Properties

Label 102.10.a.i.1.4
Level 102102
Weight 1010
Character 102.1
Self dual yes
Analytic conductor 52.53452.534
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [102,10,Mod(1,102)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("102.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(102, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: N N == 102=2317 102 = 2 \cdot 3 \cdot 17
Weight: k k == 10 10
Character orbit: [χ][\chi] == 102.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,64,324] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.533655288752.5336552887
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x41502266x2135577497x+425775023262 x^{4} - 1502266x^{2} - 135577497x + 425775023262 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 263 2^{6}\cdot 3
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 747.335-747.335 of defining polynomial
Character χ\chi == 102.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+16.0000q2+81.0000q3+256.000q4+1842.42q5+1296.00q64706.68q7+4096.00q8+6561.00q9+29478.7q10+22720.2q11+20736.0q12+11385.1q1375306.8q14+149236.q15+65536.0q16+83521.0q17+104976.q18+523587.q19+471658.q20381241.q21+363522.q22+1.58895e6q23+331776.q24+1.44137e6q25+182162.q26+531441.q271.20491e6q28+2.02281e6q29+2.38777e6q309.22058e6q31+1.04858e6q32+1.84033e6q33+1.33634e6q348.67166e6q35+1.67962e6q362.94408e6q37+8.37739e6q38+922193.q39+7.54654e6q40+2.75165e7q416.09985e6q428.43166e6q43+5.81636e6q44+1.20881e7q45+2.54232e7q46+4.11237e7q47+5.30842e6q481.82008e7q49+2.30619e7q50+6.76520e6q51+2.91459e6q522.85885e7q53+8.50306e6q54+4.18600e7q551.92785e7q56+4.24105e7q57+3.23649e7q58+8.35446e7q59+3.82043e7q601.27674e8q611.47529e8q623.08805e7q63+1.67772e7q64+2.09761e7q65+2.94453e7q66+1.40982e8q67+2.13814e7q68+1.28705e8q691.38747e8q70+7.71872e7q71+2.68739e7q726.55896e7q734.71053e7q74+1.16751e8q75+1.34038e8q761.06936e8q77+1.47551e7q78+2.78910e8q79+1.20745e8q80+4.30467e7q81+4.40264e8q821.06724e8q839.75976e7q84+1.53880e8q851.34907e8q86+1.63848e8q87+9.30617e7q88+5.19026e8q89+1.93409e8q905.35860e7q91+4.06771e8q927.46867e8q93+6.57979e8q94+9.64664e8q95+8.49347e7q965.03657e8q972.91213e8q98+1.49067e8q99+O(q100)q+16.0000 q^{2} +81.0000 q^{3} +256.000 q^{4} +1842.42 q^{5} +1296.00 q^{6} -4706.68 q^{7} +4096.00 q^{8} +6561.00 q^{9} +29478.7 q^{10} +22720.2 q^{11} +20736.0 q^{12} +11385.1 q^{13} -75306.8 q^{14} +149236. q^{15} +65536.0 q^{16} +83521.0 q^{17} +104976. q^{18} +523587. q^{19} +471658. q^{20} -381241. q^{21} +363522. q^{22} +1.58895e6 q^{23} +331776. q^{24} +1.44137e6 q^{25} +182162. q^{26} +531441. q^{27} -1.20491e6 q^{28} +2.02281e6 q^{29} +2.38777e6 q^{30} -9.22058e6 q^{31} +1.04858e6 q^{32} +1.84033e6 q^{33} +1.33634e6 q^{34} -8.67166e6 q^{35} +1.67962e6 q^{36} -2.94408e6 q^{37} +8.37739e6 q^{38} +922193. q^{39} +7.54654e6 q^{40} +2.75165e7 q^{41} -6.09985e6 q^{42} -8.43166e6 q^{43} +5.81636e6 q^{44} +1.20881e7 q^{45} +2.54232e7 q^{46} +4.11237e7 q^{47} +5.30842e6 q^{48} -1.82008e7 q^{49} +2.30619e7 q^{50} +6.76520e6 q^{51} +2.91459e6 q^{52} -2.85885e7 q^{53} +8.50306e6 q^{54} +4.18600e7 q^{55} -1.92785e7 q^{56} +4.24105e7 q^{57} +3.23649e7 q^{58} +8.35446e7 q^{59} +3.82043e7 q^{60} -1.27674e8 q^{61} -1.47529e8 q^{62} -3.08805e7 q^{63} +1.67772e7 q^{64} +2.09761e7 q^{65} +2.94453e7 q^{66} +1.40982e8 q^{67} +2.13814e7 q^{68} +1.28705e8 q^{69} -1.38747e8 q^{70} +7.71872e7 q^{71} +2.68739e7 q^{72} -6.55896e7 q^{73} -4.71053e7 q^{74} +1.16751e8 q^{75} +1.34038e8 q^{76} -1.06936e8 q^{77} +1.47551e7 q^{78} +2.78910e8 q^{79} +1.20745e8 q^{80} +4.30467e7 q^{81} +4.40264e8 q^{82} -1.06724e8 q^{83} -9.75976e7 q^{84} +1.53880e8 q^{85} -1.34907e8 q^{86} +1.63848e8 q^{87} +9.30617e7 q^{88} +5.19026e8 q^{89} +1.93409e8 q^{90} -5.35860e7 q^{91} +4.06771e8 q^{92} -7.46867e8 q^{93} +6.57979e8 q^{94} +9.64664e8 q^{95} +8.49347e7 q^{96} -5.03657e8 q^{97} -2.91213e8 q^{98} +1.49067e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+64q2+324q3+1024q4+942q5+5184q6+5088q7+16384q8+26244q9+15072q1020822q11+82944q12+260722q13+81408q14+76302q15+262144q16+136613142q99+O(q100) 4 q + 64 q^{2} + 324 q^{3} + 1024 q^{4} + 942 q^{5} + 5184 q^{6} + 5088 q^{7} + 16384 q^{8} + 26244 q^{9} + 15072 q^{10} - 20822 q^{11} + 82944 q^{12} + 260722 q^{13} + 81408 q^{14} + 76302 q^{15} + 262144 q^{16}+ \cdots - 136613142 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 16.0000 0.707107
33 81.0000 0.577350
44 256.000 0.500000
55 1842.42 1.31833 0.659163 0.752000i 0.270911π-0.270911\pi
0.659163 + 0.752000i 0.270911π0.270911\pi
66 1296.00 0.408248
77 −4706.68 −0.740923 −0.370462 0.928848i 0.620800π-0.620800\pi
−0.370462 + 0.928848i 0.620800π0.620800\pi
88 4096.00 0.353553
99 6561.00 0.333333
1010 29478.7 0.932197
1111 22720.2 0.467890 0.233945 0.972250i 0.424836π-0.424836\pi
0.233945 + 0.972250i 0.424836π0.424836\pi
1212 20736.0 0.288675
1313 11385.1 0.110558 0.0552792 0.998471i 0.482395π-0.482395\pi
0.0552792 + 0.998471i 0.482395π0.482395\pi
1414 −75306.8 −0.523912
1515 149236. 0.761136
1616 65536.0 0.250000
1717 83521.0 0.242536
1818 104976. 0.235702
1919 523587. 0.921716 0.460858 0.887474i 0.347542π-0.347542\pi
0.460858 + 0.887474i 0.347542π0.347542\pi
2020 471658. 0.659163
2121 −381241. −0.427772
2222 363522. 0.330848
2323 1.58895e6 1.18395 0.591977 0.805955i 0.298348π-0.298348\pi
0.591977 + 0.805955i 0.298348π0.298348\pi
2424 331776. 0.204124
2525 1.44137e6 0.737982
2626 182162. 0.0781766
2727 531441. 0.192450
2828 −1.20491e6 −0.370462
2929 2.02281e6 0.531085 0.265542 0.964099i 0.414449π-0.414449\pi
0.265542 + 0.964099i 0.414449π0.414449\pi
3030 2.38777e6 0.538204
3131 −9.22058e6 −1.79321 −0.896604 0.442833i 0.853973π-0.853973\pi
−0.896604 + 0.442833i 0.853973π0.853973\pi
3232 1.04858e6 0.176777
3333 1.84033e6 0.270137
