) 0 0
\(257\) 1.99152i 0.124228i 0.998069 + 0.0621139i \(0.0197842\pi\)
−0.998069 + 0.0621139i \(0.980216\pi\)
\(258\) 0 0
\(259\) 17.4969 1.08721
\(260\) 0 0
\(261\) −1.43993 −0.0891293
\(262\) 0 0
\(263\) 18.8897i 1.16479i 0.812906 + 0.582395i \(0.197884\pi\)
−0.812906 + 0.582395i \(0.802116\pi\)
\(264\) 0 0
\(265\) −3.60969 3.50608i −0.221741 0.215377i
\(266\) 0 0
\(267\) 12.6179i 0.772202i
\(268\) 0 0
\(269\) −19.8338 −1.20929 −0.604644 0.796496i \(-0.706685\pi\)
−0.604644 + 0.796496i \(0.706685\pi\)
\(270\) 0 0
\(271\) −6.50380 −0.395078 −0.197539 0.980295i \(-0.563295\pi\)
−0.197539 + 0.980295i \(0.563295\pi\)
\(272\) 0 0
\(273\) 21.0338i 1.27303i
\(274\) 0 0
\(275\) 0.663185 + 22.7695i 0.0399916 + 1.37305i
\(276\) 0 0
\(277\) 16.3790i 0.984117i 0.870562 + 0.492059i \(0.163755\pi\)
−0.870562 + 0.492059i \(0.836245\pi\)
\(278\) 0 0
\(279\) −7.18949 −0.430423
\(280\) 0 0
\(281\) 23.5983 1.40776 0.703880 0.710319i \(-0.251449\pi\)
0.703880 + 0.710319i \(0.251449\pi\)
\(282\) 0 0
\(283\) 7.65396i 0.454981i 0.973780 + 0.227490i \(0.0730521\pi\)
−0.973780 + 0.227490i \(0.926948\pi\)
\(284\) 0 0
\(285\) 6.04392 + 5.87045i 0.358011 + 0.347735i
\(286\) 0 0
\(287\) 8.71406i 0.514375i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 9.03522 0.529654
\(292\) 0 0
\(293\) 12.0099i 0.701625i −0.936446 0.350812i \(-0.885906\pi\)
0.936446 0.350812i \(-0.114094\pi\)
\(294\) 0 0
\(295\) 18.8611 19.4184i 1.09813 1.13058i
\(296\) 0 0
\(297\) 4.55583i 0.264356i
\(298\) 0 0
\(299\) 15.2258 0.880531
\(300\) 0 0
\(301\) 32.7278 1.88640
\(302\) 0 0
\(303\) 15.9151i 0.914297i
\(304\) 0 0
\(305\) 7.97480 8.21045i 0.456636 0.470129i
\(306\) 0 0
\(307\) 1.39989i 0.0798959i 0.999202 + 0.0399479i \(0.0127192\pi\)
−0.999202 + 0.0399479i \(0.987281\pi\)
\(308\) 0 0
\(309\) −8.72845 −0.496544
\(310\) 0 0
\(311\) 1.29276 0.0733060 0.0366530 0.999328i \(-0.488330\pi\)
0.0366530 + 0.999328i \(0.488330\pi\)
\(312\) 0 0
\(313\) 18.3603i 1.03779i 0.854839 + 0.518894i \(0.173656\pi\)
−0.854839 + 0.518894i \(0.826344\pi\)
\(314\) 0 0
\(315\) 6.01425 + 5.84163i 0.338865 + 0.329139i
\(316\) 0 0
\(317\) 7.12371i 0.400108i 0.979785 + 0.200054i \(0.0641117\pi\)
−0.979785 + 0.200054i \(0.935888\pi\)
\(318\) 0 0
\(319\) −6.56007 −0.367294
\(320\) 0 0
\(321\) 6.29114 0.351137
\(322\) 0 0
\(323\) 3.76805i 0.209660i
\(324\) 0 0
\(325\) −28.0365 + 0.816593i −1.55519 + 0.0452964i
\(326\) 0 0
\(327\) 5.53610i 0.306147i
\(328\) 0 0
\(329\) 4.23812 0.233655
\(330\) 0 0
\(331\) 12.5772 0.691305 0.345652 0.938363i \(-0.387658\pi\)
0.345652 + 0.938363i \(0.387658\pi\)
\(332\) 0 0
\(333\) 4.66640i 0.255717i
\(334\) 0 0
\(335\) −19.4184 18.8611i −1.06094 1.03049i
\(336\) 0 0
\(337\) 3.85726i 0.210119i 0.994466 + 0.105059i \(0.0335032\pi\)
−0.994466 + 0.105059i \(0.966497\pi\)
\(338\) 0 0
\(339\) 2.16566 0.117622
\(340\) 0 0
\(341\) −32.7541 −1.77373
\(342\) 0 0
\(343\) 0.221932i 0.0119832i
\(344\) 0 0
\(345\) 4.22859 4.35355i 0.227660 0.234387i
\(346\) 0 0
\(347\) 21.4920i 1.15375i −0.816832 0.576876i \(-0.804272\pi\)
0.816832 0.576876i \(-0.195728\pi\)
\(348\) 0 0
\(349\) 17.5985 0.942025 0.471013 0.882126i \(-0.343889\pi\)