3434 1.33634e6 0.171499
3535 −8.67166e6 −0.976778
3636 1.67962e6 0.166667
3737 −2.94408e6 −0.258251 −0.129125 0.991628i 0.541217π-0.541217\pi
−0.129125 + 0.991628i 0.541217π0.541217\pi
3838 8.37739e6 0.651752
3939 922193. 0.0638309
4040 7.54654e6 0.466098
4141 2.75165e7 1.52078 0.760389 0.649468i 0.225008π-0.225008\pi
0.760389 + 0.649468i 0.225008π0.225008\pi
4242 −6.09985e6 −0.302481
4343 −8.43166e6 −0.376101 −0.188051 0.982159i 0.560217π-0.560217\pi
−0.188051 + 0.982159i 0.560217π0.560217\pi
4444 5.81636e6 0.233945
4545 1.20881e7 0.439442
4646 2.54232e7 0.837182
4747 4.11237e7 1.22928 0.614642 0.788806i 0.289301π-0.289301\pi
0.614642 + 0.788806i 0.289301π0.289301\pi
4848 5.30842e6 0.144338
4949 −1.82008e7 −0.451033
5050 2.30619e7 0.521832
5151 6.76520e6 0.140028
5252 2.91459e6 0.0552792
5353 −2.85885e7 −0.497680 −0.248840 0.968545i 0.580049π-0.580049\pi
−0.248840 + 0.968545i 0.580049π0.580049\pi
5454 8.50306e6 0.136083
5555 4.18600e7 0.616832
5656 −1.92785e7 −0.261956
5757 4.24105e7 0.532153
5858 3.23649e7 0.375534
5959 8.35446e7 0.897604 0.448802 0.893631i 0.351851π-0.351851\pi
0.448802 + 0.893631i 0.351851π0.351851\pi
6060 3.82043e7 0.380568
6161 −1.27674e8 −1.18064 −0.590320 0.807169i 0.700998π-0.700998\pi
−0.590320 + 0.807169i 0.700998π0.700998\pi
6262 −1.47529e8 −1.26799
6363 −3.08805e7 −0.246974
6464 1.67772e7 0.125000
6565 2.09761e7 0.145752
6666 2.94453e7 0.191015
6767 1.40982e8 0.854726 0.427363 0.904080i 0.359443π-0.359443\pi
0.427363 + 0.904080i 0.359443π0.359443\pi
6868 2.13814e7 0.121268
6969 1.28705e8 0.683556
7070 −1.38747e8 −0.690686
7171 7.71872e7 0.360481 0.180241 0.983623i 0.442312π-0.442312\pi
0.180241 + 0.983623i 0.442312π0.442312\pi
7272 2.68739e7 0.117851
7373 −6.55896e7 −0.270322 −0.135161 0.990824i 0.543155π-0.543155\pi
−0.135161 + 0.990824i 0.543155π0.543155\pi
7474 −4.71053e7 −0.182611
7575 1.16751e8 0.426074
7676 1.34038e8 0.460858
7777 −1.06936e8 −0.346671
7878 1.47551e7 0.0451353
7979 2.78910e8 0.805641 0.402820 0.915279i 0.368030π-0.368030\pi
0.402820 + 0.915279i 0.368030π0.368030\pi
8080 1.20745e8 0.329581
8181 4.30467e7 0.111111
8282 4.40264e8 1.07535
8383 −1.06724e8 −0.246836 −0.123418 0.992355i 0.539386π-0.539386\pi
−0.123418 + 0.992355i 0.539386π0.539386\pi
8484 −9.75976e7 −0.213886
8585 1.53880e8 0.319741
8686 −1.34907e8 −0.265944
8787 1.63848e8 0.306622
8888 9.30617e7 0.165424
8989 5.19026e8 0.876868 0.438434 0.898763i 0.355533π-0.355533\pi
0.438434 + 0.898763i 0.355533π0.355533\pi
9090 1.93409e8 0.310732
9191 −5.35860e7 −0.0819153
9292 4.06771e8 0.591977
9393 −7.46867e8 −1.03531
9494 6.57979e8 0.869235
9595 9.64664e8 1.21512
9696 8.49347e7 0.102062
9797 −5.03657e8 −0.577647 −0.288823 0.957382i 0.593264π-0.593264\pi
−0.288823 + 0.957382i 0.593264π0.593264\pi
9898 −2.91213e8 −0.318928
9999 1.49067e8 0.155963
100100 3.68991e8 0.368991
101101 7.78837e7 0.0744733 0.0372366 0.999306i 0.488144π-0.488144\pi
0.0372366 + 0.999306i 0.488144π0.488144\pi
102102 1.08243e8 0.0990148
103103 −9.98786e8 −0.874390 −0.437195 0.899367i 0.644028π-0.644028\pi
−0.437195 + 0.899367i 0.644028π0.644028\pi
104104 4.66334e7 0.0390883
105105 −7.02404e8 −0.563943
106106 −4.57416e8 −0.351913
107107 1.16801e8 0.0861431 0.0430715 0.999072i 0.486286π-0.486286\pi
0.0430715 + 0.999072i 0.486286π0.486286\pi
108108 1.36049e8 0.0962250
109109 −6.41849e8 −0.435526 −0.217763 0.976002i 0.569876π-0.569876\pi
−0.217763 + 0.976002i 0.569876π0.569876\pi
110110 6.69760e8 0.436166
111111 −2.38471e8 −0.149101
112112 −3.08457e8 −0.185231
113113 7.45533e8 0.430144 0.215072 0.976598i 0.431001π-0.431001\pi
0.215072 + 0.976598i 0.431001π0.431001\pi
114114 6.78568e8 0.376289
115115 2.92751e9 1.56084
116116 5.17839e8 0.265542
117117 7.46976e7 0.0368528
118118 1.33671e9 0.634702
119119 −3.93106e8 −0.179700
120120 6.11269e8 0.269102
121121 −1.84174e9 −0.781079
122122 −2.04278e9 −0.834838
123123 2.22884e9 0.878022
124124 −2.36047e9 −0.896604
125125 −9.42863e8 −0.345425
126126 −4.94088e8 −0.174637
127127 −1.05616e9 −0.360257 −0.180128 0.983643i 0.557651π-0.557651\pi
−0.180128 + 0.983643i 0.557651π0.557651\pi
128128 2.68435e8 0.0883883
129129 −6.82964e8 −0.217142
130130 3.35617e8 0.103062
131131 4.56700e9 1.35491 0.677455 0.735564i 0.263083π-0.263083\pi
0.677455 + 0.735564i 0.263083π0.263083\pi
132132 4.71125e8 0.135068
133133 −2.46435e9 −0.682921
134134 2.25571e9 0.604383
135135 9.79135e8 0.253712
136136 3.42102e8 0.0857493
137137 −1.67144e9 −0.405366 −0.202683 0.979244i 0.564966π-0.564966\pi
−0.202683 + 0.979244i 0.564966π0.564966\pi
138138 2.05928e9 0.483347
139139 −7.65389e9 −1.73906 −0.869532 0.493877i 0.835579π-0.835579\pi
−0.869532 + 0.493877i 0.835579π0.835579\pi
140140 −2.21994e9 −0.488389
141141 3.33102e9 0.709727
142142 1.23500e9 0.254899
143143 2.58671e8 0.0517292
144144 4.29982e8 0.0833333
145145 3.72686e9 0.700143
146146 −1.04943e9 −0.191147
147147 −1.47426e9 −0.260404
148148 −7.53685e8 −0.129125
149149 −1.06850e10 −1.77598 −0.887990 0.459863i 0.847898π-0.847898\pi
−0.887990 + 0.459863i 0.847898π0.847898\pi
150150 1.86802e9 0.301280
151151 9.03596e8 0.141442 0.0707210 0.997496i 0.477470π-0.477470\pi
0.0707210 + 0.997496i 0.477470π0.477470\pi
152152 2.14461e9 0.325876
153153 5.47981e8 0.0808452
154154 −1.71098e9 −0.245133
155155 −1.69881e10 −2.36403
156156 2.36081e8 0.0319155
157157 −3.53273e9 −0.464047 −0.232023 0.972710i 0.574535π-0.574535\pi
−0.232023 + 0.972710i 0.574535π0.574535\pi
158158 4.46255e9 0.569674
159159 −2.31567e9 −0.287336
160160 1.93191e9 0.233049
161161 −7.47867e9 −0.877219
162162 6.88748e8 0.0785674
163163 −9.95354e9 −1.10442 −0.552209 0.833706i 0.686215π-0.686215\pi
−0.552209 + 0.833706i 0.686215π0.686215\pi
164164 7.04422e9 0.760389
165165 3.39066e9 0.356128
166166 −1.70758e9 −0.174540
167167 −1.98167e9 −0.197155 −0.0985774 0.995129i 0.531429π-0.531429\pi
−0.0985774 + 0.995129i 0.531429π0.531429\pi
168168 −1.56156e9 −0.151240
169169 −1.04749e10 −0.987777
170170 2.46209e9 0.226091
171171 3.43525e9 0.307239
172172 −2.15850e9 −0.188051
173173 −7.64973e9 −0.649290 −0.324645 0.945836i 0.605245π-0.605245\pi
−0.324645 + 0.945836i 0.605245π0.605245\pi
174174 2.62156e9 0.216814
175175 −6.78407e9 −0.546788
176176 1.48899e9 0.116973
177177 6.76712e9 0.518232
178178 8.30442e9 0.620039
179179 −1.49195e10 −1.08621 −0.543106 0.839664i 0.682752π-0.682752\pi
−0.543106 + 0.839664i 0.682752π0.682752\pi
180180 3.09455e9 0.219721
181181 −7.92926e8 −0.0549135 −0.0274568 0.999623i 0.508741π-0.508741\pi
−0.0274568 + 0.999623i 0.508741π0.508741\pi
182182 −8.57376e8 −0.0579229
183183 −1.03416e10 −0.681643
184184 6.50834e9 0.418591
185185 −5.42422e9 −0.340459
186186 −1.19499e10 −0.732074
187187 1.89761e9 0.113480
188188 1.05277e10 0.614642
189189 −2.50132e9 −0.142591
190190 1.54346e10 0.859221
191191 −2.90951e10 −1.58187 −0.790933 0.611902i 0.790405π-0.790405\pi
−0.790933 + 0.611902i 0.790405π0.790405\pi
192192 1.35895e9 0.0721688
193193 −2.40531e10 −1.24785 −0.623926 0.781484i 0.714463π-0.714463\pi
−0.623926 + 0.781484i 0.714463π0.714463\pi
194194 −8.05852e9 −0.408458
195195 1.69906e9 0.0841499
196196 −4.65941e9 −0.225516
197197 −1.95453e10 −0.924577 −0.462289 0.886729i 0.652972π-0.652972\pi
−0.462289 + 0.886729i 0.652972π0.652972\pi
198198 2.38507e9 0.110283
199199 2.68267e10 1.21263 0.606316 0.795224i 0.292647π-0.292647\pi
0.606316 + 0.795224i 0.292647π0.292647\pi
200200 5.90386e9 0.260916
201201 1.14195e10 0.493476
202202 1.24614e9 0.0526606
203203 −9.52071e9 −0.393493
204204 1.73189e9 0.0700140
205205 5.06968e10 2.00488
206206 −1.59806e10 −0.618287
207207 1.04251e10 0.394651
208208 7.46134e8 0.0276396
209209 1.18960e10 0.431262
210210 −1.12385e10 −0.398768
211211 5.00514e10 1.73838 0.869191 0.494477i 0.164640π-0.164640\pi
0.869191 + 0.494477i 0.164640π0.164640\pi
212212 −7.31866e9 −0.248840
213213 6.25216e9 0.208124
214214 1.86882e9 0.0609124
215215 −1.55346e10 −0.495824
216216 2.17678e9 0.0680414
217217 4.33983e10 1.32863
218218 −1.02696e10 −0.307963
219219 −5.31276e9 −0.156071
220220 1.07162e10 0.308416
221221 9.50895e8 0.0268143
222222 −3.81553e9 −0.105431
223223 7.47280e9 0.202354 0.101177 0.994868i 0.467739π-0.467739\pi
0.101177 + 0.994868i 0.467739π0.467739\pi
224224 −4.93531e9 −0.130978
225225 9.45684e9 0.245994
226226 1.19285e10 0.304158
227227 −3.05696e10 −0.764141 −0.382070 0.924133i 0.624789π-0.624789\pi
−0.382070 + 0.924133i 0.624789π0.624789\pi
228228 1.08571e10 0.266077
229229 4.56008e10 1.09575 0.547877 0.836559i 0.315436π-0.315436\pi
0.547877 + 0.836559i 0.315436π0.315436\pi
230230 4.68401e10 1.10368
231231 −8.66185e9 −0.200151
232232 8.28543e9 0.187767
233233 6.06866e10 1.34893 0.674467 0.738305i 0.264373π-0.264373\pi
0.674467 + 0.738305i 0.264373π0.264373\pi
234234 1.19516e9 0.0260589
235235 7.57670e10 1.62060
236236 2.13874e10 0.448802
237237 2.25917e10 0.465137
238238 −6.28970e9 −0.127067
239239 −8.33322e10 −1.65205 −0.826023 0.563636i 0.809402π-0.809402\pi
−0.826023 + 0.563636i 0.809402π0.809402\pi
240240 9.78031e9 0.190284
241241 −3.39371e10 −0.648033 −0.324017 0.946051i 0.605033π-0.605033\pi
−0.324017 + 0.946051i 0.605033π0.605033\pi
242242 −2.94679e10 −0.552306
243243 3.48678e9 0.0641500
244244 −3.26845e10 −0.590320
245245 −3.35334e10 −0.594608
246246 3.56614e10 0.620855
247247 5.96109e9 0.101903
248248 −3.77675e10 −0.633995
249249 −8.64461e9 −0.142511
250250 −1.50858e10 −0.244252
251251 5.27511e10 0.838880 0.419440 0.907783i 0.362226π-0.362226\pi
0.419440 + 0.907783i 0.362226π0.362226\pi
252252 −7.90541e9 −0.123487
253253 3.61012e10 0.553961
254254 −1.68985e10 −0.254740
255255 1.24643e10 0.184603
256256 4.29497e9 0.0625000
257257 5.27283e10 0.753954 0.376977 0.926223i 0.376964π-0.376964\pi
0.376977 + 0.926223i 0.376964π0.376964\pi
258258 −1.09274e10 −0.153543
259259 1.38568e10 0.191344
260260 5.36988e9 0.0728760
261261 1.32717e10 0.177028
262262 7.30721e10 0.958066
263263 1.27039e11 1.63733 0.818666 0.574270i 0.194714π-0.194714\pi
0.818666 + 0.574270i 0.194714π0.194714\pi
264264 7.53800e9 0.0955077
265265 −5.26720e10 −0.656105
266266 −3.94296e10 −0.482898
267267 4.20411e10 0.506260
268268 3.60914e10 0.427363
269269 −5.11763e10 −0.595914 −0.297957 0.954579i 0.596305π-0.596305\pi
−0.297957 + 0.954579i 0.596305π0.596305\pi
270270 1.56662e10 0.179401
271271 −1.20074e11 −1.35234 −0.676172 0.736744i 0.736362π-0.736362\pi
−0.676172 + 0.736744i 0.736362π0.736362\pi
272272 5.47363e9 0.0606339
273273 −4.34046e9 −0.0472938
274274 −2.67430e10 −0.286637
275275 3.27482e10 0.345295
276276 3.29485e10 0.341778
277277 1.81854e11 1.85594 0.927972 0.372649i 0.121550π-0.121550\pi
0.927972 + 0.372649i 0.121550π0.121550\pi
278278 −1.22462e11 −1.22970
279279 −6.04962e10 −0.597736
280280 −3.55191e10 −0.345343
281281 −1.15809e10 −0.110806 −0.0554030 0.998464i 0.517644π-0.517644\pi
−0.0554030 + 0.998464i 0.517644π0.517644\pi
282282 5.32963e10 0.501853
283283 −1.57674e11 −1.46124 −0.730619 0.682785i 0.760768π-0.760768\pi
−0.730619 + 0.682785i 0.760768π0.760768\pi
284284 1.97599e10 0.180241
285285 7.81378e10 0.701551
286286 4.13874e9 0.0365781
287287 −1.29511e11 −1.12678
288288 6.87971e9 0.0589256
289289 6.97576e9 0.0588235
290290 5.96297e10 0.495076
291291 −4.07962e10 −0.333504
292292 −1.67909e10 −0.135161
293293 −1.66582e11 −1.32045 −0.660227 0.751066i 0.729540π-0.729540\pi
−0.660227 + 0.751066i 0.729540π0.729540\pi
294294 −2.35882e10 −0.184133
295295 1.53924e11 1.18333
296296 −1.20590e10 −0.0913055
297297 1.20744e10 0.0900456
298298 −1.70961e11 −1.25581
299299 1.80904e10 0.130896
300300 2.98883e10 0.213037
301301 3.96851e10 0.278662
302302 1.44575e10 0.100015