0.471013 + 0.882126i \(0.343889\pi\)
\(350\) 0 0
\(351\) −5.60969 −0.299423
\(352\) 0 0
\(353\) 17.4328i 0.927856i −0.885873 0.463928i \(-0.846440\pi\)
0.885873 0.463928i \(-0.153560\pi\)
\(354\) 0 0
\(355\) 17.4792 17.9958i 0.927702 0.955116i
\(356\) 0 0
\(357\) 3.74956i 0.198448i
\(358\) 0 0
\(359\) −21.4021 −1.12956 −0.564781 0.825241i \(-0.691039\pi\)
−0.564781 + 0.825241i \(0.691039\pi\)
\(360\) 0 0
\(361\) −4.80178 −0.252725
\(362\) 0 0
\(363\) 9.75561i 0.512037i
\(364\) 0 0
\(365\) −15.9336 15.4762i −0.834001 0.810064i
\(366\) 0 0
\(367\) 19.3380i 1.00944i 0.863284 + 0.504718i \(0.168404\pi\)
−0.863284 + 0.504718i \(0.831596\pi\)
\(368\) 0 0
\(369\) −2.32402 −0.120984
\(370\) 0 0
\(371\) −8.43816 −0.438088
\(372\) 0 0
\(373\) 4.50088i 0.233047i −0.993188 0.116523i \(-0.962825\pi\)
0.993188 0.116523i \(-0.0371750\pi\)
\(374\) 0 0
\(375\) −7.55297 + 8.24334i −0.390034 + 0.425684i
\(376\) 0 0
\(377\) 8.07754i 0.416015i
\(378\) 0 0
\(379\) 21.3377 1.09605 0.548023 0.836463i \(-0.315381\pi\)
0.548023 + 0.836463i \(0.315381\pi\)
\(380\) 0 0
\(381\) 4.76929 0.244338
\(382\) 0 0
\(383\) 7.92160i 0.404775i −0.979306 0.202387i \(-0.935130\pi\)
0.979306 0.202387i \(-0.0648700\pi\)
\(384\) 0 0
\(385\) 27.3999 + 26.6135i 1.39643 + 1.35635i
\(386\) 0 0
\(387\) 8.72845i 0.443692i
\(388\) 0 0
\(389\) −12.0992 −0.613455 −0.306728 0.951797i \(-0.599234\pi\)
−0.306728 + 0.951797i \(0.599234\pi\)
\(390\) 0 0
\(391\) −2.71420 −0.137263
\(392\) 0 0
\(393\) 15.4554i 0.779623i
\(394\) 0 0
\(395\) 25.5177 26.2717i 1.28393 1.32187i
\(396\) 0 0
\(397\) 1.75804i 0.0882333i 0.999026 + 0.0441167i \(0.0140473\pi\)
−0.999026 + 0.0441167i \(0.985953\pi\)
\(398\) 0 0
\(399\) 14.1285 0.707311
\(400\) 0 0
\(401\) 20.8869 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(402\) 0 0
\(403\) 40.3308i 2.00902i
\(404\) 0 0
\(405\) −1.55795 + 1.60399i −0.0774153 + 0.0797029i
\(406\) 0 0
\(407\) 21.2593i 1.05379i
\(408\) 0 0
\(409\) −11.1009 −0.548902 −0.274451 0.961601i \(-0.588496\pi\)
−0.274451 + 0.961601i \(0.588496\pi\)
\(410\) 0 0
\(411\) −10.8982 −0.537569
\(412\) 0 0
\(413\) 45.3934i 2.23366i
\(414\) 0 0
\(415\) −16.5252 16.0508i −0.811188 0.787905i
\(416\) 0 0
\(417\) 18.3310i 0.897675i
\(418\) 0 0
\(419\) −35.6345 −1.74086 −0.870429 0.492294i \(-0.836158\pi\)
−0.870429 + 0.492294i \(0.836158\pi\)
\(420\) 0 0
\(421\) −12.6476 −0.616408 −0.308204 0.951320i \(-0.599728\pi\)
−0.308204 + 0.951320i \(0.599728\pi\)
\(422\) 0 0
\(423\) 1.13030i 0.0549570i
\(424\) 0 0
\(425\) 4.99788 0.145568i 0.242433 0.00706110i
\(426\) 0 0
\(427\) 19.1931i 0.928820i
\(428\) 0 0
\(429\) −25.5568 −1.23389
\(430\) 0 0
\(431\) 11.3265 0.545578 0.272789 0.962074i \(-0.412054\pi\)
0.272789 + 0.962074i \(0.412054\pi\)
\(432\) 0 0
\(433\) 5.19207i 0.249515i 0.992187 + 0.124758i \(0.0398153\pi\)
−0.992187 + 0.124758i \(0.960185\pi\)
\(434\) 0 0
\(435\) −2.30963 2.24334i −0.110738 0.107560i
\(436\) 0 0
\(437\) 10.2272i 0.489235i
\(438\) 0 0
\(439\) −27.7417 −1.32404 −0.662019 0.749487i \(-0.730300\pi\)
−0.662019 + 0.749487i \(0.730300\pi\)
\(440\) 0 0
\(441\) 7.05919 0.336152