303303 6.30858e9 0.0429972
304304 3.43138e10 0.230429
305305 −2.35228e11 −1.55647
306306 8.76770e9 0.0571662
307307 5.29467e10 0.340186 0.170093 0.985428i 0.445593π-0.445593\pi
0.170093 + 0.985428i 0.445593π0.445593\pi
308308 −2.73757e10 −0.173335
309309 −8.09017e10 −0.504829
310310 −2.71810e11 −1.67162
311311 −1.85494e11 −1.12437 −0.562183 0.827013i 0.690039π-0.690039\pi
−0.562183 + 0.827013i 0.690039π0.690039\pi
312312 3.77730e9 0.0225676
313313 −8.70761e9 −0.0512802 −0.0256401 0.999671i 0.508162π-0.508162\pi
−0.0256401 + 0.999671i 0.508162π0.508162\pi
314314 −5.65237e10 −0.328131
315315 −5.68947e10 −0.325593
316316 7.14008e10 0.402820
317317 1.13116e11 0.629152 0.314576 0.949232i 0.398138π-0.398138\pi
0.314576 + 0.949232i 0.398138π0.398138\pi
318318 −3.70507e10 −0.203177
319319 4.59585e10 0.248490
320320 3.09106e10 0.164791
321321 9.46090e9 0.0497347
322322 −1.19659e11 −0.620288
323323 4.37305e10 0.223549
324324 1.10200e10 0.0555556
325325 1.64102e10 0.0815901
326326 −1.59257e11 −0.780941
327327 −5.19898e10 −0.251451
328328 1.12708e11 0.537676
329329 −1.93556e11 −0.910805
330330 5.42505e10 0.251821
331331 9.98136e10 0.457050 0.228525 0.973538i 0.426610π-0.426610\pi
0.228525 + 0.973538i 0.426610π0.426610\pi
332332 −2.73212e10 −0.123418
333333 −1.93161e10 −0.0860836
334334 −3.17067e10 −0.139409
335335 2.59747e11 1.12681
336336 −2.49850e10 −0.106943
337337 1.96168e9 0.00828503 0.00414252 0.999991i 0.498681π-0.498681\pi
0.00414252 + 0.999991i 0.498681π0.498681\pi
338338 −1.67598e11 −0.698464
339339 6.03882e10 0.248344
340340 3.93934e10 0.159870
341341 −2.09493e11 −0.839025
342342 5.49640e10 0.217251
343343 2.75597e11 1.07510
344344 −3.45361e10 −0.132972
345345 2.37128e11 0.901150
346346 −1.22396e11 −0.459117
347347 4.01242e11 1.48567 0.742837 0.669473i 0.233480π-0.233480\pi
0.742837 + 0.669473i 0.233480π0.233480\pi
348348 4.19450e10 0.153311
349349 2.40412e11 0.867443 0.433722 0.901047i 0.357200π-0.357200\pi
0.433722 + 0.901047i 0.357200π0.357200\pi
350350 −1.08545e11 −0.386638
351351 6.05051e9 0.0212770
352352 2.38238e10 0.0827121
353353 1.29986e11 0.445565 0.222783 0.974868i 0.428486π-0.428486\pi
0.222783 + 0.974868i 0.428486π0.428486\pi
354354 1.08274e11 0.366445
355355 1.42211e11 0.475232
356356 1.32871e11 0.438434
357357 −3.18416e10 −0.103750
358358 −2.38712e11 −0.768068
359359 8.71259e10 0.276836 0.138418 0.990374i 0.455798π-0.455798\pi
0.138418 + 0.990374i 0.455798π0.455798\pi
360360 4.95128e10 0.155366
361361 −4.85447e10 −0.150439
362362 −1.26868e10 −0.0388297
363363 −1.49181e11 −0.450956
364364 −1.37180e10 −0.0409576
365365 −1.20843e11 −0.356373
366366 −1.65465e11 −0.481994
367367 −2.09905e11 −0.603985 −0.301993 0.953310i 0.597652π-0.597652\pi
−0.301993 + 0.953310i 0.597652π0.597652\pi
368368 1.04133e11 0.295989
369369 1.80536e11 0.506926
370370 −8.67875e10 −0.240741
371371 1.34557e11 0.368743
372372 −1.91198e11 −0.517655
373373 −2.47415e11 −0.661814 −0.330907 0.943663i 0.607355π-0.607355\pi
−0.330907 + 0.943663i 0.607355π0.607355\pi
374374 3.03618e10 0.0802425
375375 −7.63719e10 −0.199431
376376 1.68443e11 0.434617
377377 2.30299e10 0.0587159
378378 −4.00211e10 −0.100827
379379 −1.60649e11 −0.399946 −0.199973 0.979801i 0.564085π-0.564085\pi
−0.199973 + 0.979801i 0.564085π0.564085\pi
380380 2.46954e11 0.607561
381381 −8.55488e10 −0.207994
382382 −4.65522e11 −1.11855
383383 −1.89236e11 −0.449376 −0.224688 0.974431i 0.572136π-0.572136\pi
−0.224688 + 0.974431i 0.572136π0.572136\pi
384384 2.17433e10 0.0510310
385385 −1.97021e11 −0.457025
386386 −3.84849e11 −0.882364
387387 −5.53201e10 −0.125367
388388 −1.28936e11 −0.288823
389389 −5.23103e11 −1.15828 −0.579141 0.815227i 0.696612π-0.696612\pi
−0.579141 + 0.815227i 0.696612π0.696612\pi
390390 2.71850e10 0.0595030
391391 1.32711e11 0.287151
392392 −7.45505e10 −0.159464
393393 3.69927e11 0.782258
394394 −3.12724e11 −0.653775
395395 5.13867e11 1.06210
396396 3.81611e10 0.0779817
397397 −1.03285e11 −0.208679 −0.104339 0.994542i 0.533273π-0.533273\pi
−0.104339 + 0.994542i 0.533273π0.533273\pi
398398 4.29227e11 0.857460
399399 −1.99613e11 −0.394285
400400 9.44617e10 0.184496
401401 −6.26999e11 −1.21092 −0.605462 0.795874i 0.707012π-0.707012\pi
−0.605462 + 0.795874i 0.707012π0.707012\pi
402402 1.82713e11 0.348941
403403 −1.04977e11 −0.198254
404404 1.99382e10 0.0372366
405405 7.93100e10 0.146481
406406 −1.52331e11 −0.278242
407407 −6.68900e10 −0.120833
408408 2.77103e10 0.0495074
409409 −7.75508e11 −1.37035 −0.685175 0.728379i 0.740274π-0.740274\pi
−0.685175 + 0.728379i 0.740274π0.740274\pi
410410 8.11149e11 1.41766
411411 −1.35386e11 −0.234038
412412 −2.55689e11 −0.437195
413413 −3.93218e11 −0.665055
414414 1.66802e11 0.279061
415415 −1.96629e11 −0.325410
416416 1.19381e10 0.0195441
417417 −6.19965e11 −1.00405
418418 1.90335e11 0.304949
419419 3.75763e11 0.595595 0.297798 0.954629i 0.403748π-0.403748\pi
0.297798 + 0.954629i 0.403748π0.403748\pi
420420 −1.79815e11 −0.281972
421421 2.03242e11 0.315314 0.157657 0.987494i 0.449606π-0.449606\pi
0.157657 + 0.987494i 0.449606π0.449606\pi
422422 8.00822e11 1.22922
423423 2.69813e11 0.409761
424424 −1.17099e11 −0.175957
425425 1.20385e11 0.178987
426426 1.00035e11 0.147166
427427 6.00919e11 0.874763
428428 2.99011e10 0.0430715
429429 2.09524e10 0.0298659
430430 −2.48554e11 −0.350601
431431 1.02073e12 1.42483 0.712414 0.701759i 0.247602π-0.247602\pi
0.712414 + 0.701759i 0.247602π0.247602\pi
432432 3.48285e10 0.0481125
433433 −9.21908e11 −1.26035 −0.630176 0.776452i 0.717017π-0.717017\pi
−0.630176 + 0.776452i 0.717017π0.717017\pi
434434 6.94373e11 0.939483
435435 3.01875e11 0.404228
436436 −1.64313e11 −0.217763
437437 8.31953e11 1.09127
438438 −8.50041e10 −0.110359
439439 4.92301e11 0.632616 0.316308 0.948657i 0.397557π-0.397557\pi
0.316308 + 0.948657i 0.397557π0.397557\pi
440440 1.71458e11 0.218083
441441 −1.19415e11 −0.150344
442442 1.52143e10 0.0189606
443443 1.51405e12 1.86777 0.933883 0.357580i 0.116398π-0.116398\pi
0.933883 + 0.357580i 0.116398π0.116398\pi
444444 −6.10485e10 −0.0745506
445445 9.56262e11 1.15600
446446 1.19565e11 0.143086
447447 −8.65488e11 −1.02536
448448 −7.89649e10 −0.0926154
449449 −1.28303e12 −1.48980 −0.744901 0.667175i 0.767503π-0.767503\pi
−0.744901 + 0.667175i 0.767503π0.767503\pi
450450 1.51309e11 0.173944
451451 6.25179e11 0.711558
452452 1.90856e11 0.215072
453453 7.31913e10 0.0816615
454454 −4.89114e11 −0.540329
455455 −9.87277e10 −0.107991
456456 1.73713e11 0.188145
457457 1.05752e12 1.13414 0.567070 0.823670i 0.308077π-0.308077\pi
0.567070 + 0.823670i 0.308077π0.308077\pi
458458 7.29613e11 0.774815
459459 4.43865e10 0.0466760
460460 7.49442e11 0.780419
461461 1.25776e12 1.29702 0.648508 0.761208i 0.275393π-0.275393\pi
0.648508 + 0.761208i 0.275393π0.275393\pi
462462 −1.38590e11 −0.141528
463463 6.39919e11 0.647158 0.323579 0.946201i 0.395114π-0.395114\pi
0.323579 + 0.946201i 0.395114π0.395114\pi
464464 1.32567e11 0.132771
465465 −1.37604e12 −1.36487
466466 9.70985e11 0.953841
467467 −4.22079e11 −0.410646 −0.205323 0.978694i 0.565825π-0.565825\pi
−0.205323 + 0.978694i 0.565825π0.565825\pi
468468 1.91226e10 0.0184264
469469 −6.63557e11 −0.633286
470470 1.21227e12 1.14593
471471 −2.86151e11 −0.267918
472472 3.42199e11 0.317351
473473 −1.91569e11 −0.175974
474474 3.61467e11 0.328901
475475 7.54683e11 0.680210
476476 −1.00635e11 −0.0898501
477477 −1.87569e11 −0.165893
478478 −1.33331e12 −1.16817
479479 1.10730e12 0.961072 0.480536 0.876975i 0.340442π-0.340442\pi
0.480536 + 0.876975i 0.340442π0.340442\pi
480480 1.56485e11 0.134551
481481 −3.35186e10 −0.0285518
482482 −5.42993e11 −0.458229
483483 −6.05773e11 −0.506463
484484 −4.71486e11 −0.390539
485485 −9.27946e11 −0.761526
486486 5.57886e10 0.0453609
487487 −2.23395e12 −1.79967 −0.899837 0.436226i 0.856315π-0.856315\pi
−0.899837 + 0.436226i 0.856315π0.856315\pi
488488 −5.22952e11 −0.417419
489489 −8.06237e11 −0.637636
490490 −5.36535e11 −0.420451
491491 −1.88915e11 −0.146690 −0.0733450 0.997307i 0.523367π-0.523367\pi
−0.0733450 + 0.997307i 0.523367π0.523367\pi
492492 5.70582e11 0.439011
493493 1.68947e11 0.128807
494494 9.53774e10 0.0720567
495495 2.74643e11 0.205611
496496 −6.04280e11 −0.448302
497497 −3.63295e11 −0.267089
498498 −1.38314e11 −0.100770
499499 1.85978e12 1.34279 0.671397 0.741098i 0.265695π-0.265695\pi
0.671397 + 0.741098i 0.265695π0.265695\pi
500500 −2.41373e11 −0.172712
501501 −1.60515e11 −0.113827
502502 8.44018e11 0.593178
503503 −2.10435e11 −0.146576 −0.0732879 0.997311i 0.523349π-0.523349\pi
−0.0732879 + 0.997311i 0.523349π0.523349\pi
504504 −1.26487e11 −0.0873186
505505 1.43494e11 0.0981800
506506 5.77619e11 0.391709
507507 −8.48465e11 −0.570293
508508 −2.70377e11 −0.180128
509509 1.17591e12 0.776504 0.388252 0.921553i 0.373079π-0.373079\pi
0.388252 + 0.921553i 0.373079π0.373079\pi
510510 1.99429e11 0.130534
511511 3.08709e11 0.200288
512512 6.87195e10 0.0441942
513513 2.78255e11 0.177384
514514 8.43653e11 0.533126
515515 −1.84018e12 −1.15273
516516 −1.74839e11 −0.108571
517517 9.34337e11 0.575170
518518 2.21709e11 0.135301
519519 −6.19628e11 −0.374868
520520 8.59181e10 0.0515311
521521 −2.75088e12 −1.63569 −0.817846 0.575438i 0.804832π-0.804832\pi
−0.817846 + 0.575438i 0.804832π0.804832\pi
522522 2.12346e11 0.125178
523523 1.05531e11 0.0616771 0.0308386 0.999524i 0.490182π-0.490182\pi
0.0308386 + 0.999524i 0.490182π0.490182\pi
524524 1.16915e12 0.677455
525525 −5.49510e11 −0.315688
526526 2.03263e12 1.15777
527527 −7.70112e11 −0.434917
528528 1.20608e11 0.0675342
529529 7.23609e11 0.401748
530530 −8.42751e11 −0.463936
531531 5.48136e11 0.299201
532532 −6.30874e11 −0.341461
533533 3.13278e11 0.168135
534534 6.72658e11 0.357980
535535 2.15196e11 0.113565
536536 5.77462e11 0.302191
537537 −1.20848e12 −0.627125
538538 −8.18821e11 −0.421375
539539 −4.13525e11 −0.211034
540540 2.50659e11 0.126856
541541 −2.22896e11 −0.111870 −0.0559351 0.998434i 0.517814π-0.517814\pi
−0.0559351 + 0.998434i 0.517814π0.517814\pi
542542 −1.92118e12 −0.956251
543543 −6.42270e10 −0.0317043
544544 8.75781e10 0.0428746
545545 −1.18255e12 −0.574165
546546 −6.94474e10 −0.0334418
547547 8.36279e11 0.399400 0.199700 0.979857i 0.436003π-0.436003\pi
0.199700 + 0.979857i 0.436003π0.436003\pi
548548 −4.27888e11 −0.202683
549549 −8.37668e11 −0.393547
550550 5.23971e11 0.244160
551551 1.05912e12 0.489510
552552 5.27175e11 0.241674
553553 −1.31274e12 −0.596918
554554 2.90967e12 1.31235
555555 −4.39362e11 −0.196564
556556 −1.95939e12 −0.869532
557557 −2.12166e11 −0.0933960 −0.0466980 0.998909i 0.514870π-0.514870\pi
−0.0466980 + 0.998909i 0.514870π0.514870\pi
558558 −9.67940e11 −0.422663
559559 −9.59953e10 −0.0415812
560560 −5.68306e11 −0.244194
561561 1.53706e11 0.0655178
562562 −1.85294e11 −0.0783517
563563 −4.19818e11 −0.176105 −0.0880527 0.996116i 0.528064π-0.528064\pi
−0.0880527 + 0.996116i 0.528064π0.528064\pi
564564 8.52741e11 0.354864
565565 1.37358e12 0.567070
566566 −2.52278e12 −1.03325
567567 −2.02607e11 −0.0823248
568568 3.16159e11 0.127449
569569 2.25658e12 0.902497 0.451248 0.892398i 0.350979π-0.350979\pi
0.451248 + 0.892398i 0.350979π0.350979\pi
570570 1.25021e12 0.496072
571571 −4.14384e12 −1.63132 −0.815662 0.578528i 0.803627π-0.803627\pi
−0.815662 + 0.578528i 0.803627π0.803627\pi
572572 6.62198e10 0.0258646
573573 −2.35670e12 −0.913291
574574 −2.07218e12 −0.796754
575575 2.29027e12 0.873737
576576 1.10075e11 0.0416667
577577 1.03287e12 0.387930 0.193965 0.981008i 0.437865π-0.437865\pi
0.193965 + 0.981008i 0.437865π0.437865\pi
578578 1.11612e11 0.0415945
579579 −1.94830e12 −0.720447