\(442\) 0 0
\(443\) 12.3872i 0.588532i 0.955723 + 0.294266i \(0.0950752\pi\)
−0.955723 + 0.294266i \(0.904925\pi\)
\(444\) 0 0
\(445\) 19.6581 20.2390i 0.931882 0.959419i
\(446\) 0 0
\(447\) 13.6424i 0.645265i
\(448\) 0 0
\(449\) −38.3417 −1.80946 −0.904729 0.425989i \(-0.859926\pi\)
−0.904729 + 0.425989i \(0.859926\pi\)
\(450\) 0 0
\(451\) −10.5879 −0.498563
\(452\) 0 0
\(453\) 17.9035i 0.841182i
\(454\) 0 0
\(455\) −32.7697 + 33.7381i −1.53627 + 1.58167i
\(456\) 0 0
\(457\) 18.8539i 0.881950i 0.897519 + 0.440975i \(0.145367\pi\)
−0.897519 + 0.440975i \(0.854633\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 12.5223 0.583221 0.291611 0.956537i \(-0.405809\pi\)
0.291611 + 0.956537i \(0.405809\pi\)
\(462\) 0 0
\(463\) 19.6830i 0.914746i −0.889275 0.457373i \(-0.848790\pi\)
0.889275 0.457373i \(-0.151210\pi\)
\(464\) 0 0
\(465\) −11.5319 11.2009i −0.534777 0.519428i
\(466\) 0 0
\(467\) 10.2790i 0.475653i −0.971308 0.237827i \(-0.923565\pi\)
0.971308 0.237827i \(-0.0764350\pi\)
\(468\) 0 0
\(469\) −45.3934 −2.09607
\(470\) 0 0
\(471\) 6.61502 0.304804
\(472\) 0 0
\(473\) 39.7654i 1.82841i
\(474\) 0 0
\(475\) 0.548509 + 18.8323i 0.0251673 + 0.864084i
\(476\) 0 0
\(477\) 2.25044i 0.103041i
\(478\) 0 0
\(479\) 26.1372 1.19424 0.597120 0.802152i \(-0.296312\pi\)
0.597120 + 0.802152i \(0.296312\pi\)
\(480\) 0 0
\(481\) −26.1770 −1.19357
\(482\) 0 0
\(483\) 10.1770i 0.463072i
\(484\) 0 0
\(485\) 14.4924 + 14.0764i 0.658066 + 0.639178i
\(486\) 0 0
\(487\) 33.3013i 1.50902i 0.656286 + 0.754512i \(0.272126\pi\)
−0.656286 + 0.754512i \(0.727874\pi\)
\(488\) 0 0
\(489\) −19.7411 −0.892723
\(490\) 0 0
\(491\) 13.0690 0.589794 0.294897 0.955529i \(-0.404715\pi\)
0.294897 + 0.955529i \(0.404715\pi\)
\(492\) 0 0
\(493\) 1.43993i 0.0648511i
\(494\) 0 0
\(495\) −7.09777 + 7.30751i −0.319021 + 0.328448i
\(496\) 0 0
\(497\) 42.0677i 1.88699i
\(498\) 0 0
\(499\) −28.6993 −1.28476 −0.642378 0.766388i \(-0.722052\pi\)
−0.642378 + 0.766388i \(0.722052\pi\)
\(500\) 0 0
\(501\) −20.5515 −0.918171
\(502\) 0 0
\(503\) 38.9674i 1.73747i −0.495276 0.868736i \(-0.664933\pi\)
0.495276 0.868736i \(-0.335067\pi\)
\(504\) 0 0
\(505\) 24.7949 25.5276i 1.10336 1.13596i
\(506\) 0 0
\(507\) 18.4686i 0.820218i
\(508\) 0 0
\(509\) 29.0147 1.28605 0.643027 0.765844i \(-0.277678\pi\)
0.643027 + 0.765844i \(0.277678\pi\)
\(510\) 0 0
\(511\) −37.2470 −1.64771
\(512\) 0 0
\(513\) 3.76805i 0.166364i
\(514\) 0 0
\(515\) −14.0004 13.5985i −0.616929 0.599222i
\(516\) 0 0
\(517\) 5.14945i 0.226472i
\(518\) 0 0
\(519\) 21.5461 0.945770
\(520\) 0 0
\(521\) 19.8338 0.868935 0.434468 0.900687i \(-0.356937\pi\)
0.434468 + 0.900687i \(0.356937\pi\)
\(522\) 0 0
\(523\) 11.8156i 0.516659i 0.966057 + 0.258329i \(0.0831720\pi\)
−0.966057 + 0.258329i \(0.916828\pi\)
\(524\) 0 0
\(525\) 0.545817 + 18.7398i 0.0238214 + 0.817874i
\(526\) 0 0
\(527\) 7.18949i 0.313179i
\(528\) 0 0
\(529\) 15.6331 0.679701
\(530\) 0 0
\(531\) 12.1063 0.525370
\(532\) 0 0
\(533\) 13.0370i 0.564697i
\(534\) 0 0
\(535\) 10.0909 + 9.80129i 0.436269 + 0.423747i
\(536\) 0 0
\(537\) 6.57160i 0.283586i
\(538\) 0 0
\(539\) 32.1605 1.38525