580580 9.54075e11 0.350071
581581 5.02313e11 0.182887
582582 −6.52740e11 −0.235823
583583 −6.49536e11 −0.232860
584584 −2.68655e11 −0.0955734
585585 1.37624e11 0.0485840
586586 −2.66531e12 −0.933702
587587 5.22320e11 0.181579 0.0907895 0.995870i 0.471061π-0.471061\pi
0.0907895 + 0.995870i 0.471061π0.471061\pi
588588 −3.77412e11 −0.130202
589589 −4.82777e12 −1.65283
590590 2.46278e12 0.836743
591591 −1.58317e12 −0.533805
592592 −1.92943e11 −0.0645627
593593 −1.80456e12 −0.599274 −0.299637 0.954053i 0.596866π-0.596866\pi
−0.299637 + 0.954053i 0.596866π0.596866\pi
594594 1.93191e11 0.0636718
595595 −7.24265e11 −0.236903
596596 −2.73537e12 −0.887990
597597 2.17296e12 0.700113
598598 2.89446e11 0.0925575
599599 4.75108e12 1.50790 0.753949 0.656933i 0.228147π-0.228147\pi
0.753949 + 0.656933i 0.228147π0.228147\pi
600600 4.78213e11 0.150640
601601 −4.30615e12 −1.34634 −0.673169 0.739489i 0.735067π-0.735067\pi
−0.673169 + 0.739489i 0.735067π0.735067\pi
602602 6.34961e11 0.197044
603603 9.24983e11 0.284909
604604 2.31321e11 0.0707210
605605 −3.39326e12 −1.02972
606606 1.00937e11 0.0304036
607607 −2.35745e12 −0.704846 −0.352423 0.935841i 0.614642π-0.614642\pi
−0.352423 + 0.935841i 0.614642π0.614642\pi
608608 5.49020e11 0.162938
609609 −7.71177e11 −0.227183
610610 −3.76365e12 −1.10059
611611 4.68198e11 0.135908
612612 1.40283e11 0.0404226
613613 6.89834e12 1.97321 0.986603 0.163139i 0.0521618π-0.0521618\pi
0.986603 + 0.163139i 0.0521618π0.0521618\pi
614614 8.47147e11 0.240548
615615 4.10644e12 1.15752
616616 −4.38012e11 −0.122567
617617 −2.85812e12 −0.793959 −0.396979 0.917828i 0.629942π-0.629942\pi
−0.396979 + 0.917828i 0.629942π0.629942\pi
618618 −1.29443e12 −0.356968
619619 7.92629e11 0.217001 0.108501 0.994096i 0.465395π-0.465395\pi
0.108501 + 0.994096i 0.465395π0.465395\pi
620620 −4.34897e12 −1.18202
621621 8.44433e11 0.227852
622622 −2.96790e12 −0.795048
623623 −2.44289e12 −0.649692
624624 6.04368e10 0.0159577
625625 −4.55232e12 −1.19336
626626 −1.39322e11 −0.0362606
627627 9.63573e11 0.248989
628628 −9.04379e11 −0.232023
629629 −2.45893e11 −0.0626351
630630 −9.10316e11 −0.230229
631631 2.36798e12 0.594629 0.297315 0.954780i 0.403909π-0.403909\pi
0.297315 + 0.954780i 0.403909π0.403909\pi
632632 1.14241e12 0.284837
633633 4.05416e12 1.00366
634634 1.80985e12 0.444878
635635 −1.94588e12 −0.474936
636636 −5.92812e11 −0.143668
637637 −2.07218e11 −0.0498655
638638 7.35336e11 0.175709
639639 5.06425e11 0.120160
640640 4.94570e11 0.116525
641641 1.68150e12 0.393402 0.196701 0.980464i 0.436977π-0.436977\pi
0.196701 + 0.980464i 0.436977π0.436977\pi
642642 1.51374e11 0.0351678
643643 3.24081e11 0.0747661 0.0373831 0.999301i 0.488098π-0.488098\pi
0.0373831 + 0.999301i 0.488098π0.488098\pi
644644 −1.91454e12 −0.438610
645645 −1.25830e12 −0.286264
646646 6.99688e11 0.158073
647647 5.21323e12 1.16960 0.584800 0.811177i 0.301173π-0.301173\pi
0.584800 + 0.811177i 0.301173π0.301173\pi
648648 1.76319e11 0.0392837
649649 1.89815e12 0.419980
650650 2.62563e11 0.0576929
651651 3.51526e12 0.767085
652652 −2.54811e12 −0.552209
653653 2.43547e12 0.524171 0.262085 0.965045i 0.415590π-0.415590\pi
0.262085 + 0.965045i 0.415590π0.415590\pi
654654 −8.31837e11 −0.177803
655655 8.41432e12 1.78621
656656 1.80332e12 0.380195
657657 −4.30333e11 −0.0901075
658658 −3.09690e12 −0.644036
659659 6.06001e11 0.125167 0.0625833 0.998040i 0.480066π-0.480066\pi
0.0625833 + 0.998040i 0.480066π0.480066\pi
660660 8.68008e11 0.178064
661661 6.77650e12 1.38070 0.690349 0.723477i 0.257457π-0.257457\pi
0.690349 + 0.723477i 0.257457π0.257457\pi
662662 1.59702e12 0.323183
663663 7.70225e10 0.0154813
664664 −4.37140e11 −0.0872698
665665 −4.54036e12 −0.900312
666666 −3.09058e11 −0.0608703
667667 3.21414e12 0.628780
668668 −5.07308e11 −0.0985774
669669 6.05297e11 0.116829
670670 4.15596e12 0.796773
671671 −2.90077e12 −0.552410
672672 −3.99760e11 −0.0756202
673673 6.04180e11 0.113527 0.0567634 0.998388i 0.481922π-0.481922\pi
0.0567634 + 0.998388i 0.481922π0.481922\pi
674674 3.13869e10 0.00585840
675675 7.66004e11 0.142025
676676 −2.68157e12 −0.493888
677677 2.98303e12 0.545769 0.272885 0.962047i 0.412022π-0.412022\pi
0.272885 + 0.962047i 0.412022π0.412022\pi
678678 9.66211e11 0.175606
679679 2.37055e12 0.427992
680680 6.30294e11 0.113045
681681 −2.47614e12 −0.441177
682682 −3.35189e12 −0.593280
683683 7.12376e12 1.25261 0.626305 0.779578i 0.284566π-0.284566\pi
0.626305 + 0.779578i 0.284566π0.284566\pi
684684 8.79424e11 0.153619
685685 −3.07948e12 −0.534405
686686 4.40955e12 0.760213
687687 3.69367e12 0.632634
688688 −5.52577e11 −0.0940253
689689 −3.25483e11 −0.0550227
690690 3.79405e12 0.637209
691691 1.04589e13 1.74515 0.872576 0.488479i 0.162448π-0.162448\pi
0.872576 + 0.488479i 0.162448π0.162448\pi
692692 −1.95833e12 −0.324645
693693 −7.01610e11 −0.115557
694694 6.41987e12 1.05053
695695 −1.41016e13 −2.29265
696696 6.71119e11 0.108407
697697 2.29821e12 0.368843
698698 3.84659e12 0.613375
699699 4.91561e12 0.778808
700700 −1.73672e12 −0.273394
701701 4.06918e12 0.636467 0.318233 0.948012i 0.396910π-0.396910\pi
0.318233 + 0.948012i 0.396910π0.396910\pi
702702 9.68081e10 0.0150451
703703 −1.54148e12 −0.238034
704704 3.81181e11 0.0584863
705705 6.13713e12 0.935651
706706 2.07978e12 0.315062
707707 −3.66573e11 −0.0551790
708708 1.73238e12 0.259116
709709 −1.66533e12 −0.247510 −0.123755 0.992313i 0.539494π-0.539494\pi
−0.123755 + 0.992313i 0.539494π0.539494\pi
710710 2.27538e12 0.336040
711711 1.82993e12 0.268547
712712 2.12593e12 0.310020
713713 −1.46510e13 −2.12308
714714 −5.09466e11 −0.0733623
715715 4.76580e11 0.0681959
716716 −3.81939e12 −0.543106
717717 −6.74991e12 −0.953809
718718 1.39401e12 0.195752
719719 −5.02642e12 −0.701421 −0.350710 0.936484i 0.614060π-0.614060\pi