\(540\) 0 0
\(541\) −20.2140 −0.869069 −0.434535 0.900655i \(-0.643087\pi\)
−0.434535 + 0.900655i \(0.643087\pi\)
\(542\) 0 0
\(543\) 13.8266i 0.593356i
\(544\) 0 0
\(545\) 8.62499 8.87986i 0.369454 0.380371i
\(546\) 0 0
\(547\) 24.0362i 1.02771i 0.857876 + 0.513857i \(0.171784\pi\)
−0.857876 + 0.513857i \(0.828216\pi\)
\(548\) 0 0
\(549\) 5.11877 0.218464
\(550\) 0 0
\(551\) −5.42572 −0.231144
\(552\) 0 0
\(553\) 61.4139i 2.61159i
\(554\) 0 0
\(555\) −7.27003 + 7.48486i −0.308596 + 0.317715i
\(556\) 0 0
\(557\) 5.22510i 0.221395i 0.993854 + 0.110697i \(0.0353084\pi\)
−0.993854 + 0.110697i \(0.964692\pi\)
\(558\) 0 0
\(559\) −48.9639 −2.07095
\(560\) 0 0
\(561\) 4.55583 0.192347
\(562\) 0 0
\(563\) 17.6767i 0.744986i −0.928035 0.372493i \(-0.878503\pi\)
0.928035 0.372493i \(-0.121497\pi\)
\(564\) 0 0
\(565\) 3.47369 + 3.37399i 0.146139 + 0.141945i
\(566\) 0 0
\(567\) 3.74956i 0.157467i
\(568\) 0 0
\(569\) 34.4124 1.44264 0.721322 0.692600i \(-0.243535\pi\)
0.721322 + 0.692600i \(0.243535\pi\)
\(570\) 0 0
\(571\) 2.76830 0.115850 0.0579250 0.998321i \(-0.481552\pi\)
0.0579250 + 0.998321i \(0.481552\pi\)
\(572\) 0 0
\(573\) 13.1525i 0.549454i
\(574\) 0 0
\(575\) 13.5652 0.395102i 0.565710 0.0164769i
\(576\) 0 0
\(577\) 4.45719i 0.185555i 0.995687 + 0.0927776i \(0.0295745\pi\)
−0.995687 + 0.0927776i \(0.970425\pi\)
\(578\) 0 0
\(579\) 5.01244 0.208310
\(580\) 0 0
\(581\) −38.6299 −1.60264
\(582\) 0 0
\(583\) 10.2526i 0.424621i
\(584\) 0 0
\(585\) −8.99788 8.73962i −0.372017 0.361339i
\(586\) 0 0
\(587\) 37.4770i 1.54684i −0.633894 0.773420i \(-0.718545\pi\)
0.633894 0.773420i \(-0.281455\pi\)
\(588\) 0 0
\(589\) −27.0904 −1.11624
\(590\) 0 0
\(591\) 4.75503 0.195596
\(592\) 0 0
\(593\) 26.0220i 1.06859i 0.845297 + 0.534297i \(0.179424\pi\)
−0.845297 + 0.534297i \(0.820576\pi\)
\(594\) 0 0
\(595\) 5.84163 6.01425i 0.239484 0.246560i
\(596\) 0 0
\(597\) 17.9630i 0.735177i
\(598\) 0 0
\(599\) −11.2780 −0.460806 −0.230403 0.973095i \(-0.574004\pi\)
−0.230403 + 0.973095i \(0.574004\pi\)
\(600\) 0 0
\(601\) −5.58266 −0.227722 −0.113861 0.993497i \(-0.536322\pi\)
−0.113861 + 0.993497i \(0.536322\pi\)
\(602\) 0 0
\(603\) 12.1063i 0.493008i
\(604\) 0 0
\(605\) −15.1988 + 15.6479i −0.617918 + 0.636178i
\(606\) 0 0
\(607\) 29.3534i 1.19142i −0.803201 0.595708i \(-0.796872\pi\)
0.803201 0.595708i \(-0.203128\pi\)
\(608\) 0 0
\(609\) −5.39909 −0.218782
\(610\) 0 0
\(611\) −6.34062 −0.256514
\(612\) 0 0
\(613\) 10.3651i 0.418642i 0.977847 + 0.209321i \(0.0671254\pi\)
−0.977847 + 0.209321i \(0.932875\pi\)
\(614\) 0 0
\(615\) −3.72771 3.62072i −0.150316 0.146001i
\(616\) 0 0
\(617\) 19.9698i 0.803955i −0.915649 0.401978i \(-0.868323\pi\)
0.915649 0.401978i \(-0.131677\pi\)
\(618\) 0 0
\(619\) −6.98756 −0.280854 −0.140427 0.990091i \(-0.544848\pi\)
−0.140427 + 0.990091i \(0.544848\pi\)
\(620\) 0 0
\(621\) 2.71420 0.108917
\(622\) 0 0
\(623\) 47.3115i 1.89550i
\(624\) 0 0
\(625\) −24.9576 + 1.45507i −0.998305 + 0.0582027i
\(626\) 0 0
\(627\) 17.1666i 0.685569i
\(628\) 0 0
\(629\) 4.66640 0.186062
\(630\) 0 0
\(631\) −28.5257 −1.13559 −0.567796 0.823170i \(-0.692204\pi\)
−0.567796 + 0.823170i \(0.692204\pi\)
\(632\) 0 0
\(633\) 6.02851i 0.239612i
\(634\) 0 0
\(635\) 7.64989 + 7.43032i 0.303577 + 0.294863i
\(636\) 0 0
\(637\) 39.5998i 1.56900i
\(638\) 0 0
\(639\) 11.2194 0.443831
\(640\) 0 0
\(641\) 46.4035 1.83283 0.916415 0.400229i \(-0.131070\pi\)
0.916415 + 0.400229i \(0.131070\pi\)
\(642\) 0 0
\(643\) 32.4559i 1.27994i 0.768401 + 0.639969i \(0.221053\pi\)
−0.768401 + 0.639969i \(0.778947\pi\)
\(644\) 0 0
\(645\) −13.5985 + 14.0004i −0.535441 + 0.551263i
\(646\) 0 0
\(647\) 10.0943i 0.396847i −0.980116 0.198424i \(-0.936418\pi\)
0.980116 0.198424i \(-0.0635822\pi\)
\(648\) 0 0
\(649\) 55.1544 2.16500
\(650\) 0 0
\(651\) −26.9574 −1.05654
\(652\) 0 0
\(653\) 49.4313i 1.93440i 0.254022 + 0.967198i \(0.418246\pi\)
−0.254022 + 0.967198i \(0.581754\pi\)
\(654\) 0 0
\(655\) −24.0788 + 24.7903i −0.940837 + 0.968639i
\(656\) 0 0
\(657\) 9.93371i 0.387551i
\(658\) 0 0
\(659\) 33.5983 1.30881 0.654403 0.756146i \(-0.272920\pi\)
0.654403 + 0.756146i \(0.272920\pi\)
\(660\) 0 0
\(661\) −39.9313 −1.55315 −0.776575 0.630025i \(-0.783044\pi\)
−0.776575 + 0.630025i \(0.783044\pi\)
\(662\) 0 0
\(663\) 5.60969i 0.217862i
\(664\) 0 0
\(665\) 22.6620 + 22.0116i 0.878796 + 0.853572i
\(666\) 0 0
\(667\) 3.90825i 0.151328i
\(668\) 0 0
\(669\) 24.7200 0.955729
\(670\) 0 0
\(671\) 23.3203 0.900268
\(672\) 0 0
\(673\) 11.4654i 0.441958i 0.975279 + 0.220979i \(0.0709252\pi\)
−0.975279 + 0.220979i \(0.929075\pi\)
\(674\) 0 0
\(675\) −4.99788 + 0.145568i −0.192369 + 0.00560293i
\(676\) 0 0
\(677\) 46.3844i 1.78270i −0.453320 0.891348i \(-0.649760\pi\)
0.453320 0.891348i \(-0.350240\pi\)
\(678\) 0 0
\(679\) 33.8781 1.30012
\(680\) 0 0
\(681\) −10.5816 −0.405488
\(682\) 0 0
\(683\) 26.1558i 1.00082i 0.865787 + 0.500412i \(0.166818\pi\)
−0.865787 + 0.500412i \(0.833182\pi\)
\(684\) 0 0
\(685\) −17.4806 16.9789i −0.667900 0.648730i
\(686\) 0 0
\(687\) 28.3902i 1.08315i
\(688\) 0 0
\(689\) 12.6243 0.480946
\(690\) 0 0
\(691\) 23.2958 0.886215 0.443107 0.896469i \(-0.353876\pi\)
0.443107 + 0.896469i \(0.353876\pi\)
\(692\) 0 0
\(693\) 17.0824i 0.648905i
\(694\) 0 0
\(695\) −28.5589 + 29.4028i −1.08330 + 1.11531i
\(696\) 0 0
\(697\) 2.32402i 0.0880287i
\(698\) 0 0
\(699\) −15.4985 −0.586206
\(700\) 0 0
\(701\) −37.9222 −1.43230 −0.716150 0.697946i \(-0.754098\pi\)
−0.716150 + 0.697946i \(0.754098\pi\)
\(702\) 0 0
\(703\) 17.5832i 0.663165i
\(704\) 0 0
\(705\) −1.76095 + 1.81299i −0.0663212 + 0.0682810i
\(706\) 0 0
\(707\) 59.6745i 2.24429i
\(708\) 0 0
\(709\) 29.7775 1.11832 0.559160 0.829060i \(-0.311124\pi\)
0.559160 + 0.829060i \(0.311124\pi\)
\(710\) 0 0
\(711\) 16.3790 0.614259
\(712\) 0 0
\(713\) 19.5137i 0.730794i
\(714\) 0 0
\(715\) −40.9928 39.8163i −1.53305 1.48904i
\(716\) 0 0
\(717\) 11.8266i 0.441672i
\(718\) 0 0
\(719\) −1.18930 −0.0443533 −0.0221767 0.999754i \(-0.507060\pi\)
−0.0221767 + 0.999754i \(0.507060\pi\)
\(720\) 0 0
\(721\) −32.7278 −1.21885
\(722\) 0 0
\(723\) 10.3803i 0.386049i
\(724\) 0 0
\(725\) −0.209608 7.19659i −0.00778465 0.267275i
\(726\) 0 0
\(727\) 24.5522i 0.910590i −0.890341 0.455295i \(-0.849534\pi\)