−0.350710 + 0.936484i 0.614060π0.614060\pi
720720 7.92205e11 0.109860
721721 4.70096e12 0.647856
722722 −7.76716e11 −0.106376
723723 −2.74890e12 −0.374142
724724 −2.02989e11 −0.0274568
725725 2.91562e12 0.391931
726726 −2.38690e12 −0.318874
727727 1.24557e13 1.65373 0.826864 0.562401i 0.190122π-0.190122\pi
0.826864 + 0.562401i 0.190122π0.190122\pi
728728 −2.19488e11 −0.0289614
729729 2.82430e11 0.0370370
730730 −1.93349e12 −0.251994
731731 −7.04221e11 −0.0912180
732732 −2.64744e12 −0.340821
733733 −4.40018e12 −0.562993 −0.281496 0.959562i 0.590831π-0.590831\pi
−0.281496 + 0.959562i 0.590831π0.590831\pi
734734 −3.35849e12 −0.427082
735735 −2.71621e12 −0.343297
736736 1.66613e12 0.209296
737737 3.20313e12 0.399918
738738 2.88857e12 0.358451
739739 1.53516e13 1.89345 0.946725 0.322042i 0.104369π-0.104369\pi
0.946725 + 0.322042i 0.104369π0.104369\pi
740740 −1.38860e12 −0.170229
741741 4.82848e11 0.0588340
742742 2.15291e12 0.260741
743743 −5.98491e12 −0.720456 −0.360228 0.932864i 0.617301π-0.617301\pi
−0.360228 + 0.932864i 0.617301π0.617301\pi
744744 −3.05917e12 −0.366037
745745 −1.96863e13 −2.34132
746746 −3.95864e12 −0.467973
747747 −7.00213e11 −0.0822787
748748 4.85788e11 0.0567400
749749 −5.49746e11 −0.0638254
750750 −1.22195e12 −0.141019
751751 5.21553e12 0.598300 0.299150 0.954206i 0.403297π-0.403297\pi
0.299150 + 0.954206i 0.403297π0.403297\pi
752752 2.69508e12 0.307321
753753 4.27284e12 0.484328
754754 3.68478e11 0.0415184
755755 1.66480e12 0.186466
756756 −6.40338e11 −0.0712954
757757 −7.20268e12 −0.797192 −0.398596 0.917127i 0.630502π-0.630502\pi
−0.398596 + 0.917127i 0.630502π0.630502\pi
758758 −2.57038e12 −0.282804
759759 2.92420e12 0.319829
760760 3.95127e12 0.429611
761761 1.61306e13 1.74349 0.871746 0.489958i 0.162988π-0.162988\pi
0.871746 + 0.489958i 0.162988π0.162988\pi
762762 −1.36878e12 −0.147074
763763 3.02098e12 0.322691
764764 −7.44835e12 −0.790933
765765 1.00961e12 0.106580
766766 −3.02778e12 −0.317757
767767 9.51164e11 0.0992376
768768 3.47892e11 0.0360844
769769 5.44382e12 0.561352 0.280676 0.959803i 0.409441π-0.409441\pi
0.280676 + 0.959803i 0.409441π0.409441\pi
770770 −3.15234e12 −0.323166
771771 4.27100e12 0.435296
772772 −6.15759e12 −0.623926
773773 6.04146e12 0.608603 0.304302 0.952576i 0.401577π-0.401577\pi
0.304302 + 0.952576i 0.401577π0.401577\pi
774774 −8.85122e11 −0.0886479
775775 −1.32903e13 −1.32336
776776 −2.06298e12 −0.204229
777777 1.12240e12 0.110473
778778 −8.36965e12 −0.819029
779779 1.44073e13 1.40173
780780 4.34960e11 0.0420750
781781 1.75371e12 0.168666
782782 2.12337e12 0.203046
783783 1.07500e12 0.102207
784784 −1.19281e12 −0.112758
785785 −6.50876e12 −0.611765
786786 5.91884e12 0.553140
787787 8.60450e12 0.799539 0.399769 0.916616i 0.369090π-0.369090\pi
0.399769 + 0.916616i 0.369090π0.369090\pi
788788 −5.00359e12 −0.462289
789789 1.02902e13 0.945314
790790 8.22188e12 0.751016
791791 −3.50898e12 −0.318704
792792 6.10578e11 0.0551414
793793 −1.45358e12 −0.130530
794794 −1.65255e12 −0.147558
795795 −4.26643e12 −0.378802
796796 6.86764e12 0.606316
797797 −1.65936e13 −1.45673 −0.728364 0.685190i 0.759719π-0.759719\pi
−0.728364 + 0.685190i 0.759719π0.759719\pi
798798 −3.19380e12 −0.278801
799799 3.43469e12 0.298145
800800 1.51139e12 0.130458
801801 3.40533e12 0.292289
802802 −1.00320e13 −0.856253
803803 −1.49021e12 −0.126481
804804 2.92340e12 0.246738
805805 −1.37788e13 −1.15646
806806 −1.67964e12 −0.140187
807807 −4.14528e12 −0.344051
808808 3.19012e11 0.0263303
809809 −1.98766e12 −0.163145 −0.0815724 0.996667i 0.525994π-0.525994\pi
−0.0815724 + 0.996667i 0.525994π0.525994\pi
810810 1.26896e12 0.103577
811811 −4.87988e12 −0.396110 −0.198055 0.980191i 0.563462π-0.563462\pi
−0.198055 + 0.980191i 0.563462π0.563462\pi
812812 −2.43730e12 −0.196747
813813 −9.72599e12 −0.780776
814814 −1.07024e12 −0.0854419
815815 −1.83386e13 −1.45598
816816 4.43364e11 0.0350070
817817 −4.41470e12 −0.346659
818818 −1.24081e13 −0.968983
819819 −3.51578e11 −0.0273051
820820 1.29784e13 1.00244
821821 −8.52019e12 −0.654493 −0.327246 0.944939i 0.606121π-0.606121\pi
−0.327246 + 0.944939i 0.606121π0.606121\pi
822822 −2.16618e12 −0.165490
823823 −6.08733e12 −0.462517 −0.231258 0.972892i 0.574284π-0.574284\pi
−0.231258 + 0.972892i 0.574284π0.574284\pi
824824 −4.09103e12 −0.309143
825825 2.65260e12 0.199356
826826 −6.29148e12 −0.470265
827827 9.36596e12 0.696270 0.348135 0.937444i 0.386815π-0.386815\pi
0.348135 + 0.937444i 0.386815π0.386815\pi
828828 2.66883e12 0.197326
829829 −3.35583e12 −0.246777 −0.123389 0.992358i 0.539376π-0.539376\pi
−0.123389 + 0.992358i 0.539376π0.539376\pi
830830 −3.14607e12 −0.230100
831831 1.47302e13 1.07153
832832 1.91010e11 0.0138198
833833 −1.52015e12 −0.109392
834834 −9.91944e12 −0.709970
835835 −3.65106e12 −0.259914
836836 3.04537e12 0.215631
837837 −4.90019e12 −0.345103
838838 6.01221e12 0.421150
839839 −1.40575e13 −0.979443 −0.489722 0.871879i 0.662902π-0.662902\pi
−0.489722 + 0.871879i 0.662902π0.662902\pi
840840 −2.87705e12 −0.199384
841841 −1.04154e13 −0.717949
842842 3.25187e12 0.222961
843843 −9.38052e11 −0.0639739
844844 1.28132e13 0.869191
845845 −1.92991e13 −1.30221
846846 4.31700e12 0.289745
847847 8.66849e12 0.578719
848848 −1.87358e12 −0.124420
849849 −1.27716e13 −0.843646
850850 1.92616e12 0.126563
851851 −4.67800e12 −0.305757
852852 1.60055e12 0.104062
853853 −1.54738e13 −1.00075 −0.500375 0.865809i 0.666805π-0.666805\pi
−0.500375 + 0.865809i 0.666805π0.666805\pi
854854 9.61471e12 0.618551
855855 6.32916e12 0.405041
856856 4.78418e11 0.0304562
857857 −2.12961e13 −1.34861 −0.674306 0.738452i 0.735557π-0.735557\pi
−0.674306 + 0.738452i 0.735557π0.735557\pi
858858 3.35238e11 0.0211184
859859 −9.74256e12 −0.610525 −0.305263 0.952268i 0.598744π-0.598744\pi
−0.305263 + 0.952268i 0.598744π0.598744\pi