0.890341 0.455295i \(-0.150466\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 8.72845 0.322834
\(732\) 0 0
\(733\) 17.0284i 0.628958i 0.949264 + 0.314479i \(0.101830\pi\)
−0.949264 + 0.314479i \(0.898170\pi\)
\(734\) 0 0
\(735\) 11.3229 + 10.9979i 0.417650 + 0.405663i
\(736\) 0 0
\(737\) 55.1544i 2.03164i
\(738\) 0 0
\(739\) −37.7887 −1.39008 −0.695039 0.718972i \(-0.744613\pi\)
−0.695039 + 0.718972i \(0.744613\pi\)
\(740\) 0 0
\(741\) −21.1376 −0.776509
\(742\) 0 0
\(743\) 19.0213i 0.697824i 0.937156 + 0.348912i \(0.113449\pi\)
−0.937156 + 0.348912i \(0.886551\pi\)
\(744\) 0 0
\(745\) 21.2543 21.8823i 0.778696 0.801707i
\(746\) 0 0
\(747\) 10.3025i 0.376950i
\(748\) 0 0
\(749\) 23.5890 0.861923
\(750\) 0 0
\(751\) 32.6034 1.18972 0.594858 0.803831i \(-0.297208\pi\)
0.594858 + 0.803831i \(0.297208\pi\)
\(752\) 0 0
\(753\) 6.81051i 0.248189i
\(754\) 0 0
\(755\) −27.8929 + 28.7171i −1.01513 + 1.04512i
\(756\) 0 0
\(757\) 47.0786i 1.71110i 0.517718 + 0.855551i \(0.326782\pi\)
−0.517718 + 0.855551i \(0.673218\pi\)
\(758\) 0 0
\(759\) 12.3654 0.448837
\(760\) 0 0
\(761\) −0.0274098 −0.000993605 −0.000496802 1.00000i \(-0.500158\pi\)
−0.000496802 1.00000i \(0.500158\pi\)
\(762\) 0 0
\(763\) 20.7579i 0.751488i
\(764\) 0 0
\(765\) 1.60399 + 1.55795i 0.0579924 + 0.0563279i
\(766\) 0 0
\(767\) 67.9127i 2.45219i
\(768\) 0 0
\(769\) 46.2514 1.66787 0.833935 0.551863i \(-0.186083\pi\)
0.833935 + 0.551863i \(0.186083\pi\)
\(770\) 0 0
\(771\) −1.99152 −0.0717229
\(772\) 0 0
\(773\) 23.6334i 0.850033i −0.905186 0.425017i \(-0.860268\pi\)
0.905186 0.425017i \(-0.139732\pi\)
\(774\) 0 0
\(775\) −1.04656 35.9322i −0.0375936 1.29072i
\(776\) 0 0
\(777\) 17.4969i 0.627699i
\(778\) 0 0
\(779\) −8.75704 −0.313754
\(780\) 0 0
\(781\) 51.1136 1.82899
\(782\) 0 0
\(783\) 1.43993i 0.0514588i
\(784\) 0 0
\(785\) 10.6104 + 10.3059i 0.378702 + 0.367833i
\(786\) 0 0
\(787\) 13.9213i 0.496242i −0.968729 0.248121i \(-0.920187\pi\)
0.968729 0.248121i \(-0.0798130\pi\)
\(788\) 0 0
\(789\) −18.8897 −0.672492
\(790\) 0 0
\(791\) 8.12026 0.288723
\(792\) 0 0
\(793\) 28.7147i 1.01969i
\(794\) 0 0
\(795\) 3.50608 3.60969i 0.124348 0.128022i
\(796\) 0 0
\(797\) 41.9778i 1.48693i −0.668774 0.743466i \(-0.733181\pi\)
0.668774 0.743466i \(-0.266819\pi\)
\(798\) 0 0
\(799\) 1.13030 0.0399871
\(800\) 0 0
\(801\) 12.6179 0.445831
\(802\) 0 0
\(803\) 45.2563i 1.59706i
\(804\) 0 0
\(805\) 15.8554 16.3239i 0.558828 0.575341i
\(806\) 0 0
\(807\) 19.8338i 0.698183i
\(808\) 0 0
\(809\) 35.7922 1.25839 0.629193 0.777249i \(-0.283385\pi\)
0.629193 + 0.777249i \(0.283385\pi\)
\(810\) 0 0
\(811\) 3.77204 0.132454 0.0662271 0.997805i \(-0.478904\pi\)
0.0662271 + 0.997805i \(0.478904\pi\)
\(812\) 0 0
\(813\) 6.50380i 0.228098i
\(814\) 0 0
\(815\) −31.6645 30.7557i −1.10916 1.07732i
\(816\) 0 0
\(817\) 32.8893i 1.15065i
\(818\) 0 0
\(819\) −21.0338 −0.734982
\(820\) 0 0
\(821\) 23.3883 0.816259 0.408129 0.912924i \(-0.366181\pi\)
0.408129 + 0.912924i \(0.366181\pi\)
\(822\) 0 0
\(823\) 20.0362i 0.698418i 0.937045 + 0.349209i \(0.113550\pi\)
−0.937045 + 0.349209i \(0.886450\pi\)
\(824\) 0 0