860860 −3.97686e12 −0.247912
861861 −1.04904e13 −0.650547
862862 1.63317e13 1.00751
863863 3.02531e13 1.85661 0.928305 0.371820i 0.121266π-0.121266\pi
0.928305 + 0.371820i 0.121266π0.121266\pi
864864 5.57256e11 0.0340207
865865 −1.40940e13 −0.855975
866866 −1.47505e13 −0.891203
867867 5.65036e11 0.0339618
868868 1.11100e13 0.664315
869869 6.33687e12 0.376952
870870 4.83000e12 0.285832
871871 1.60509e12 0.0944972
872872 −2.62902e12 −0.153982
873873 −3.30449e12 −0.192549
874874 1.33112e13 0.771645
875875 4.43775e12 0.255933
876876 −1.36007e12 −0.0780354
877877 −1.29745e13 −0.740612 −0.370306 0.928910i 0.620747π-0.620747\pi
−0.370306 + 0.928910i 0.620747π0.620747\pi
878878 7.87681e12 0.447327
879879 −1.34931e13 −0.762364
880880 2.74334e12 0.154208
881881 2.77948e13 1.55443 0.777217 0.629233i 0.216631π-0.216631\pi
0.777217 + 0.629233i 0.216631π0.216631\pi
882882 −1.91065e12 −0.106309
883883 3.41003e12 0.188771 0.0943854 0.995536i 0.469911π-0.469911\pi
0.0943854 + 0.995536i 0.469911π0.469911\pi
884884 2.43429e11 0.0134072
885885 1.24678e13 0.683198
886886 2.42247e13 1.32071
887887 1.46173e13 0.792885 0.396442 0.918060i 0.370245π-0.370245\pi
0.396442 + 0.918060i 0.370245π0.370245\pi
888888 −9.76775e11 −0.0527153
889889 4.97100e12 0.266923
890890 1.53002e13 0.817413
891891 9.78028e11 0.0519878
892892 1.91304e12 0.101177
893893 2.15318e13 1.13305
894894 −1.38478e13 −0.725041
895895 −2.74879e13 −1.43198
896896 −1.26344e12 −0.0654890
897897 1.46532e12 0.0755729
898898 −2.05285e13 −1.05345
899899 −1.86515e13 −0.952346
900900 2.42095e12 0.122997
901901 −2.38774e12 −0.120705
902902 1.00029e13 0.503147
903903 3.21449e12 0.160886
904904 3.05370e12 0.152079
905905 −1.46090e12 −0.0723939
906906 1.17106e12 0.0577434
907907 −1.53716e13 −0.754199 −0.377100 0.926173i 0.623079π-0.623079\pi
−0.377100 + 0.926173i 0.623079π0.623079\pi
908908 −7.82582e12 −0.382070
909909 5.10995e11 0.0248244
910910 −1.57964e12 −0.0763612
911911 −1.96370e13 −0.944589 −0.472295 0.881441i 0.656574π-0.656574\pi
−0.472295 + 0.881441i 0.656574π0.656574\pi
912912 2.77942e12 0.133038
913913 −2.42477e12 −0.115492
914914 1.69204e13 0.801958
915915 −1.90535e13 −0.898627
916916 1.16738e13 0.547877
917917 −2.14954e13 −1.00388
918918 7.10184e11 0.0330049
919919 1.74193e13 0.805582 0.402791 0.915292i 0.368040π-0.368040\pi
0.402791 + 0.915292i 0.368040π0.368040\pi
920920 1.19911e13 0.551839
921921 4.28868e12 0.196406
922922 2.01242e13 0.917128
923923 8.78784e11 0.0398542
924924 −2.21743e12 −0.100075
925925 −4.24351e12 −0.190585
926926 1.02387e13 0.457610
927927 −6.55304e12 −0.291463
928928 2.12107e12 0.0938834
929929 2.41408e13 1.06336 0.531682 0.846944i 0.321560π-0.321560\pi
0.531682 + 0.846944i 0.321560π0.321560\pi
930930 −2.20166e13 −0.965112
931931 −9.52970e12 −0.415724
932932 1.55358e13 0.674467
933933 −1.50250e13 −0.649154
934934 −6.75327e12 −0.290371
935935 3.49619e12 0.149604
936936 3.05962e11 0.0130294
937937 1.77293e13 0.751386 0.375693 0.926744i 0.377405π-0.377405\pi
0.375693 + 0.926744i 0.377405π0.377405\pi
938938 −1.06169e13 −0.447801
939939 −7.05316e11 −0.0296066
940940 1.93963e13 0.810298
941941 3.01480e13 1.25345 0.626723 0.779242i 0.284396π-0.284396\pi
0.626723 + 0.779242i 0.284396π0.284396\pi
942942 −4.57842e12 −0.189446
943943 4.37223e13 1.80053
944944 5.47518e12 0.224401
945945 −4.60847e12 −0.187981
946946 −3.06510e12 −0.124433
947947 −5.80514e12 −0.234551 −0.117276 0.993099i 0.537416π-0.537416\pi
−0.117276 + 0.993099i 0.537416π0.537416\pi
948948 5.78347e12 0.232568
949949 −7.46744e11 −0.0298864
950950 1.20749e13 0.480981
951951 9.16236e12 0.363241
952952 −1.61016e12 −0.0635336
953953 4.65766e13 1.82915 0.914577 0.404413i 0.132524π-0.132524\pi
0.914577 + 0.404413i 0.132524π0.132524\pi
954954 −3.00111e12 −0.117304
955955 −5.36053e13 −2.08542
956956 −2.13330e13 −0.826023
957957 3.72264e12 0.143465
958958 1.77168e13 0.679581
959959 7.86692e12 0.300345
960960 2.50376e12 0.0951420
961961 5.85795e13 2.21560
962962 −5.36298e11 −0.0201892
963963 7.66333e11 0.0287144
964964 −8.68789e12 −0.324017
965965 −4.43158e13 −1.64507
966966 −9.69236e12 −0.358123
967967 −3.18508e13 −1.17139 −0.585695 0.810531i 0.699179π-0.699179\pi
−0.585695 + 0.810531i 0.699179π0.699179\pi
968968 −7.54378e12 −0.276153
969969 3.54217e12 0.129066
970970 −1.48471e13 −0.538480
971971 −4.47822e12 −0.161666 −0.0808330 0.996728i 0.525758π-0.525758\pi
−0.0808330 + 0.996728i 0.525758π0.525758\pi
972972 8.92617e11 0.0320750
973973 3.60244e13 1.28851
974974 −3.57433e13 −1.27256
975975 1.32922e12 0.0471061
976976 −8.36723e12 −0.295160
977977 2.67219e13 0.938300 0.469150 0.883118i 0.344560π-0.344560\pi
0.469150 + 0.883118i 0.344560π0.344560\pi
978978 −1.28998e13 −0.450877
979979 1.17923e13 0.410278
980980 −8.58456e12 −0.297304
981981 −4.21117e12 −0.145175
982982 −3.02265e12 −0.103726
983983 −3.28908e13 −1.12353 −0.561763 0.827298i 0.689877π-0.689877\pi
−0.561763 + 0.827298i 0.689877π0.689877\pi
984984 9.12931e12 0.310428
985985 −3.60105e13 −1.21889
986986 2.70315e12 0.0910803
987987 −1.56780e13 −0.525853
988988 1.52604e12 0.0509517
989989 −1.33975e13 −0.445287
990990 4.39429e12 0.145389
991991 1.76149e13 0.580160 0.290080 0.957002i 0.406318π-0.406318\pi
0.290080 + 0.957002i 0.406318π0.406318\pi
992992 −9.66848e12 −0.316997
993993 8.08490e12 0.263878
994994 −5.81272e12 −0.188860
995995 4.94260e13 1.59864
996996 −2.21302e12 −0.0712555
997997 −5.37642e13 −1.72332 −0.861659 0.507488i 0.830574π-0.830574\pi
−0.861659 + 0.507488i 0.830574π0.830574\pi
998998 2.97565e13 0.949499
999999 −1.56461e12 −0.0497004
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.10.a.i.1.4 4
3.2 odd 2 306.10.a.k.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.10.a.i.1.4 4 1.1 even 1 trivial
306.10.a.k.1.1 4 3.2 odd 2