\(825\) −22.7695 + 0.663185i −0.792733 + 0.0230891i
\(826\) 0 0
\(827\) 25.7352i 0.894901i 0.894309 + 0.447451i \(0.147668\pi\)
−0.894309 + 0.447451i \(0.852332\pi\)
\(828\) 0 0
\(829\) −6.37955 −0.221571 −0.110786 0.993844i \(-0.535337\pi\)
−0.110786 + 0.993844i \(0.535337\pi\)
\(830\) 0 0
\(831\) −16.3790 −0.568180
\(832\) 0 0
\(833\) 7.05919i 0.244586i
\(834\) 0 0
\(835\) −32.9643 32.0182i −1.14078 1.10804i
\(836\) 0 0
\(837\) 7.18949i 0.248505i
\(838\) 0 0
\(839\) −18.1684 −0.627242 −0.313621 0.949548i \(-0.601542\pi\)
−0.313621 + 0.949548i \(0.601542\pi\)
\(840\) 0 0
\(841\) −26.9266 −0.928504
\(842\) 0 0
\(843\) 23.5983i 0.812770i
\(844\) 0 0
\(845\) 28.7732 29.6234i 0.989827 1.01908i
\(846\) 0 0
\(847\) 36.5792i 1.25688i
\(848\) 0 0
\(849\) −7.65396 −0.262683
\(850\) 0 0
\(851\) 12.6655 0.434169
\(852\) 0 0
\(853\) 36.5987i 1.25311i −0.779375 0.626557i \(-0.784463\pi\)
0.779375 0.626557i \(-0.215537\pi\)
\(854\) 0 0
\(855\) −5.87045 + 6.04392i −0.200765 + 0.206698i
\(856\) 0 0
\(857\) 32.3050i 1.10352i −0.834004 0.551759i \(-0.813957\pi\)
0.834004 0.551759i \(-0.186043\pi\)
\(858\) 0 0
\(859\) −13.3073 −0.454041 −0.227020 0.973890i \(-0.572898\pi\)
−0.227020 + 0.973890i \(0.572898\pi\)
\(860\) 0 0
\(861\) −8.71406 −0.296974
\(862\) 0 0
\(863\) 10.1548i 0.345675i −0.984950 0.172838i \(-0.944706\pi\)
0.984950 0.172838i \(-0.0552935\pi\)
\(864\) 0 0
\(865\) 34.5598 + 33.5678i 1.17507 + 1.14134i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 74.6199 2.53131
\(870\) 0 0
\(871\) 67.9127 2.30113
\(872\) 0 0
\(873\) 9.03522i 0.305796i
\(874\) 0 0
\(875\) −28.3203 + 30.9089i −0.957401 + 1.04491i
\(876\) 0 0
\(877\) 34.6999i 1.17173i −0.810408 0.585865i \(-0.800755\pi\)
0.810408 0.585865i \(-0.199245\pi\)
\(878\) 0 0
\(879\) 12.0099 0.405083
\(880\) 0 0
\(881\) 18.3902 0.619582 0.309791 0.950805i \(-0.399741\pi\)
0.309791 + 0.950805i \(0.399741\pi\)
\(882\) 0 0
\(883\) 34.5369i 1.16226i 0.813811 + 0.581130i \(0.197389\pi\)
−0.813811 + 0.581130i \(0.802611\pi\)
\(884\) 0 0
\(885\) 19.4184 + 18.8611i 0.652743 + 0.634008i
\(886\) 0 0
\(887\) 40.3819i 1.35589i −0.735112 0.677946i \(-0.762871\pi\)
0.735112 0.677946i \(-0.237129\pi\)
\(888\) 0 0
\(889\) 17.8827 0.599767
\(890\) 0 0
\(891\) −4.55583 −0.152626
\(892\) 0 0
\(893\) 4.25902i 0.142523i
\(894\) 0 0
\(895\) 10.2382 10.5408i 0.342227 0.352340i
\(896\) 0 0
\(897\) 15.2258i 0.508375i
\(898\) 0 0
\(899\) 10.3523 0.345270
\(900\) 0 0
\(901\) −2.25044 −0.0749731
\(902\) 0 0
\(903\) 32.7278i 1.08911i
\(904\) 0 0
\(905\) 21.5412 22.1777i 0.716052 0.737212i
\(906\) 0 0
\(907\) 3.86546i 0.128351i 0.997939 + 0.0641753i \(0.0204417\pi\)
−0.997939 + 0.0641753i \(0.979558\pi\)
\(908\) 0 0
\(909\) 15.9151 0.527870
\(910\) 0 0
\(911\) −48.6071 −1.61043 −0.805213 0.592986i \(-0.797949\pi\)
−0.805213 + 0.592986i \(0.797949\pi\)
\(912\) 0 0
\(913\) 46.9366i 1.55337i
\(914\) 0 0
\(915\) 8.21045 + 7.97480i 0.271429 + 0.263639i
\(916\) 0 0
\(917\) 57.9510i 1.91371i
\(918\) 0 0
\(919\) 16.1950 0.534222 0.267111 0.963666i \(-0.413931\pi\)
0.267111 + 0.963666i \(0.413931\pi\)
\(920\) 0 0
\(921\) −1.39989 −0.0461279
\(922\) 0 0
\(923\) 62.9372i 2.07160i
\(924\) 0 0
\(925\) −23.3221 + 0.679281i −0.766827 + 0.0223346i
\(926\) 0 0
\(927\) 8.72845i 0.286680i
\(928\) 0 0
\(929\) −24.1378 −0.791935 −0.395967 0.918265i \(-0.629591\pi\)
−0.395967 + 0.918265i \(0.629591\pi\)
\(930\) 0 0
\(931\) 26.5994 0.871760
\(932\) 0 0
\(933\) 1.29276i 0.0423232i
\(934\) 0 0
\(935\) 7.30751 + 7.09777i 0.238981 + 0.232122i
\(936\) 0 0
\(937\) 0.0408335i 0.00133397i 1.00000 0.000666986i \(0.000212308\pi\)
−1.00000 0.000666986i \(0.999788\pi\)
\(938\) 0 0
\(939\) −18.3603 −0.599167
\(940\) 0 0
\(941\) 12.8664 0.419434 0.209717 0.977762i \(-0.432746\pi\)
0.209717 + 0.977762i \(0.432746\pi\)
\(942\) 0 0
\(943\) 6.30786i 0.205412i
\(944\) 0 0
\(945\) −5.84163 + 6.01425i −0.190028 + 0.195644i
\(946\) 0 0
\(947\) 2.66444i 0.0865828i 0.999062 + 0.0432914i \(0.0137844\pi\)
−0.999062 + 0.0432914i \(0.986216\pi\)
\(948\) 0 0
\(949\) 55.7250 1.80891
\(950\) 0 0
\(951\) −7.12371 −0.231002
\(952\) 0 0
\(953\) 47.0508i 1.52413i 0.647503 + 0.762063i \(0.275813\pi\)
−0.647503 + 0.762063i \(0.724187\pi\)
\(954\) 0 0
\(955\) −20.4910 + 21.0965i −0.663072 + 0.682666i
\(956\) 0 0
\(957\) 6.56007i 0.212057i
\(958\) 0 0
\(959\) −40.8635 −1.31955
\(960\) 0 0
\(961\) 20.6887 0.667378
\(962\) 0 0
\(963\) 6.29114i 0.202729i
\(964\) 0 0
\(965\) 8.03990 + 7.80914i 0.258814 + 0.251385i
\(966\) 0 0
\(967\) 30.9954i 0.996744i 0.866963 + 0.498372i \(0.166069\pi\)
−0.866963 + 0.498372i \(0.833931\pi\)
\(968\) 0 0
\(969\) 3.76805 0.121047
\(970\) 0 0
\(971\) −8.29048 −0.266054 −0.133027 0.991112i \(-0.542470\pi\)
−0.133027 + 0.991112i \(0.542470\pi\)
\(972\) 0 0
\(973\) 68.7333i 2.20349i
\(974\) 0 0
\(975\) −0.816593 28.0365i −0.0261519 0.897888i
\(976\) 0 0
\(977\) 28.4601i 0.910519i 0.890359 + 0.455259i \(0.150453\pi\)
−0.890359 + 0.455259i \(0.849547\pi\)
\(978\) 0 0
\(979\) 57.4850 1.83723
\(980\) 0 0
\(981\) 5.53610 0.176754
\(982\) 0 0
\(983\) 39.5458i 1.26132i 0.776061 + 0.630658i \(0.217215\pi\)
−0.776061 + 0.630658i \(0.782785\pi\)
\(984\) 0 0
\(985\) 7.62703 + 7.40811i 0.243017 + 0.236042i
\(986\) 0 0
\(987\) 4.23812i 0.134901i
\(988\) 0 0
\(989\) 23.6908 0.753322
\(990\) 0 0
\(991\) 49.3227 1.56679 0.783393 0.621526i \(-0.213487\pi\)
0.783393 + 0.621526i \(0.213487\pi\)
\(992\) 0 0
\(993\) 12.5772i 0.399125i
\(994\) 0 0
\(995\) 27.9855 28.8125i 0.887201 0.913417i
\(996\) 0 0
\(997\) 34.9295i 1.10623i 0.833106 + 0.553114i \(0.186561\pi\)
−0.833106 + 0.553114i \(0.813439\pi\)
\(998\) 0 0
\(999\) −4.66640 −0.147638
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1020.2.g.d.409.7 yes 10
3.2 odd 2 3060.2.g.g.2449.7 10
4.3 odd 2 4080.2.m.r.2449.2 10
5.2 odd 4 5100.2.a.bd.1.2 5
5.3 odd 4 5100.2.a.bc.1.4 5
5.4 even 2 inner 1020.2.g.d.409.2 10
15.14 odd 2 3060.2.g.g.2449.8 10
20.19 odd 2 4080.2.m.r.2449.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.g.d.409.2 10 5.4 even 2 inner
1020.2.g.d.409.7 yes 10 1.1 even 1 trivial
3060.2.g.g.2449.7 10 3.2 odd 2
3060.2.g.g.2449.8 10 15.14 odd 2
4080.2.m.r.2449.2 10 4.3 odd 2
4080.2.m.r.2449.7 10 20.19 odd 2
5100.2.a.bc.1.4 5 5.3 odd 4
5100.2.a.bd.1.2 5 5.2 odd 4